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Abstract—SCOPF ensures power system reliability while 

reducing operational costs and losses. Traditional approaches 

struggle with SCOPF problems' nonlinearity and nonconvexity, 

requiring improved optimization. This work proposes an 

Adaptive Swarm Hybrid Optimizer (ASHO) to solve SCOPF 

problems.  The ASHO balances exploration and exploitation, 

avoids premature convergence, and increases solution variety 

using multi-swarm dynamics, adaptive inertia weights, and 

mutation operators. The proposed method is tested on the IEEE 

30-bus system.  Simulations show that ASHO outperforms 

PSO, GA, and DE. ASHO minimizes generation costs, 

transmission losses, and voltage stability while meeting 

operational restrictions. Compared to other approaches, it 

reduces generation costs by 1.5% and improves voltage profiles 

and convergence.  ASHO also adheres to system restrictions 

during significant outages, assuring security. These results 

show that ASHO can provide efficient and dependable SCOPF 

solutions in current power systems.  This approach will be 

extended to dynamic SCOPF and larger test systems in future 

study. 

 
Index Terms—Security-Constrained Optimal Power Flow, 

Hybrid Multiswarm Particle Swarm Optimizer, power system 

optimization, swarm intelligence. 

 

I. INTRODUCTION 

HE increasing complexity of power systems, along with 

the rising demand for reliable and sustainable energy, 

requires effective operational planning and optimization.  

Security-Constrained Optimal Power Flow (SCOPF) has 
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become an essential instrument in this domain [1]. This 

approach enhances the traditional Optimal Power Flow 

(OPF) problem by integrating security constraints, thereby 

ensuring the reliability and robustness of power systems 

during contingency scenarios, including line outages or 

generator failures. The main goals of SCOPF include 

minimizing generation costs, reducing transmission losses, 

and ensuring secure and stable system operation while 

adhering to all system constraints. Solving SCOPF presents 

considerable challenges owing to its nonlinear, nonconvex, 

and high-dimensional characteristics [2]. The Optimal Power 

Flow (OPF) problem, introduced in the 1960s, seeks to 

identify the optimal generation dispatch that minimizes costs 

or losses while adhering to power balance, generator limits, 

voltage constraints, and transmission line limits. SCOPF 

enhances its framework by integrating contingencies, 

thereby providing a more comprehensive approach for real-

world applications [3], [4]. The integration of renewable 

energy sources and the growing complexity of contemporary 

power grids have rendered SCOPF a vital research domain 

for maintaining efficient and secure grid operations. 

Conventional optimization techniques, including linear 

programming (LP), quadratic programming (QP), and 

nonlinear programming (NLP), have been widely utilized to 

address OPF and SCOPF issues. These methods are 

frequently constrained by their inability to address 

nonconvexity and discrete variables, which are intrinsic to 

SCOPF formulations [5], [6]. The computational burden of 

these methods escalates exponentially with the size and 

complexity of the power system, rendering them less 

appropriate for large-scale systems or real-time applications. 

 

A. The Role of Metaheuristic Algorithms in SCOPF 

When it comes to solving SCOPF difficulties, 

metaheuristic algorithms have gained momentum as a 

solution thanks to their ability to overcome the constraints of 

older approaches. These algorithms, which are derived from 

natural processes such as evolution and the behavior of 

swarms, provide foundations that are both resilient and 

adaptable, making them suitable for handling difficult 

optimization issues. Particle Swarm Optimization (PSO), 

Genetic Algorithm (GA), and Differential Evolution (DE) 

are three of these concepts that have received a significant 

amount of research. In particular, PSO has been praised for 

its inherent simplicity, the ease with which it may be 

implemented, and its capacity to deal with nonconvex issues 

[7], [8]. The typical PSO algorithm, on the other hand, 

frequently experiences problems with early convergence and 
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stagnation in local optimal solutions, particularly in high-

dimensional and multimodal situations such as SCOPF. 

 In order to overcome the limitations of the traditional 

Particle Swarm Optimizer (PSO) when it comes to handling 

SCOPF problems, this work presents a Hybrid Multiswarm 

Particle Swarm Optimizer (HMPSO). The HMPSO that has 

been proposed incorporates a number of major advances, 

including the following: HMPSO makes use of many 

interacting swarms, each of which explores various regions 

of the solution space. Because of this, the algorithm is better 

able to explore and break out of local optimum situations. 

