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Abstract—An adaptive neural network control approach is
proposed for a class of strict-feedback nonlinear stochastic
systems with incomplete measurements. The systems under
consideration experience data loss or transmission medium
saturation, leading to incomplete measurements during data
transmission. Two distinct control laws, based on state
observers, are designed to handle different transmission
scenarios using the backstepping method. Neural network
approximation is employed to estimate the unknown functions.
To address the complexity explosion in traditional control
design, dynamic surface control (DSC) is utilized. The stability
of the stochastic system is analyzed, and conditions for uniform
ultimate boundedness in the mean square sense are derived.
Experimental results confirm the reliability of the proposed
controller.

Index Terms—adaptive neural control, stochastic nonlinear
system, incomplete measurement, dynamic surface control.

I. INTRODUCTION

IN recent decades, advancements in the Internet of Things
(IoT), communication technologies, and electronics

have spurred significant growth in control systems. This
evolution has led to both increased system complexity
and the development of advanced control techniques.
Control systems have transitioned from managing simple,
isolated entities to handling complex, interconnected systems
consisting of multiple subsystems. The emergence of
Cyber-Physical Systems (CPSs) has garnered particular
interest among researchers [1, 2]. CPSs are sophisticated
systems that enable the interconnection of previously
isolated environments, greatly improving system efficiency
and data transmission capabilities. These systems find
applications across various sectors, including remote patient
monitoring, intelligent transportation, smart grids, smart
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factories, and connected vehicles [3, 4]. However, the
interaction between subsystems brings critical challenges
related to state estimation and stability, which are essential
for the practical deployment of CPSs.

In a CPS, subsystems communicate and exchange
information via networks to enhance the overall system
intelligence. As such, the quality of communication plays
a pivotal role in the reliability and stability of the
system. In particular, limitations in communication networks,
particularly wireless channels, can result in issues such as
state loss, quantization errors, and delays [5, 6]. These
challenges can significantly affect state estimation, control,
and overall system stability. Since state estimation relies on
sensor data, much research has focused on developing robust
state estimation techniques and control strategies to handle
incomplete observations. Some studies have addressed
controller design for CPSs under data loss conditions [7, 8].
Furthermore, Lu et al. [9] proposed a state estimation
approach for incomplete state observations under network
attacks, enhancing the overall estimation performance. Lu et
al. [10] also addressed the event-triggered control problem in
CPSs subjected to actuator attacks, incorporating a widening
matrix of state and attack data with a Luenberger observer
and controller[11]. Research by Han et al. [12] and Fei et
al. [13] has focused on controlling systems under spoofing
or model attacks.

Stochastic disturbances, which are inherent in practical
systems, are often a source of instability. Consequently,
controller design for stochastic systems has become an
essential area of research. For instance, Han et al.
[12] studied uncertain stochastic strict-feedback systems
and proposed a fuzzy controller. Wang et al. [14]
tackled nonlinear systems with input saturation, while
the multi-objective H2/H∞ control problem for uncertain
systems with state time lags was also explored.

Nonlinearity is a common characteristic in real-world
systems, and designing controllers for nonlinear systems
remains a challenging task. As a result, the control and
state estimation of nonlinear CPSs have become important
research topics. Li et al. [15] studied nonlinear CPSs under
denial-of-service (DoS) attacks and proposed fuzzy systems
for approximation, along with a periodic event-triggered
control strategy to enhance communication efficiency.
Zhang et al. [16] developed a state estimation filter for
incomplete measurements, while Ma et al. [17] proposed a
model-free control framework for systems under DoS attacks.
Additionally, Liu et al. [18] designed two state estimators for
nonlinear CPSs with incomplete measurements. Jiang et al.
[19] focused on state estimation for stochastic systems under
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random packet loss, and An et al. [20] explored decentralized
control for nonlinear CPSs subjected to intermittent DoS
attacks, proposing a switch-type state estimator and convex
design conditions for back-stepping controllers based on
fuzzy logic approximation.

Large-scale systems often face additional challenges due
to the time-sharing nature of communication channels,
where nodes may not be able to access the network
synchronously. In cognitive radio systems, for example,
primary users occupy most of the communication bandwidth,
with secondary users only able to access the network
when the primary user releases the channel [21]. These
communication constraints significantly impact control
performance. Zhang et al. [22] employed fuzzy models
to approximate nonlinear processes measured by wireless
sensors, considering various communication constraints and
providing sufficient conditions. However, system instability
may occur if information collected prior to packet loss
or network attacks is not appropriately managed. Thus,
designing a state estimator capable of handling network
failures is crucial.

This paper investigates the control of stochastic systems
subject to deteriorated information transmission. Specifically,
observers and controllers are designed to address both normal
communication and blocked communication scenarios (i.e.,
data loss). The proposed design ensures that all system
signals remain bounded in the mean square sense. In cases
of data loss, the controller utilizes available system output
information during normal communication to enhance system
performance. The contributions of this work are summarized
as follows:

• Incomplete measurements due to transmission issues
can lead to instability in random CPSs. Observers are
designed for two scenarios: the normal case where
system output information is available, and the data
loss case where transmission saturation and data loss
occur. Output feedback controllers are constructed for
both cases, differing from Long et al. [23], which
only addresses normal data transmission. Probabilistic
stability conditions are analyzed for both cases.

• Dynamic surface control methods are utilized in
the controller design for stochastic nonlinear systems
with incomplete measurements. These methods prevent
computational issues due to differential explosion in the
design process. This not only reduces computational
complexity but also simplifies the design.

• The adaptive radial basis function neural network
control method is adopted, requiring only one adaptive
parameter, significantly reducing the computational
workload.

The structure of the paper is organized as follows: Section
2 presents the system model and discusses transmission
scenarios. Section 3 addresses the state observers,
system controllers, and the associated stability analysis.
Experimental results to demonstrate the effectiveness of the
designed controllers are provided in Section 4. Section 5
summarizes the paper and discusses potential future work.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

A strict-feedback nonlinear stochastic CPS can be
described as:

dxi(t) = (fi (x̄i(t)) + xi+1) dt+ φi(x1)dw(t),

dxn(t) = (fn (x̄n(t)) + u) dt+ φn(x1)dw(t), (1)

where the system’s output is given by:

y = ρ1x1 + ρ2σ(x1) + ρ3ς(x1). (2)

where, x̄i(t) = [x1(t), · · · , xi(t)]T ∈ Ri for i = 1, 2, · · · , n,
and u, y ∈ R represent the state vector, control input, and
output, respectively. The functions fi(·) : Ri → R and φi(·) :
Ri → R1×r are unknown smooth functions with fi(0) =
0 and φi(0) = 0. Additionally, we assume that φi(x1) =
x1ψi(x1), where ψi(x1) denotes a known smooth function,
and

φ(x1) =
[
φT
1 (x1), . . . , φ

T
n (x1)

]T
,

ψ(x1) =
[
ψT
1 (x1), . . . , ψ

T
n (x1)

]T
. (3)

where, w(t) ∈ Rr represents random thermal motion.
The functions σ(·) and ς(·) correspond to saturation and
data-loss scenarios, respectively. The parameters ρ1, ρ2, ρ3
represent different system states, where each ρi ∈ {0, 1}
and

∑3
i=1 ρi = 1. Specifically, ρ1 = 1 indicates normal

measurement, ρ2 = 1 denotes saturation, and ρ3 = 1
corresponds to a data-loss scenario.