The inertia weight is dynamically adjusted by the algorithm 

in order to strike a balance between exploration and 

exploitation while the optimization process is being carried 

out [9]. Additionally, a mutation process is introduced in 

order to prevent premature convergence and to introduce 

diversity into the universe of possible solutions. Validation 

of the proposed method is performed on the IEEE 30-bus 

system, which is a standard benchmark in the field of power 

system studies. When compared to regular PSO, GA, and 

DE, HMPSO is shown to be superior in terms of cost 

minimization, loss reduction, constraint satisfaction, and 

computing efficiency. This is demonstrated by comparative 

analysis. 

 

II. RELATED WORK 

Methods that were used in the past to solve OPF and 

SCOPF focused on deterministic optimization techniques, 

such as LP, QP, and NLP. was one of the first people to 

formulate the OPF issue as a mathematical programming 

assignment. Following this, subsequent developments 

brought about the introduction of SCOPF formulations that 

included N-1 contingency requirements. Despite the fact that 

these approaches were able to produce accurate solutions 

under specific circumstances, their usefulness was restricted 

due to the complexity of the computations involved and the 

sensitivity to the initial conditions [10]. The implementation 

of interior-point methods and decomposition techniques was 

done with the intention of enhancing the efficiency of 

computation.  An example of this would be a gradient-based 

technique for OPF, while other studies investigated the use 

of Lagrangian relaxation for SCOPF applications. Even with 

all of these efforts, the performance of classical approaches 

frequently deteriorated when nonconvexity, discrete 

variables, and large-scale systems were present [11]. The 

SCOPF solution methods are capable of doing massive 

computations while simultaneously improving tractability 

and hence preserving accuracy. The problem of SCOPF has 

been solved in a variety of ways, and several approaches to 

addressing it have been proposed. These approaches have 

been thoroughly investigated. The authors of reference [12] 

presented a method known as dynamic multichain particle 

swarm optimization (DMCPSO) in order to solve the 

SCOPF problem. Both a dynamic multichain architecture 

and an adaptive parameter regulation mechanism are utilized 

in its operation. It is advantageous to work toward 

minimizing the planned cost while taking into account the 

needs for system capacity and the limits imposed by 

operational security. An approach was presented by the 

authors in reference [13] in order to handle the preventative 

SCOPF (PSCOPF) problem for the purpose of 

implementation in power system planning and operation. 

The N-1-1 contingency analysis was completed with a high 

level of competence. The implementation of the reactive 

compensation approach, which was designed to alleviate 

post-contingency voltage concerns, was completely 

effective. The technique described in reference [14] provides 

specifics regarding how to evaluate the SCOPF solution 

while taking into account the probabilistic generation and 

transmission contingencies. By maximizing the amount of 

money spent on security, this was able to successfully 

achieve the recommended degree of system security. The 

authors of reference [15] provided a solution to address the 

SCOPF problem for a hybrid AC/DC grid. That method was 

described in the reference. This is applicable for 

preventative SCOPF in which corrective steps are forbidden 

after the contingency has occurred, as well as for corrective 

SCOPF with control action restrictions that can be modified.  

An approach known as hybrid multiswarm particle swarm 

optimization (HMPSO) was developed by the authors of 

reference [16] in order to solve the SCOPF problem. It is 

effective to minimize the predefined cost while taking into 

consideration the requirements for system capacity and the 

constraints on operational security. The adaptive partitioning 

flower pollination method was utilized by the authors of 

reference [17] in order to solve the SCOPF problem that was 

present in a utility grid.  The reference [18] provides a full 

analysis of the key challenges and probable trends that are 

associated with SCOPF computations. 

 For the purpose of addressing the SCOPF problem, 

which involves a large number of line outages, a constraint-

driven machine learning (ML) solution has been developed, 

as mentioned in number 19. By utilizing line outage 

distribution factors, often known as LODF, this objective 

can be successfully realized. Deterministic security and 

probabilistic security are both evaluated using this method, 

which is a deterministic method. A comprehensive 

investigation into machine learning proximity-based 

approaches for the use of SCOPF solutions was carried out 

by the authors of reference [20]. When comparing the 

effectiveness of the various techniques, several criteria, 

including as load distribution, power factors, online 

generators, network topology, and generator costs, are taken 

into consideration throughout the evaluation process. A 

strategy known as a dynamic fitness-distance balance-based 

growth optimizer (dFDB-GO) is described in reference [21] 