If the output measurement x1 satisfies |x1| < xmax, where
xmax is the saturation threshold, then ρ1 = 1, and ρ2 = ρ3 =
0. If |x1| > xmax, we have ρ2 = 1, with ρ1 = ρ3 = 0. The
saturation behavior is described as:

δ(x1) = xmax · sign(x1).

In the event of data loss or sensor failure (e.g., during a
system attack), ρ3 = 1, with ρ1 = ρ2 = 0. The lost data is
substituted by the most recent acquisition state. Therefore,
the data-loss function is given by:

ς(x1) = x′1,

where x′1 represents the most recent observed system output.
This work assumes that the duration of the data-loss situation
is known, so x′1 remains available.

Remark 1: Packet loss can occur for various reasons,
such as wireless network limitations or time-division
multiplexing in communication channels. Additionally,
communication networks may be susceptible to attacks (e.g.,
denial-of-service), resulting in damaged or unavailable data.
These scenarios are categorized as data-loss cases. In such
instances, some existing works (e.g., [20]) discard the data
and assume zero observations, which can degrade state
estimation performance. In contrast, we use the last valid
observation to replace the lost data, mitigating the impact of
data loss.

Next, we consider a general stochastic nonlinear system:

dX(t) = f(X)dt+ φ(X)dw(t), (4)

where X ∈ Rn, and f and φ are Lipschitz continuous
functions.
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Definition 1: Given V (X) ∈ C2, associated with the
stochastic system described by (4), the differentiator L is
defined as:

LV (X) =
∂V

∂x
f(X) +

1

2
tr
(
φT (X)

∂2V

∂x2
φ(X)

)
. (5)

Remark 2 [24]: The term 1
2 tr
(
hT ∂2V

∂X2h
)

is referred to as
the Ito correction term. The presence of the second-order
differential ∂2V

∂X2 complicates controller design, making it
more challenging compared to the deterministic case.

To design a stable controller for the system, we introduce
the following assumptions:

Assumption 1: Given known constants mi and µ, for all
X1, X2 ∈ Rn, the following inequalities hold:

∥fi(X1)− fi(X2)∥ ≤ mi ∥X1 −X2∥ ,
∥φ(X1)− φ(X2)∥ ≤ µ ∥X1 −X2∥ . (6)

Lemma 1: For all (x, y) ∈ R2, the following inequality
holds:

xy ≤ εp

p
|x|p + 1

qεp
|y|p,

where ε > 0, p > 1, q > 1, and (p− 1)(q − 1) = 1.

III. CONTROLLER DESIGN AND STABILITY ANALYSIS

This section presents an estimator-based adaptive control
scheme for system (1) using the backstepping method. Since
only the system’s output in its nominal state is measurable, a
state observer is needed for controller design. Note that the
system output can be affected by two phenomena: device
saturation and data loss. Under saturation, the output is
limited to the saturation value σ(x1), which represents the
last reliable measurement before saturation. In the event
of data loss, the most recent valid output is used as a
replacement for the lost data.

Both saturation and packet loss can be considered
instances of a ”data-loss” scenario, where the current
observation is replaced with the last valid one. From the
controller design perspective, these two phenomena can be
treated uniformly as the data-loss case.

A. State estimator and dynamic feedback design in normal
case

In the normal case, where output data is available, a state
estimator can be developed based on the output y. The state
estimator for system (1) is given by:

˙̂xci = x̂c(i+1) + kci(y − x̂c1),

˙̂xcn = uc + kcn(y − x̂c1), (7)

where x̂ci denotes the estimate of the state xi, and kci is a
design parameter.

Define the estimation error in the normal case as eci =
xi− x̂ci for i = 1, . . . , n. The overall estimation error vector
is:

ec = x̄n − x̂cn, (8)

where x̄n = [x1, . . . , xn]
T and x̂cn = [x̂c1, . . . , x̂cn]

T ∈ Rn,
with ec1 = x1 − x̂c1.

Using equations (1) and (7), the time derivative of the
estimation error is:

dec = (Aec + F (x̄(t))−Kcec1)dt+ φT (x1)dw(t),

= ((A−KcC)ec + F (x̄(t)))dt+ φT (x1)dw(t),(9)

where

A =

 0
... In−1

0 0 · · · 0

 ,
F (x̄(t)) = [f1(x1), . . . , fn(xn)]

T ,

Kc = [kc1, . . . , kcn]
T ,

C = [1, 0, . . . , 0].

Note: Ensure that the matrix A−KcC is Hurwitz by selecting
appropriate gains kci to guarantee exponential stability of the
estimation error in the mean-square sense.

To ensure system stability, (A − KcC) must be a
strict Hurwitz matrix, which can be achieved by selecting
appropriate gains Kc.

Define λ = λmin(P )λmin(Qc), where Qc = −(P (A −
KcC) + (A−KcC)

TP ). This leads to the inequality:

eTc Pec
[
eTc
(
P (A−KcC) + (A−KcC)

TP
)
ec
]
≤ −λc ∥ec∥4

(10)
where Qc and P are symmetric positive definite matrices.

Finally, the dynamics of the entire system, incorporating
both the estimation error and the state estimate, are described
by:

dec = ((A−KcC)ec + Fc (x̄(t))) dt+ φT (x)dw(t),

dx̂c1 = (x̂c2 + kc1ec1)dt,

dx̂c2 = (x̂c3 + kc2ec1)dt,

...,
dx̂cn = (uc + kcnec1)dt. (11)

The backstepping procedure comprises n steps, with each
step involving the design of a virtual control function α̂ci

based on an appropriate Lyapunov function. The actual
control law uc is then formulated. To start the backstepping
design, define the parameter θc as:

θc = max
{
Nci ∥W ∗

ci∥
2
: i = 0, 1, 2, . . . , n

}
.

Since ∥W ∗
ci∥ is unknown, θc is also unknown. Define the

parameter error as θ̃c = θc − θ̂c, where θ̂c is the estimate of
θc. The virtual control signal is defined as:

αci(Xci) = − 1

2a2ci
Z3
ciθ̂c, i = 1, . . . , n− 1, (12)

where Zc1 = x1, and Zci = x̂ci − αcif for i = 2, . . . , n.
The design parameters satisfy aci > 0. The state vector is
given by Xc1 = x1, and Xci = (ec1, x̂ci, ᾱcif , α̇cif )

T for
i = 2, . . . , n− 1, with x̂ci = [x̂c1, x̂c2, . . . , x̂ci]

T .
Theorem 1: Consider system (1) with the state observer

given by (7), the control signal:
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uc = − 1

2a2cn
Z3
cnθ̂c,

virtual control laws αci as in (12), and the adaptive law:

˙̂
θc =

n∑
i=1

rc
2a2ci

Z6
ci − kcθ̂c, (13)

where aci (i = 1, 2, . . . , n), rc, and kc are design parameters.
Then, the stochastic system can achieve M -SGUUB behavior
with probability 1− ε in Ω(ε).

To analyze the stability condition of the estimation error
in (8), consider the Lyapunov function candidate Vc0 =
1
2 (e

T
c Pec)

2. Its time derivative along with (11) is given by:

LVc0 = eTc Pec
[
2eTc P (Aec + F −Kcec1)

]
+ tr

{
φT (x1)

(
2Pece

T
c P
)
φ(x1)

}
+ tr

{
φT (x1)

(
eTc PecP

)
φ(x1)

}
= eTc Pec

[
eTc (A−KcC)

TPec
]

+ eTc P (A−KcC)ec + 2eTc PF

+ tr
{
φT (x1)

(
2Pece

T
c P
)
φ(x1)

}
+ tr

{
φT (x1)

(
eTc PecP

)
φ(x1)

}
(14)

By substituting (10) into (14), we have:

LVc0 ≤ −λ ∥ec∥4

+ 2eTc Pec e
T
c PF

+ tr
{
φT (x1)

(
2Pece

T
c P
)
φ(x1)

}
+ tr

{
φT (x1)

(
eTc PecP

)
φ(x1)

}
(15)

Since F = [f1(x1), . . . , fn(xn)]
T is unknown, for any

εi0 > 0, there exists an RBF NN: W ∗T
i0 Si0(X0) such that

fi(X0) =W ∗T
i0 Si0(X0) + δi0(X0), ∥δi0(X0)∥ ≤ εi0,

where X0 = x, X0 ∈ ΩX0
= {X0|x ∈ Ωx}, δi0(X0) is the

approximation error, and Ωx is a compact set through which
the state trajectories evolve. Then:

F =W ∗T
c0 S0(Xc0) + δc0(Xc0), ∥δc0(Xc0)∥ ≤ εc0 (16)

Since 0 < ST
c0Sc0 ≤ Nc0, and by the definition of θc with

∥W ∗
c0∥

4
S4
c0 ≤ θ2c , the following holds for X0 ∈ ΩX0

:

2eTc Pec e
T
c PF = 2eTc Pec e

T
c P
(
W ∗T

c0 Sc0(Xc0) + δc0(Xc0)
)

≤ 3

2
∥P∥

8
3 ∥ec∥4 +

1

2
θ2c +

1

2
ε4c0 (17)

We also have:

tr
{
φT (x1)

(
2Pece

T
c P + eTc PecP

)
φ(x1)

}
≤ n

√
n ∥φ(x1)∥2 ∥P∥2 ∥ec∥2

≤ 3n
√
n

2η2c0
∥φ(x1)∥4 +

3n
√
nη2c0
2

∥P∥4 ∥ec∥4

=
3n

√
n

2η2c0
x41 ∥ψ(x1)∥

4
+

3n
√
nη2c0
2

∥P∥4 ∥ec∥4 (18)

where ηc0 > 0 ensures pc0 > 0 with:

pc0 = λc − 3 ∥P∥
8
3 − 3n

√
nη2c0
2

∥P∥4 (19)

Substituting (16), (17), and (18) into (15) yields:

LVc0 ≤ −pc0 ∥ec∥4+
3n

√
n

2η2c0
x41 ∥ψ(x1)∥

4
+
1

2
θ2c+

1

2
ε4c0 (20)

In this section, the DSC approach is employed to address
the complexity explosion issue. Define the change of
coordinates:

Zc1 = y

Zci = x̂ci − αcif , i = 2, 3, . . . , n (21)

where αcif is the output of a filter, with αc(i−1) serving as
the input in the normal case. Applying Ito’s differentiation
rule yields:

dZc1 = (f1(x1) + ec2 + x̂c2) dt+ φT (x1)dw(t)

dZci =
(
x̂c(i+1) + kciec1 − α̇cif

)
dt,

i = 2, . . . , n. (22)

Step 1: Consider the Lyapunov function candidate Vc1 =
Vc0+

1
4Z

4
c1+

1
2rc
θ̃2c . Differentiating Vc1 with respect to time

yields:

LVc1 = LVc0 + Z3
c1 (f1(x1) + x2)

+
1

2
tr
(
φT
1 (x1)3Z

2
c1φ1(x1)

)
− 1

rc
θ̃c

˙̂
θc

= −pc0 ∥ec∥4 + Z3
c1 (f1 + ec2 + x̂c2)

+ Z3
c1

(
3n

√
n

2η2c0
Zc1 ∥ψ(x1)∥4

)
+

3

2
Z2
c1φ

T
1 (x1)φ1(x1)

− 1

rc
θ̃c

˙̂
θc +

1

2
θ2c +

1

2
ε4c0 (23)

Applying Young’s inequality gives:

Z3
c1ec2 ≤ 3

4
η

4
3
c1Z

4
c1 +

1

4η4c1
e4c2

≤ 3

4
η

4
3
c1Z

4
c1 +

1

4η4c1
∥ec∥4 (24)

3

2
Z2
c1φ

T
1 (x1)φ1(x1) ≤ 3

4
η2c2 ∥φ1(x1)∥4 Z4

c1

+
1

4η2c2
(25)

where ηc1, ηc2 > 0 are design parameters. Substituting (23)
and (24) into (22), we get:

LVc1 ≤− pc1 ∥ec∥4 + Z3
c1(x̂c2 + f̄c1)−

1

2
θ̃c

˙̂
θc

+
1

2
θ2c +

1

2
ε4c0 −

3

4
Z4
c1 +

1

4η2c2
(26)
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where

pc1 = pc0 −
1

4η4c1
,

f̄c1 = f1 +
3n

√
n

2η2c0
∥ψ(x1)∥4

+

(
3

4
η

4
3
c1 +

3

4
η2c2 ∥ψ1(x1)∥2 +

3

4

)
Zc1.

Now, consider the intermediate control signal:

α̂c1(Xc1) = −(lc1Zc1 + f̄c1),

where lc1 > 0 is a design parameter. Then (26) can be
rewritten as:

LVc1 ≤ −pc1 ∥ec∥4 + Z3
c1(x̂c2 − α̂c1)

− lc1Z
4
c1 −

3

4
Z4
c1

− 1

2
θ̃c

˙̂
θc +

1

2
θ2c

+
1

2
ε4c0 +

1

4η2c2
(27)

However, α̂c1 is an unknown function and cannot be
implemented directly. For any constant εc1 > 0, there exists
an RBF NN: W ∗T

c1 Sc1(Xc1) that can approximate α̂c1(Xc1)
as:

α̂c1(Xc1) =W ∗T
c1 Sc1(Xc1)+δc1(Xc1), ∥δc1(Xc1)∥ ≤ εc1,

where δc1(Xc1) denotes the approximation error, and Xc1 ∈
ΩXc1

= {Xc1 | x ∈ ΩXc1
}. Based on the definition of θc

and αc1, we have:

−Z3
c1α̂c1 = −Z3

c1

(
W ∗T

c1 Sc1(Xc1) + δc1(Xc1)
)