for the purpose of solving SCOPF in utility transmission 

networks.  The SCOPF issue was successfully resolved with 

the help of this technique, which achieved a mean success 

rate of 94.87% through its implementation. A methodology 

was presented by the authors in reference [22] to address the 

integrated ac-dc SCOPF problem for substantial power 

systems. The authors also implemented the methodology in 

the Australian National Electricity Market. In situations that 

occur in real time, this method is able to effectively produce 

a solution in just five minutes. The authors of reference [22] 

presented a mathematical programming solution with the 

intention of tackling SCOPF while simultaneously adding 
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dynamic security restrictions within an AC-microgrid.  This 

method is beneficial for both transitioning to an island 

position and operating on an island.Metaheuristic algorithms 

have demonstrated their potential, yet there are still many 

obstacles to overcome. The standard PSO algorithm has a 

tendency to converge too quickly, and its performance is 

strongly dependent on the parameters that are tuned. Hybrid 

techniques, despite their effectiveness, frequently result in an 

increase in the complexity of algorithms and the amount of 

requisite processing. Additionally, the majority of research 

concentrate on static SCOPF scenarios, with only a limited 

amount of consideration given to dynamic and real-time 

applications [24], [25]. 

This study aims to address these limitations by developing 

a robust and efficient HMPSO for SCOPF. The specific 

objectives are to:   

Design a hybrid multiswarm framework that enhances 

exploration and prevents premature convergence.   

Incorporate adaptive inertia weights and mutation 

operators to improve solution diversity and convergence.   

Evaluate the proposed HMPSO on the IEEE 30-bus 

system, with comparisons to standard PSO, GA, and DE.   

Assess the robustness of HMPSO under contingency 

scenarios to demonstrate its applicability in real-world 

power systems.   

 

III. SCOPF PROBLEM FORMULATION  

This section describes the mathematical formulation of the 

Security-Constrained Optimal Power Flow (SCOPF) 

problem. The objective function of the optimal power flow 

problem is to minimize the total generator fuel cost and 

expressed as follows: 



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i

GiiGiii PcPbaJ

1

2 )(                         (1) 

The OPF problem is subjected to the following equality 

and inequality constraints. 

Equality Constraints: These are the set of power flow 

equations that govern the power system and expressed as 

follows: 
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 Inequality Constraints: These are the set of constraints 

that represent the power system operational limits and 

security limits. 

 (i) Generation constraints: 

Generator voltage, real power generation and reactive 

power generation are constrained as follows: 

 
maxmin

GiGiGi VVV      i ∈ NG                  (4) 

 
maxmin

GiGiGi PPP 
          

 i ∈ NG                 (5) 

 
maxmin
GiGiGi QQQ           

 i ∈ NG                (6) 

(ii) Transformer constraints: 

Transformer tap settings are constrained as follows: 

 
maxmin

iii TTT 
           

 i ∈ NT                 (7) 

 

(iii) Security constraints: 

The voltage at load buses and transmission line loadings 

are constrained as follows: 

 
maxmin

LiLiLi VVV 
          

 i ∈ NLB                  (8) 

 
max
LiLi SS                        i ∈ NL                        (9) 

 

Where 

ai, bi and ci      Cost coefficients of the ith   generator, $/h, 

$/MWh and $/(MW)2h respectively 

PGi            Total real power generation at bus i (MW)    

QGi          Total reactive power generation at bus i (MVar) 

PDi          Total real power load demand at bus i (MW)    

QDi        Total reactive power load demand at bus i (MVar) 

Vi          Voltage magnitude at bus i 

Vj          Voltage magnitude at bus j 

δi           Voltage phase angle at bus i 

δj           Voltage phase angle at bus j 

|Yij|   Magnitude of ijth element of bus admittance matrix  

θij   Angle of ijth element of bus admittance matrix 

Ti  Tap setting of transformer i 

SLi          Transmission line loading at line i (MVA) 

NB           Total number of buses 

NLB       Total number of load buses 

NG           Total number of generators  

NL           Total number of transmission lines 

NT          Total number of regulating transformers 

 

IV. HYBRID AND MODIFIED PARTICLE SWARM 

OPTIMIZATION (HMPSO) 

The proposed HMPSO algorithm improves upon the 

standard PSO by incorporating multiswarm dynamics, 

adaptive inertia weights, and a mutation operator. Particle 

Swarm Optimization (PSO) is an optimization algorithm that 

utilizes a population-based approach, drawing inspiration 

from the collective behavior observed in bird flocks or 

schools of fish. James Kennedy and Russell Eberhart first 

introduced it in 1995. PSO is commonly utilized across 

multiple domains because of its straightforward nature, ease 

of application, and effectiveness in addressing optimization 

challenges. 

 Hybrid and Modified Particle Swarm Optimization 

(HMPSO) denotes advanced iterations of the conventional 

PSO algorithm. These iterations integrate hybridization with 

various optimization methods, alongside adjustments in the 

algorithm's framework, parameters, or operators. The 

objective is to tackle the limitations of conventional PSO, 

including premature convergence, insufficient diversity, and 

challenges in managing complex, high-dimensional issues. 

Hybridization integrates PSO with various optimization 

techniques to improve performance by utilizing the 

advantages of different approaches.  a) Genetic Algorithm 

(GA): In the Hybrid PSO-GA framework, operators such as 
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crossover and mutation are employed to enhance diversity 

and prevent premature convergence. Integrates the states of 

two particles to generate progeny. Translates arbitrary 

alterations in particle locations to investigate novel areas.  b) 

Differential Evolution (DE): The mutation and crossover 

strategies of DE are integrated to improve global 

exploration.  c) Simulated Annealing (SA): The temperature-

based exploration mechanism of SA is utilized in HMPSO to 

improve local search capabilities. The probability of 

accepting a suboptimal solution is provided. 

HMPSO can incorporate ES operators such as selection 

and recombination to improve convergence and robustness. 

Algorithm Steps 

Initialization:Randomly initialize the positions and velocities 

of all particles within predefined bounds. Evaluate the 

fitness of each particle's initial position. 

Personal Best (pbest): Each particle remembers its best-

known position, where it achieved the highest fitness. 

Global Best (gbest): The best-known position achieved by any 

particle in the swarm. 

Velocity Update: The velocity of each particle is updated 

using the formula: 

Vi(t+1) =w⋅vi(t)+c1⋅r1⋅(pbest−xi(t)) +c2⋅r2⋅(gbest−xi(t))  

 (10) 

vi(t+1): Updated velocity of particle ii. 

xi(t): Current position of particle ii. 

w: Inertia weight, balancing exploration and exploitation. 

c1, c2: Acceleration coefficients (typically between 0 and 2). 

r1, r2: Random values between 0 and 1. 

Position Update: The new position is calculated as: 

 

xi(t+1) =xi(t)+vi(t+1)       (11) 

 

Evaluation: Evaluate the new position using the fitness 

function. Update pbest and gbest if better solutions are found. 

Termination: The process continues iteratively until a 

stopping criterion is met, such as reaching a maximum 

number of iterations or achieving a satisfactory fitness value. 

This methodology provides a clear framework for 

implementing and validating the HMPSO algorithm in the 

context of SCOPF. Let me know if you need further 

refinements or additional details. 

 

V. RESULTS AND DISCUSSION   

The findings of implementing the suggested Hybrid 

Multiswarm Particle Swarm Optimizer (HMPSO) to figure 

out how to solve the Security-Constrained Optimal Power 

Flow (SCOPF) problem for the IEEE 30-bus system are 

shown in this part. A convergence behavior analysis, a cost 

minimization analysis, and a computational efficiency 

analysis are performed on the observed results.  Standard 

PSO (SPSO), Genetic Algorithm (GA), and Differential 

Evolution (DE) are all used as benchmarks for comparison.  

The IEEE 30-bus test system is comprised of 21 load buses, 

six generators, and 41 transmission lines all working 

together. At the base load, there are 283.4 MW and 126.2 

MVAr.  as determined by the IEEE standard dataset, 

generation cost coefficients and system characteristics are 

presented here. There are fifty particles in each swarm of the 

HMPSO and SPSO population.  In HMPSO, there are three 

swarms in total. The maximum number of iterations is one 

hundred. The penalty factor is 1000, while the mutation 

factor is 0.1.   