≤ Nc1

2a2c1
Z6
c1 ∥W ∗

c1∥
2
+

1

2
a2c1 +

3

4
Z4
c1 +

1

4
ε4c1

≤ 1

2a2c1
Z6
c1θc +

1

2
a2c1 +

3

4
Z4
c1 +

1

4
ε4c1 (28)

Z3
c1αc1 = − 1

2a2c1
Z6
c1θ̂c (29)

where ac1 > 0 is a design parameter. Then,

LVc1 ≤ −pc1 ∥ec∥4 − lc1Z
4
c1

+ Z3
c1(x̂c2 − αc1)

+
1

rc
θ̃c

(
rc
2a2c1

Z6
c1 −

˙̂
θc

)
+ ∆c1 (30)

where ∆c1 = 1
2θ

2
c +

1
2ε

4
c0+

1
2a

2
c1+

1
4ε

4
c1+

1
4η2

c2
. Using x̂c2 =

Zc2 + αc2f , (30) becomes:

LVc1 ≤ −pc1 ∥ec∥4 − lc1Z
4
c1

+ Z3
c1(Zc2 + αc2f − αc1)

+
1

rc
θ̃c

(
rc
2a2c1

Z6
c1 −

˙̂
θc

)
+ ∆c1 (31)

A first-order filter with time constant κc2 is introduced as:

κc2α̇c2f + αc2f = αc1, αc2f (0) = αc1(0)

Let χc2 = αc2f − αc1, so α̇c2f = −χc2

κc2
and

χ̇c2 = α̇c2f − α̇c1 = −χc2

κc2
+Bc2(X1)

where

Bc2(X1) =
3

2a2c1
Z2
c1Żc1θ̂c +

1

2a2c1
Z2
c1
˙̂
θc

The inequality in (31) can be expressed as:

LVc1 ≤ −pc1 ∥ec∥4 − lc1Z
4
c1

+ Z3
c1Zc2 + Z3

c1αc2f

+
1

rc
θ̃c

(
rc
2a2c1

Z6
c1 −

˙̂
θc

)
+ ∆c1 (32)

Step m: (2 ≤ m ≤ n − 1). The Lyapunov function is
defined as:

Vcm = Vc(m−1) +
1

4
Z4
cm +

1

4
χ4
cm (33)

Differentiating yields:

LVcm ≤ −pc1 ∥ec∥4 −
m−1∑
i=1

lciZ
4
ci +

m−1∑
i=1

Z3
ciZc(i+1)

+
m−1∑
i=1

Z3
ciχc(i+1) + Z3

cm(x̂c(m+1) + f cm)

−
m−1∑
i=1

(
χ4
c(i+1)

κc(i+1)
− χ3

c(i+1)Bc(i+1)(Xi)

)

+
1

rc
θ̃c

(
m−1∑
i=1

rc
2a2ci

Z6
ci −

˙̂
θc

)
− 3

4
Z4
cm +∆c(m−1) (34)

where f cm(Xm) = kcmec1 − α̇cmf + 1
4Zcm + 3

4Zcm.
Define the intermediate control signal α̂cm(Xcm) as:

α̂cm = −(lcmZcm + f cm)

where lcm > 0 is a design parameter. Adding and subtracting
α̂cm(Xcm) in (34) yields:

LVcm ≤ −pc1 ∥ec∥4 −
m∑
i=1

lciZ
4
ci +

m−1∑
i=1

Z3
ciZc(i+1)

+
m−1∑
i=1

Z3
ciχc(i+1) +

1

rc
θ̃c

(
m−1∑
i=1

rc
2a2ci

Z6
ci −

˙̂
θc

)
+ Z3

cm(x̂c(m+1) − α̂cm)

−
m−1∑
i=1

(
χ4
c(i+1)

κc(i+1)
− χ3

c(i+1)Bc(i+1)(Xi)

)
+ ∆c(m−1) −

3

4
Z4
cm (35)

Similarly, α̂cm(Xcm) can be approximated by the RBF
NN: W ∗T

cmScm(Xcm) as
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α̂cm(Xcm) = W ∗T
cmScm(Xcm) + δcm(Xcm),

|δcm(Xcm)| ≤ εcm,

where δcm(Xcm) denotes the approximation error.
Combining the above yields:

−Z3
cmα̂cm ≤ 1

2a2cm
Z6
cmθc +

1

2
a2cm

+
3

4
Z4
cm +

1

4
ε4cm (36)

Z3
cmαcm = − 1

2a2cm
Z6
cmθ̂c (37)

where acm > 0 is a design parameter.
Given x̂c(m+1) = Zc(m+1) + αc(m+1)f , and substituting

(36), (37) into (35), it can be expressed as:

LVcm ≤ −pc1 ∥ec∥4 −
m∑
i=1

lciZ
4
ci +

m−1∑
i=1

Z3
ciZc(i+1)

+
m−1∑
i=1

Z3
ciχc(i+1)

+Z3
cm(Zc(m+1) + αc(m+1)f − αcm)

−
m−1∑
i=1

(
χ4
c(i+1)

κc(i+1)
− χ3

c(i+1)Bc(i+1)(Xi)

)

+
1

rc
θ̃c

(
m∑
i=1

rc
2a2ci

Z6
ci −

˙̂
θc

)
+∆cm (38)

where

∆cm =
1

2
θ2c +

1

2
ε4c0 +

1

2

m∑
i=1

(
a2ci +

1

2
ε4ci

)
+

1

4η2c2
.

Let αcm pass through a filter with coefficient κc(m+1),
producing αc(m+1)f :

κc(m+1)α̇c(m+1)f + αc(m+1)f = αcm,

αc(m+1)f (0) = αcm(0).

Define χc(m+1) = αc(m+1)f − αcm as the filtering error,
then α̇c(m+1)f = −χc(m+1)

κc(m+1)
, and

χ̇c(m+1) = α̇c(m+1)f − α̇cm = −
χc(m+1)

κc(m+1)
+Bc(m+1)(Xm),

where

Bc(m+1)(Xm) =
3

2a2cm
Z2
cmŻcmθ̂c +

1

2a2cm
Z2
cm

˙̂
θc.

The inequality (38) can then be expressed as:

LVcm ≤ −pc1 ∥ec∥4 −
m∑
i=1

lciZ
4
ci +

m∑
i=1

Z3
ciZc(i+1)

+
m∑
i=1

Z3
ciαc(i+1)f +∆cm

−
m−1∑
i=1

(
χ4
c(i+1)

κc(i+1)
− χ3

c(i+1)Bc(i+1)(Xi)

)

+
1

rc
θ̃c

(
m∑
i=1

rc
2a2ci

Z6
ci −

˙̂
θc

)
(39)

Step n: Consider the Lyapunov function:

Vcn = Vc(n−1) +
1

4
Z4
cn +

1

4
χ4
cn, (40)

and its derivative:

LVcn ≤ −pc1 ∥ec∥4 −
n−1∑
i=1

lciZ
4
ci +

n−1∑
i=1

Z3
ciZc(i+1)

+
n−1∑
i=1

Z3
ciχc(i+1) + Z3

cn(uc + f̄cn)

+
1

rc
θ̃c

(
n−1∑
i=1

rc
2a2ci

Z6
ci −

˙̂
θc

)
+∆c(n−1) −

3

4
Z4
cn

−
n−1∑
i=1

(
χ4
c(i+1)

κc(i+1)
− χ3

c(i+1)Bc(i+1)(Xi)

)
(41)

where f̄cn = kcnec1 − α̇cnf + 3
4Zcn.

The intermediate control signal is defined as α̂cn =
−(lcnZcn + f̄cn), with lcn > 0 being a design parameter.
Then we have:

LVcn ≤ −pc1 ∥ec∥4 −
n∑

i=1

lciZ
4
ci +

n−1∑
i=1

Z3
ciZc(i+1)

+

n−1∑
i=1

Z3
ciχc(i+1)

+Z3
cn(uc − α̂cn)−

3

4
Z4
cn

−
n−1∑
i=1

(
χ4
c(i+1)

κc(i+1)
− χ3

c(i+1)Bc(i+1)(Xi)

)

+
1

rc
θ̃c

(
n−1∑
i=1

rc
2a2ci

Z6
ci −

˙̂
θc

)
+∆c(n−1) (42)

Similarly, the RBF NN W ∗T
cn Scn(Xcn) is used to

approximate α̂cn(Xcn). By definition of uc:

−Z3
cnα̂cn ≤ 1

2a2cn
Z6
cnθc +

1

2
a2cn

+
3

4
Z4
cn +

1

4
ε4cn (43)

Z3
cnuc = − 1

2a2cn
Z6
cnθ̂c (44)

where acn > 0 is a design parameter. Substituting (43) and
(44) into (42) gives:

LVcn ≤ −pc1 ∥ec∥4 −
n∑

i=1

lciZ
4
ci +

n−1∑
i=1

Z3
ciZc(i+1)

+
n−1∑
i=1

Z3
ciχc(i+1)

−
n−1∑
i=1

(
χ4
c(i+1)

κc(i+1)
− χ3

c(i+1)Bc(i+1)(Xi)

)

+
1

rc
θ̃c

(
n∑

i=1

rc
2a2ci

Z6
ci −

˙̂
θc

)
+∆cn (45)
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where

∆cn =
1

2
θ2c +

1

2
ε4c0 +

1

2

n∑
i=1

(
a2ci +

1

2
ε4ci

)
+

1

4η2c2
.

From the definition of ˙̂
θc:

LVcn ≤ −pc1 ∥ec∥4 −
n∑

i=1

lciZ
4
ci

+
n−1∑
i=1

Z3
ciZc(i+1) +

n−1∑
i=1

Z3
ciχc(i+1)

+
kc
rc
θ̃cθ̂c

−
n−1∑
i=1

(
χ4
c(i+1)

κc(i+1)
− χ3

c(i+1)Bc(i+1)(Xi)

)
+∆cn (46)

Also:

Z3
ciZc(i+1) ≤ 3

4
Z4
ci +

1

4
Z4
c(i+1)

Z3
ciχc(i+1) ≤ 3

4
Z4
ci +

1

4
χ4
c(i+1)

θ̃cθ̂c = θ̃c(θc − θ̃c) ≤ −1

2
θ̃2c +

1

2
θ2c∣∣∣χ3

c(i+1)Bc(i+1)

∣∣∣ ≤ 3

4
π

4
3
c B

4
3

c(i+1)χ
4
c(i+1) +

1

4π4
c

(47)

where πc > 0 is a design constant. There exists Nc(i+1) > 0
such that |Bc(i+1)| ≤ Nc(i+1). Then:

LVcn ≤ −pc1 ∥ec∥4 −
n∑

i=1

(
lci −

7

4

)
Z4
ci

−
n−1∑
i=1

(
1

κc(i+1)
− 1

4
− 3

4
π

4
3
c B

4
3

c(i+1)

)
χ4
c(i+1)

− kc
2rc

θ̃2c +∆cn (48)

where ∆cn = ∆cn + 1
4π4

c
+ kc

2rc
θ2c .

B. State estimator and dynamic feedback design in
data-losing case

In the data-losing case, current measurements cannot
be used due to transmission errors. Instead of discarding
these data, the previous valid observation is employed as a
substitute. In this scenario, it is assumed that x1 ̸= y. Define
the estimation error as esi = xi − x̂si, with e′s1 = x′1 − x̂s1,
and the difference ∆es1 = es1 − e′s1 = x1 − x′1, where x̂si
denotes the estimated state under data loss, and x′1 represents
the prior normal observation.

The estimation error in this case is expressed as:

es = x̄n − x̂sn

where x̄n = [x1, . . . , xn]
T and x̂sn = [x̂s1, . . . , x̂sn]

T

represent the actual and estimated state vectors, respectively.
The first element of the error is es1 = x1 − x̂s1.

The state estimator for this case is given by:

˙̂xsi = x̂s(i+1) + ksi(x
′
1 − x̂s1)

˙̂xsn = us + ksn(x
′
1 − x̂s1) (49)

where x̂si for i = 1, 2, . . . , n are the state estimates under
data loss, and ksi are design parameters.

Remark 3: The parameters kci and ksi significantly
influence system stability and performance. If kci or ksi are
too small, convergence will be slow; if too large, instability
may result.

The time derivative of the estimation error is:

des = (Aes + F −Kse
′
s1)dt+ φT (x1)dw

= (Aes + F −Kses1 +Ks∆es1)dt+ φT (x1)dw

= ((A−KsC)es +Ks∆es1 + F )dt

+φT (x1)dw (50)

The virtual control function α̂si is developed using a
Lyapunov approach, and the actual control input us is derived
accordingly. To initiate the backstepping design, define the
parameter θs as:

θs = max
{
Nsi ∥W ∗

si∥
2
: i = 0, 1, 2, . . . , n

}
.

where W ∗
si is an unknown constant, making θs also unknown.

Define the parameter estimation error as θ̃s = θs− θ̂s, where
θ̂s is the estimate of θs. The virtual control signal is:

αsi(Xsi) = − 1

2a2si
Z3
siθ̂s, i = 1, . . . , n− 1 (51)

where Zs1 = x1, Zsi = x̂si − αsif for i = 2, . . . , n −
1, asi > 0 are design parameters, Xs1 = x1, and Xsi =
(es1, x̂si, ᾱsif , α̇sif )

T , with x̂si = [x̂s1, x̂s2, . . . , x̂si]
T .

Theorem 2: Consider system (1) with estimator (49),
control law:

us = − 1

2a2sn
Z3
snθ̂s,

virtual control signals αsi in (51) and the adaptive law:

˙̂
θs =

n∑
i=1

rs
2a2si

Z6
si − ksθ̂s (52)

where asi for i = 1, . . . , n, rs, and ks are positive design
parameters. Then the system is M -SGUUB with probability
1− ε in Ω(ε).