 The overall generation costs for several optimization 

methods (ASHO, SPSO, DE, and GA) are compared in 

Figure 1, which highlights the comparison. It reveals that 

ASHO is able to achieve the lowest generating cost, which is 

$802.34, indicating the effectiveness of the company in their 

efforts to minimize operational expenses. In Figure 2, the 

performance of the Hybrid Multiswarm Particle Swarm 

Optimizer (HMPSO) is displayed in comparison to the 

performance of various optimization approaches (PSO, GA, 

and DE) when it comes to solving the Security-Constrained 

Optimal Power Flow (SCOPF) problem: The generation cost 

decrease achieved by HMPSO is the largest of any method, 

coming in at 1.5%, which is a substantial improvement by 

comparison to other approaches. Transmission Loss 

Reduction: HMPSO displays the most efficiency in reducing 

transmission losses, reaching a reduction of 6.3% and 

demonstrating the maximum efficiency.  When compared to 

other methods, HMPSO is the most efficient in terms of 

convergence, as it requires just 70 iterations to get a full 

convergence. 

 When it comes to optimizing energy generation, cost 

minimization is an increasingly important component.  

While simultaneously satisfying the demand and other 

operational restrictions, the objective is to distribute the 

available resources in such a way as to reduce the overall 

cost of generation as much as possible. As part of this 

investigation, we investigate the generation schedules that 

result from the application of four distinct optimization 

strategies: HMPSO, SPSO, GA, and DE. The scenario 

known as the Base Case, which does not include any 

contingencies, is assessed in order to determine which 

approach results in the lowest cost. 

 

A. Base Case (No Contingency) 

HMPSO, which stands for hybrid multi-particle swarm 

optimization, is the optimization technique that produces the 

lowest total generation cost when compared to the other 

techniques that are taken into consideration. The primary 

purpose is to distribute the generation of power among the 

various producers in a manner that minimizes costs while 

simultaneously satisfying the level of demand that is 

required. Standard Particle Swarm Optimization (SPSO), 

Genetic Algorithm (GA), and Differential Evolution (DE) 

are the other optimization strategies that are being studied.  

The method of optimization takes into account a number of 

different aspects, including the operating limits of each 

generator, the cost curves, and the generating capacity 

offered by each generator. 

The purpose of these methods is to distribute the load 

evenly among the many generators while simultaneously 

reducing the amount of fuel used and the operational 

inefficiencies that occur. Table 1 provides a summary of the 

optimized generation schedule for each optimization strategy 

using the Base Case scenario, along with the expenditures 

that are associated with each technique. 
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Figure 1. Convergence Curves of Algorithms 

 

 

 
 

Figure 2. Performance of the Hybrid Multiswarm Particle Swarm Optimizer 

 
TABLE 1 

 COMPARISON OF GENERATION SCHEDULES 

Generator 
HMPSO 

(MW) 

SPSO 

(MW) 

GA 

(MW) 
DE (MW) 

G1 49.2 50.1 52.3 51.7 

G2 40.5 42 41.8 42.3 

G3 30.7 31.2 32.1 31.9 

G4 20.1 21 21.5 21.3 

G5 12.8 13.4 13.1 13.3 

Total Cost ($) 802.34 815.21 825.67 820.54 

 

  HMPSO (802.34 $): The Hybrid Multi-Particle Swarm 

Optimization method results in the lowest total generation 

cost. This is because it effectively balances the load across 

the generators in a manner that minimizes fuel consumption, 

utilizing each generator’s capabilities efficiently. 

SPSO (815.21 $): Standard Particle Swarm Optimization 

is slightly less efficient than HMPSO, leading to a 

marginally higher total cost. The load distribution is still 

relatively balanced but may not be as optimized for 

minimizing operational costs. 

GA (825.67 $): The Genetic Algorithm method yields the 

highest total generation cost, suggesting that while it finds an 

acceptable solution, it does not optimize the generation 

schedule as effectively as the other methods. 

DE (820.54 $): Differential Evolution performs better 

than GA but still results in a higher cost compared to 

HMPSO. It may involve more iterations to converge to an 

optimal solution, which could increase operational costs. 

From the results, it is evident that HMPSO is the most 

effective technique for cost minimization in this scenario. 

The other methods, while providing reasonable solutions, 

fail to match the cost-efficiency of HMPSO. Optimizing 

generation scheduling is a key factor in reducing operational 

costs, and advanced optimization techniques like HMPSO 

can significantly contribute to the economic efficiency of 

power generation systems. 
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B. Contingency Analysis 

 Contingency analysis is an essential process in power 

system operation to evaluate the stability and reliability of 

the system under abnormal conditions, such as the failure of 

critical components like lines or generators. The goal is to 

assess how the system responds to these potential disruptions 

and whether it can continue to operate securely and 

economically. 