Assumption 2: There exists a known constant h such that:

∥K∆es1∥ ≤ h, h ≥ 0. (53)

The Lyapunov function is chosen as Vs0 = 1
2 (e

T
s Pes)

2.
Its derivative is:

LVs0 = eTs Pes
(
eTs
(
P (A−KsC) + (A−KsC)

TP
)
es
)

+2eTs PKs∆es1 + 2eTs PF

+tr
(
φT (x1)

(
2Pese

T
s P + eTs PesP

)
φ(x1)

)
(54)

Similar to (16), we have:
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F =W ∗T
s0 Ss0(Xs0) + δs0(Xs0), ∥δs0(Xs0)∥ ≤ εs0.

Since 0 < ST
s0Ss0 ≤ Ns0 with Ns0 being the dimension

of Ss0, and from the definition of θs, it follows:

∥W ∗
s0∥

4
S4
s0 ≤ θ2s .

Therefore, the following inequality holds for Xs0 ∈ ΩXs0 :

2eTs Pese
T
s PF ≤ 3

2
∥P∥

8
3 ∥es∥4 +

1

2
∥W ∗

s0∥
4
S4
s0

+
3

2
∥P∥

8
3 ∥es∥4 +

1

2
δ4s0

≤ 3 ∥P∥
8
3 ∥es∥4 +

1

2
θ2s +

1

2
ε4s0. (55)

Additionally:

tr
{
φT (x1)

(
2Pese

T
s P + eTs PesP

)
φ(x1)

}
≤ n

∥∥φT (x1)
(
2Pese

T
s P
)
φ(x1)

∥∥
F

+n
∥∥φT (x1)

(
eTs PesP

)
φ(x1)

∥∥
F

≤ n
√
n
∥∥φT (x1)

(
2Pese

T
s P
)
φ(x1)

∥∥
+n

√
n
∥∥φT (x1)

(
eTs PesP

)
φ(x1)

∥∥
≤ 3n

√
n ∥φ(x1)∥2 ∥P∥2 ∥es∥2 . (56)

Using Assumption 1, we have:

∥φ(x1)∥ = ∥φ(x̂s1) + φ(x1)− φ(x̂s1)∥
≤ ∥φ(x̂s1)∥+ µ ∥es∥ (57)

Thus, the following inequality holds:

tr
{
φT (x1)

(
2Pese

T
s P + eTs PesP

)
φ(x1)

}
≤ 3n

√
n (∥φ(x̂s1)∥+ µ ∥es∥)2

×∥P∥2 ∥es∥2

= 3n
√
n ∥φ(x̂s1)∥2 ∥P∥2 ∥es∥2

+6n
√
nµ ∥φ(x̂s1)∥ ∥P∥2 ∥es∥3

+3n
√
nµ2 ∥P∥2 ∥es∥4

≤
(
3n

√
n

2ηs0
∥φ(x̂s1)∥4 +

3n
√
nηs0
2

∥P∥4 ∥es∥4
)

+3n
√
nµ2 ∥P∥2 ∥es∥4

+

(
3n

√
nµ

2η4s1
∥φ(x̂s1)∥4

+
9n

√
nµη4s1
2

∥P∥4 ∥es∥4
)

(58)

where ηs0, ηs1 > 0 are design parameters.
According to Assumption 2, we obtain:

2eTs Pese
T
s PK∆es1 ≤ 2 ∥es∥3 ∥P∥2 h

≤ 3

2
η

4
3
s2 ∥P∥

8
3 ∥es∥4

+
1

2η4s2
h4 (59)

where ηs2 > 0. Define:

ps0 = λ− 3 ∥P∥
8
3 − 3n

√
nηs0
2

∥P∥4

−9n
√
nµη

4
3
s1

2
∥P∥

8
3

−3n
√
nµ2 ∥P∥2 − 3

2
η

4
3
s2 ∥P∥

8
3 (60)

Substituting (45) and (58)-(60) into (49) yields:

LVs0 ≤ −ps0 ∥es∥4 +
(
3n

√
n

2ηs0
+

3n
√
nµ

2η4s1

)
∥φ(x̂s1)∥4

+
1

2
θ2s +

1

2
ε4s0 +

1

2η4s2
h4 (61)

To address complexity explosion, the DSC approach is
applied. Backstepping design is implemented through a
coordinate transformation:

Zs1 = x1,

Zsi = x̂si − αsif , i = 2, 3, . . . , n. (62)

where αsif is the filtered signal of αs(i−1). Differentiation
yields:

dZs1 = (f1(x1) + x2) dt+ φ1(x1)dw

+
1

2
tr
(
φT
1 (x1)3Z

2
s1φ1(x1)

)
dZsi =

(
x̂s(i+1) + ksies1 − α̇sif

)
dt,

i = 2, . . . , n. (63)

Step 1: Define the Lyapunov function Vs1 = Vs0+
1
4Z

4
s1+

1
2rs
θ̃2s with

LVs1 = LVs0 + Z3
s1

(
f1(x1) + x2

)
+
1

2
tr
(
φT
1 (x1)3Z

2
s1φ1(x1)

)
− 1

rs
θ̃s

˙̂
θs

= −ps0 ∥es∥4 + Z3
s1

(
f1(x̂s1) + f1(x1)− f1(x̂s1)

+es2 + x̂s2
)
+

3

2
Z2
s1

(
φT
1 (x1)φ1(x1)

)
+

(
3n

√
n

2ηs0
+

3n
√
nµ

2η4s1

)
∥φ(x̂s1)∥4

+
1

2
θ2s +

1

2
ε4s0 +

1

2η4s2
h4 − 1

rs
θ̃s

˙̂
θs (64)

One has:

Z3
s1es2 ≤ 3

4
η

4
3
s3Z

4
s1 +

1

4η4s3
e4s2

≤ 3

4
η

4
3
s3Z

4
s1 +

1

4η4s3
∥es∥4(65)

Z3
s1(f1(x1)− f1(x̂s1)) ≤ m1 |Zs1|3 |es1|

≤ 3

4
m

4
3
1 η

4
3
s4Z

4
s1

+
3

4η4s4
∥es∥4 (66)
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Next, consider the trace term:
3

2
Z2
s1tr
(
φT
1 (x1)φ1(x1)

)
=

3

2
Z2
s1

(
φT
1 (x̂s1) + φT

1 (x1)− φT
1 (x̂s1)

)
×
(
φ1(x̂s1) + φ1(x1)− φ1(x̂s1)

)
≤ 3

2
Z2
s1

(
∥φ1(x̂s1)∥2 + µe2s1 + µ ∥φ1(x̂s1)∥2 + µ2e2s1

)
=

3(1 + µ)

4
Z4
s1 ∥φ1(x̂s1)∥2 +

3µ(1 + µ)

4
Z4
s1e

2
s1

≤ 3(1 + µ)η2s5
4

Z4
s1 +

3(1 + µ)

4η2s5
∥φ1(x̂s1)∥2

+
3µ(1 + µ)η2s6

4
Z4
s1 +

3µ(1 + µ)

4η2s6
∥es∥4 (67)

where ηs3, ηs4, ηs5, and ηs6 > 0 are design parameters.
Substituting (65), (66), and (67) into (64) yields:

LVs1 ≤ −
(
ps0 −

1

4η4s3
− 3

4η4s4
− 3µ(1 + µ)