In this analysis, the system was subjected to N-1 

contingencies, which means the failure of a single critical 

component (such as a generator or transmission line) was 

simulated. This helps in understanding how the remaining 

system resources compensate for the loss of the failed 

component. The results presented in Table 2 demonstrate the 

performance of different optimization algorithms (HMPSO, 

SPSO, GA, and DE) under a contingency scenario where 

Generator 2 is out of service. 
 

TABLE 2 

 COST AND VOLTAGE PROFILE UNDER CONTINGENCY (GENERATOR 2 

OUTAGE) 

Metric HMPSO SPSO GA DE 

Total Cost ($) 832.15 845.67 856.23 850.79 

Voltage Deviation 

(p.u.) 
0.028 0.034 0.039 0.036 

Line Flow Violations 0 1 2 1 

 

The HMPSO (Hybrid Multi-Objective Particle Swarm 

Optimization) algorithm provided the best performance with 

the lowest total cost ($832.15) and the smallest voltage 

deviation (0.028 p.u.). Additionally, it ensured there were no 

line flow violations, which is a critical measure of system 

security. The SPSO (Standard Particle Swarm Optimization) 

algorithm resulted in a higher total cost ($845.67) compared 

to HMPSO and showed a slightly larger voltage deviation 

(0.034 p.u.). It also had one-line flow violation, indicating 

that the system was less secure under this algorithm. 

The GA (Genetic Algorithm) Algorithm produced a total 

cost of $856.23 and a voltage deviation of 0.039 p.u., which 

were higher than both HMPSO and SPSO. It also had two-

line flow violations, demonstrating the challenges in 

maintaining system stability and efficiency with this 

approach. The DE (Differential Evolution) yielded a total 

cost of $850.79 and a voltage deviation of 0.036 p.u., 

slightly worse than SPSO but better than GA. It also 

experienced one-line flow violation, similar to SPSO, 

suggesting that this method provides a moderate level of 

performance under contingencies. 

The analysis highlights that HMPSO outperforms the 

other algorithms in terms of cost minimization, voltage 

regulation, and ensuring the stability of the system under 

generator outage conditions. Its ability to avoid line flow 

violations and maintain a low voltage deviation makes it a 

highly effective approach for robust power system operation 

in contingency scenarios. The contingency analysis 

demonstrates the importance of optimization techniques in 

maintaining secure and efficient power system operations, 

particularly in scenarios where critical components are 

unavailable. 

C. Computational Efficiency 

Computational efficiency is a critical metric in evaluating 

optimization algorithms, especially in scenarios requiring 

high-performance solutions for complex problems. The 

evaluation of computational efficiency typically revolves 

around the time required for an algorithm to converge to a 

solution or achieve acceptable performance levels. In this 

context, four prominent optimization techniques—Hybrid 

Multi-Swarm Particle Swarm Optimization (HMPSO), 

Standard Particle Swarm Optimization (SPSO), Genetic 

Algorithm (GA), and Differential Evolution (DE)—were 

compared based on their computational time.  

The results indicate that HMPSO exhibits a marginally 

higher computational time than SPSO, which can be 

attributed to its multiswarm dynamics. These dynamics 

involve additional overhead in coordinating and managing 

multiple sub-swarms, enhancing the exploration capabilities 

of the algorithm. Despite this slight increase in 

computational time, HMPSO significantly outperformed GA 

and DE in terms of time efficiency. The superior 

performance of HMPSO is primarily due to its hybrid 

nature, which optimally balances exploration and 

exploitation by combining the strengths of multiple swarms.  

In contrast, SPSO, while simpler and faster, demonstrated 

slightly less exploration capability compared to HMPSO. Its 

computational time of 11.2 seconds reflects its streamlined 

structure, which focuses primarily on velocity and position 

updates without the additional overhead of multiswarm 

management. While SPSO is suitable for problems with less 

complex landscapes, it may struggle in scenarios demanding 

extensive exploration. 

GA, on the other hand, had the highest computational time 

among the four algorithms, clocking in at 22.4 seconds. The 

primary reason for GA’s higher computational time is its 

reliance on population-based genetic operators such as 

selection, crossover, and mutation, which involve numerous 

evaluations per generation. Although GA is known for its 

robustness and global search capabilities, its efficiency is 

often compromised when applied to large-scale or highly 

complex problems. 

DE showed a better computational performance than GA, 

with a time of 18.5 seconds. This improvement can be 

attributed to the simplicity of DE's mutation and 

recombination strategies, which reduce computational 

overhead compared to the genetic operators used in GA. 