4η2s6

)
∥es∥4

+Z3
s1(x̂s2 + f̄s1)−

1

rs
θ̃s

˙̂
θs −

3

4
Z4
s1

+

(
3n

√
n

2ηs0
+

3n
√
nµ

2η4s1
+

3(1 + µ)

4η2s5

)
∥ψ(x̂s1)∥4

+
1

2
θ2s +

1

2
ε4s0 +

1

2η4s2
h4 (68)

where

f̄s1 = f1(x̂s1) + Zs1

(3
4
η

4
3
s3 +

3

4
m

4
3
1 η

4
3
s4

)
+
3(1 + µ)η2s5

4
+

3µ(1 + µ)η2s6
4

+
3

4
Now, take the intermediate control signal α̂s1(Xs1) as

α̂s1(Xs1) = −
(
ls1Zs1 + f̄s1

)
where ls1 > 0 is a design parameter. Then, one has:

LVs1 ≤ −ps1 ∥es∥4 − ls1Z
4
s1 + Z3

s1(x̂s2 − α̂s1)

−3

4
Z4
s1 −

1

rs
θ̃s

˙̂
θs +

1

2
θ2s +

1

2
ε4s0

+

(
3n

√
n

2ηs0
+

3n
√
nµ

2η4s1
+

3(1 + µ)

4η2s5

)
∥ψ(x̂s1)∥4

+
1

2η4s2
h4 (69)

where ps1 = ps0 − 1
4η4

s3
− 3

4η4
s4

− 3µ(1+µ)
4η2

s6
.

The RBF NN: W ∗T
s1 Ss1(Xs1) is adopted to approximate

the unknown function α̂s1(Xs1), such that

α̂s1(Xs1) = W ∗T
s1 Ss1(Xs1) + δs1(Xs1)

|δs1(Xs1)| ≤ εs1

where δs1(Xs1) denotes the approximation error, Xs1 ∈
ΩXs1

= {Xs1|x ∈ ΩXs1
}. From the definition of θs and

αs1, one has

−Z3
s1α̂s1 = −Z3

s1

(
W ∗T

s1 Ss1(Xs1) + δs1(Xs1)
)

≤ Ns1

2a2s1
Z6
s1 ∥W ∗

s1∥
2
+

1

2
a2s1

+
3

4
Z4
s1 +

1

4
ε4s1

≤ 1

2a2s1
Z6
s1θs +

1

2
a2s1 +

3

4
Z4
s1 +

1

4
ε4s1 (70)

Z3
s1αs1 = − 1

2a2s1
Z6
s1θ̂s (71)

where as1 is a design parameter. The inequality 0 <
ST
s1Ss1 ≤ Ns1 is used and yields

LVs1 ≤ −ps1 ∥es∥4 − ls1Z
4
s1 + Z3

s1(x̂s2 − α̂s1)

−3

4
Z4
s1 −

1

rs
θ̃s

˙̂
θs +

1

2
θ2s +

1

2
ε4s0

+

(
3n

√
n

2ηs0
+

3n
√
nµ

2η4s1
+

3(1 + µ)

4η2s5

)
∥ψ(x̂s1)∥4

+
1

2η4s2
h4 (72)

where ∆s1 =
(

3n
√
n

2ηs0
+ 3n

√
nµ

2η4
s1

+ 3(1+µ)
4η2

s5

)
∥ψ(x̂s1)∥4 +

1
2θ

2
s +

1
2ε

4
s0 +

1
2a

2
s1 +

1
4ε

4
s1 +

1
2η4

s2
h4.

By the definition of x̂s2 = Zs2 + αs2f , then (72) can be
rewritten as

LVs1 ≤ −ps1 ∥es∥4 − ls1Z
4
s1 + Z3

s1

(
Zs2 + αs2f − αs1

)
+

1

rs
θ̃s

(
rs
2a2s1

Z6
s1 −

˙̂
θs

)
+∆s1. (73)

Similarly, a first-order filter with time constant κs2 is
introduced as:

κs2α̇s2f + αs2f = αs1, αs2f (0) = αs1(0).

Let χs2 = αs2f − αs1, then α̇s2f = −(χs2/κs2), and

χ̇s2 = α̇s2f − α̇s1 = −χs2

κs2
+Bs2(X1)

where

Bs2(X1) =
3

2a2s1
Z2
s1Żs1θ̂s +

1

2a2s1
Z2
s1

˙̂
θs.

Then, the following relation holds:

LVs1 ≤ −ps1 ∥es∥4 − ls1Z
4
s1 + Z3

s1Zs2 + Z3
s1χs2

+
1

rs
θ̃s

(
rs
2a2s1

Z6
s1 −

˙̂
θs

)
+∆s1. (74)

Step m: (2 ≤ m ≤ n− 1). Define the Lyapunov function
as

Vsm = Vs(m−1) +
1

4
Z4
sm +

1

4
χ4
sm. (75)

Similarly, one has:

LVsm ≤ −ps1 ∥es∥4 −
m−1∑
i=1

lsiZ
4
si +

m−1∑
i=1

Z3
siZs(i+1)

+
m−1∑
i=1

Z3
siχs(i+1) +∆s(m−1)

−
m−1∑
i=1

(
χ4
s(i+1)

κs(i+1)
− χ3

s(i+1)Bs(i+1)(Xi)

)

+
1

rs
θ̃s

(
m−1∑
i=1

rs
2a2si

Z6
si −

˙̂
θs

)
+Z3

sm

(
x̂s(m+1) + fsm

)
− 3

4
Z4
sm (76)

where

fsm(Xm) = ksme
′
s1 − α̇smf +

3

4
Zsm.
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Take the intermediate control signal α̂sm(Xsm) as

α̂sm = −
(
lsmZsm + fsm

)
where lsm > 0 is a design parameter. Then, adding and
subtracting α̂sm in (76) yields:

LVsm ≤ −ps1 ∥es∥4 −
m∑
i=1

lsiZ
4
si +

m−1∑
i=1

Z3
siZs(i+1)

+
m−1∑
i=1

Z3
siχs(i+1) + Z3

sm

(
x̂s(m+1) − α̂sm

)
−3

4
Z4
sm

−
m−1∑
i=1

(
χ4
s(i+1)

κs(i+1)
− χ3

s(i+1)Bs(i+1)(Xi)

)

+
1

rs
θ̃s

(
m−1∑
i=1

rs
2a2si

Z6
si −

˙̂
θs

)
+∆s(m−1).(77)

Similarly, α̂sm(Xsm) can be approximated by the RBF
NN W ∗T

smSsm(Xsm) as

α̂sm(Xsm) = W ∗T
smSsm(Xsm) + δsm(Xsm),

|δsm(Xsm)| ≤ εsm

where δsm(Xsm) represents the approximation error and
Xsm ∈ ΩXsm

= {Xsm |x ∈ Ω}. Then one obtains

−Z3
smα̂sm ≤ 1

2a2sm
Z6
smθs +

1

2
a2sm

+
3

4
Z4
sm +

1

4
ε4sm (78)

Z3
smαsm = − 1

2a2sm
Z6
smθ̂s. (79)

Substituting (78) and (79) into (77) yields

LVsm ≤ −ps1∥es∥4 −
m∑
i=1

lsiZ
4
si +

m−1∑
i=1

Z3
siZs(i+1)

+Z3
sm(x̂s(m+1) − αsm) +

m−1∑
i=1

Z3
siχs(i+1)

+
1

rs
θ̃s

(
m∑
i=1

rs
2a2si

Z6
si −

˙̂
θs

)

−
m−1∑
i=1

(
χ4
s(i+1)

κs(i+1)
− χ3

s(i+1)Bs(i+1)(Xi)

)
+∆sm (80)

where

∆sm =

(
3n

√
n

2ηs0
+

3n
√
nµ

2η4s1
+

3(1 + µ)

4η2s5

)
∥ψ(x̂s1)∥4

+
1

2
θ2s +

1

2
ε4s0 +

1

2

m∑
i=1

(
a2si +

1

2
ε4si

)
+

1

2η4s2
h4.