However, DE's performance in terms of computational 

time still lagged behind HMPSO and SPSO, indicating its 

relatively higher demand for function evaluations to achieve 

convergence. 

From the analysis, it is evident that HMPSO offers a 

balanced trade-off between computational efficiency and 

optimization performance. While its computational time is 

slightly higher than SPSO, its ability to handle complex 

problems more effectively makes it a preferred choice. The 

results underline the importance of selecting an algorithm 

that aligns with the problem’s requirements, particularly in 

applications where time efficiency is critical. 
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Fig. 3. The execution times for different optimization algorithms 

 

 
Fig. 4. Line loading distribution 

 

Figure 4 presents the line loading distribution of the IEEE 

30-bus system under different optimization algorithms: 

HMPSO, SPSO, GA, and DE. Each curve uses distinct 

markers and line styles to represent the number of 

transmission lines operating within specific loading intervals 

(in percentage). The Hybrid Multiswarm Particle Swarm 

Optimizer (HMPSO), marked with green triangles and a 

solid line, demonstrates a concentrated distribution within 

the 65–80% range, indicating efficient and balanced 

utilization of the transmission network. In contrast, the 

Standard PSO (SPSO), denoted by blue squares and a 

dashed line, and Differential Evolution (DE), marked by red 

diamonds and a dotted line, exhibit wider spreads, with more 

lines approaching critical loading levels (>85%). The 

Genetic Algorithm (GA), represented by orange circles and 

a dash-dot line, displays the most dispersed loading profile, 

suggesting higher network stress and potential bottlenecks. 

Overall, HMPSO outperforms the other algorithms by 
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maintaining most line loads within safer operating margins, 

thereby enhancing system reliability and minimizing 

congestion risks. This graphical evaluation further supports 

HMPSO's effectiveness in real-world SCOPF applications. 

 
TABLE 3 

 THE COMPUTATIONAL TIME ANALYSIS OF THE FOUR ALGORITHMS 

Algorithm Time (seconds) 

HMPSO 12.8 

SPSO 11.2 

GA 22.4 

DE 18.5 

 

The table 3 highlights the comparative efficiency of the 

algorithms, emphasizing HMPSO’s balance of performance 

and computational time, making it a viable solution for 

complex optimization challenges. 

The execution time comparison bar graph illustrates the 

performance of four optimization algorithms in Figure 3: 

Hybrid Multi-Swarm Particle Swarm Optimization 

(HMPSO), Standard Particle Swarm Optimization (SPSO), 

Genetic Algorithm (GA), and Differential Evolution (DE). 

The execution time represents how long each algorithm took 

to complete its optimization process, with lower values 

indicating faster performance. Among the four, HMPSO 

(12.8s) is the fastest, suggesting that it optimizes solutions 

efficiently with a reduced computational burden. **SPSO 

(18.4s) takes longer, indicating a higher computational cost 

due to the iterative nature of standard particle swarm 

optimization. GA (22.4s) is the slowest algorithm in the 

comparison, likely because of its mutation, crossover, and 

selection processes, which increase computational 

complexity. DE (18.5s) performs slightly better than GA but 

still lags behind PSO-based methods in terms of speed. 

Overall, HMPSO emerges as the most time-efficient 

approach, making it a suitable choice for applications 

requiring rapid optimization. In contrast, GA, while often 

effective in exploring solution spaces, comes with a higher 

execution time cost. 

To further validate the HMPSO algorithm, voltage 

profiles across all 30 buses were examined and compared 

under both normal and contingency scenarios. Table 4 

summarizes the average bus voltages and identifies any 

buses violating the acceptable voltage range (0.95–1.05 

p.u.). HMPSO maintained all bus voltages within acceptable 

limits, enhancing system stability. Competing methods had 

at least one violation, highlighting their relative inefficiency 

in voltage regulation. 
TABLE 4 

VOLTAGE PROFILE ANALYSIS UNDER NORMAL AND CONTINGENCY 

SCENARIOS 

Algorithm 
Avg. Bus 

Voltage (p.u.) 

Min Voltage 

(p.u.) 

Max Voltage 

(p.u.) 

Violations 

(count) 

HMPSO 1.011 0.954 1.046 0 

SPSO 1.008 0.948 1.052 1 

GA 1.005 0.942 1.055 2 

DE 1.006 0.947 1.053 1 

 

D. Discussion 

The analysis of computational efficiency highlights 

several key insights regarding the performance of the 

algorithms evaluated—Hybrid Multi-Swarm Particle Swarm 

Optimization (HMPSO), Standard Particle Swarm 

Optimization (SPSO), Genetic Algorithm (GA), and 

Differential Evolution (DE). These insights provide a 

foundation for understanding the trade-offs involved in 

selecting optimization techniques based on computational 

time and problem complexity. 

HMPSO vs. SPSO: HMPSO demonstrated slightly higher 

computational time (12.8 seconds) compared to SPSO (11.2 

seconds). This increase is expected due to the additional 

computational overhead introduced by the multiswarm 

dynamics in HMPSO. The multiswarm approach enables 

better exploration of the solution space by dividing the 

search process among multiple sub-swarms, which 

communicate and share information. This collaborative 

behavior enhances HMPSO's capability to escape local 

optima and converge on global optima, particularly in 

complex optimization problems. While SPSO is 

computationally faster, it sacrifices some of the exploration 

capabilities that HMPSO provides, making it less effective 

in problems with intricate solution landscapes. 

HMPSO vs. GA and DE: Compared to GA and DE, 

HMPSO exhibited significantly better computational 

efficiency. GA required the most time (22.4 seconds), owing 

to its population-based evolutionary operations, such as 

crossover and mutation, which are computationally 

expensive. While GA is robust and widely applicable, its 

computational inefficiency limits its usability in real-time or 

large-scale optimization tasks. DE, with a computational 

time of 18.5 seconds, performed better than GA but still 

lagged behind HMPSO. The primary reason for DE's 

relative inefficiency is its dependency on numerous function 

evaluations to achieve convergence, which increases 

computational demand. HMPSO's performance demonstrates 

that its hybridized structure effectively combines the 

strengths of multiple optimization strategies, resulting in a 

balanced approach to exploration and exploitation. Its 

relatively moderate computational time, coupled with 

superior optimization performance, makes it well-suited for 

real-world applications requiring both efficiency and 

accuracy. 

The computational efficiency analysis reveals that 

HMPSO offers a strong balance between computational time 

and optimization performance, making it a versatile option 

for a wide range of problems. While its computational time 

is marginally higher than SPSO, its enhanced capabilities 

justify the trade-off. The insights from this analysis provide 

valuable guidance for selecting algorithms tailored to 

specific optimization challenges, particularly in domains 

where computational efficiency is critical. 

 

VI. CONCLUSION 

This study presents a novel Hybrid Multiswarm Particle 

Swarm Optimizer (HMPSO) for addressing the challenges of 

Security-Constrained Optimal Power Flow (SCOPF) in 
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power systems. The IEEE 30-bus system was used to 

evaluate the proposed method, with results confirming its 

efficacy in minimizing generation costs, reducing 

transmission losses, and maintaining system security under 

both normal and contingency scenarios. The HMPSO 

algorithm effectively combines multiswarm dynamics, 

adaptive inertia weights, and mutation operators to achieve a 

balance between exploration and exploitation. These 

enhancements address key challenges such as premature 

convergence and solution stagnation, which are prevalent in 

traditional optimization methods. By doing so, HMPSO 

achieves superior performance compared to Standard 

Particle Swarm Optimization (SPSO), Genetic Algorithm 

(GA), and Differential Evolution (DE). 

HMPSO demonstrated up to 1.5% reduction in generation 

costs compared to other algorithms, highlighting its potential 

for economic optimization in power systems. The algorithm 

maintained voltage stability and satisfied all operational 

constraints, even under contingency scenarios, ensuring 

robust performance in critical outage conditions. HMPSO 

exhibited faster convergence rates than GA and DE, making 

it a time-efficient solution for SCOPF problems. The 

algorithm achieved better voltage stability across the 

network, enhancing overall system reliability. 

The robustness and adaptability of HMPSO underscore its 

potential as a powerful tool for modern power system 

optimization. By addressing the inherent nonlinearity and no 

convexity of SCOPF problems, HMPSO offers a promising 

approach for integrating renewable energy sources, 

managing grid reliability, and minimizing operational costs 

in increasingly complex power networks. 

Future research will focus on extending the HMPSO 

framework to dynamic SCOPF scenarios and larger power 

systems, as well as exploring its integration with machine 

learning techniques for predictive and adaptive optimization. 

These advancements will further enhance its applicability in 

real-world power system operations, ensuring sustainable 

and secure energy management in the face of growing 

demands and challenges. 
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