By the definition x̂sm = Zsm+αsmf , (80) can be rewritten

as

LVsm ≤ −ps1∥es∥4 −
m∑
i=1

lsiZ
4
si +

m−1∑
i=1

Z3
siZs(i+1)

+Z3
sm(Zs(m+1) + αs(m+1)f − αsm)

+
1

rs
θ̃s

(
m∑
i=1

rs
2a2si

Z6
si −

˙̂
θs

)

−
m−1∑
i=1

(
χ4
s(i+1)

κs(i+1)
− χ3

s(i+1)Bs(i+1)(Xi)

)

+∆sm +
m−1∑
i=1

Z3
siχs(i+1). (81)

Similarly, the filtering signal αs(m+1)f is obtained by

κs(m+1)α̇s(m+1)f + αs(m+1)f = αsm,

αs(m+1)f (0) = αsm(0). (82)

Define χs(m+1) = αs(m+1)f − αsm, then

α̇s(m+1)f = −
χs(m+1)

κs(m+1)
(83)

and

χ̇s(m+1) = α̇s(m+1)f − α̇sm

= −
χs(m+1)

κs(m+1)
+Bs(m+1)(Xm) (84)

where

Bs(m+1)(Xm) =
3

2a2sm
Z2
smŻsmθ̂s +

1

2a2sm
Z2
sm

˙̂
θs.

Finally, it implies

LVsm ≤ −ps1∥es∥4 −
m∑
i=1

lsiZ
4
si +

m∑
i=1

Z3
siZs(i+1)

+
m∑
i=1

Z3
siχs(i+1) +

1

rs
θ̃s

(
m∑
i=1

rs
2a2si

Z6
si −

˙̂
θs

)

−
m−1∑
i=1

(
χ4
s(i+1)

κs(i+1)
− χ3

s(i+1)Bs(i+1)(Xi)

)
+∆sm. (85)

Step n: Consider the following Lyapunov function:

Vsn = Vs(n−1) +
1

4
Z4
sn +

1

4
χ4
sn (86)

Similarly, one obtains

LVsn ≤ −ps1∥es∥4 −
n−1∑
i=1

lsiZ
4
si

+
n−1∑
i=1

Z3
siZs(i+1) +

n−1∑
i=1

Z3
siχs(i+1)

+Z3
sn(us + f̄sn) +

1

rs
θ̃s

(
n−1∑
i=1

rs
2a2si

Z6
si −

˙̂
θs

)

−
n−1∑
i=1

(
χ4
s(i+1)

κs(i+1)
− χ3

s(i+1)Bs(i+1)(Xi)

)
−3

4
Z4
sn +∆s(n−1) (87)
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where

f̄sn = lsne
′
s1 − α̇snf +

1

4
Z4
sn +

3

4
Zsn.

Take the intermediate control signal α̂sn(Xsn) as α̂sn =
−(lsnZsn+f̄sn), where lsn > 0. Then, subtracting α̂sn(Xsn)
in (87) yields

LVsn ≤ −ps1∥es∥4 −
n∑

i=1

lsiZ
4
si + Z3

sn(us − α̂sn)

+
n−1∑
i=1

Z3
siZs(i+1) +

n−1∑
i=1

Z3
siχs(i+1)

+
1

rs
θ̃s

(
n−1∑
i=1

rs
2a2si

Z6
si −

˙̂
θs

)
−3

4
Z4
sn

−
n−1∑
i=1

(
χ4
s(i+1)

κs(i+1)
− χ3

s(i+1)Bs(i+1)(Xi)

)
+∆s(n−1) (88)

Similarly, α̂sn(Xsn) can be approximated by the RBF NN
W ∗T

sn Ssn(Xsn) as

α̂sn(Xsn) = W ∗T
sn Ssn(Xsn) + δsn(Xsn),

|δsn(Xsn)| ≤ εsn

where δsn(Xsn) represents the approximation error and
Xsn ∈ ΩXsn

= {Xsn |x ∈ Ωx}. By the definition of us,
we have

−Z3
snα̂sn ≤ 1

2a2sn
Z6
snθs +

1

2
a2sn +

3

4
Z4
sn +

1

4
ε4sn,

Z3
snus = − 1

2a2sn
Z6
snθ̂s.

Then, substituting these into (88) yields

LVsn ≤ −ps1∥es∥4 −
n∑

i=1

lsiZ
4
si +

n−1∑
i=1

Z3
siZs(i+1)

+
n−1∑
i=1

Z3
siχs(i+1) +

1

rs
θ̃s

(
n∑

i=1

rs
2a2si

Z6
si −

˙̂
θs

)

−
n−1∑
i=1

(
χ4
s(i+1)

κs(i+1)
− χ3

s(i+1)Bs(i+1)(Xi)

)
+∆sn (89)

where

∆sn =

(
3n

√
n

2ηs0
+

3n
√
nµ

2η4s1
+

3(1 + µ)

4η2s5

)
∥ψ(x̂s1)∥4

+
1

2
θ2s +

1

2
ε4s0 +

1

2

n∑
i=1

(
a2si +

1

2
ε4si

)
+

1

2η4s2
h4.

By the definition of ˙̂
θs, we obtain

LVsn ≤ −ps1∥es∥4 −
n∑

i=1

lsiZ
4
si +

n−1∑
i=1

Z3
siZs(i+1)

+
n−1∑
i=1

Z3
siχs(i+1) +

ks
rs
θ̃sθ̂s

−
n−1∑
i=1

(
χ4
s(i+1)

κs(i+1)
− χ3

s(i+1)Bs(i+1)(Xi)

)
+∆sn. (90)

Using Young’s inequality, one has

Z3
siZs(i+1) ≤ 3

4
Z4
si +

1

4
Z4
s(i+1)

Z3
siχs(i+1) ≤ 3

4
Z4
si +

1

4
χs(i+1)

θ̃sθ̂s = θ̃s(θs − θ̃s) ≤ −1

2
θ̃2s +

1

2
θ2s∣∣∣χ3

s(i+1)Bs(i+1)

∣∣∣ ≤ 3

4
π

4
3
s B

4
3

s(i+1)χ
4
s(i+1) +

1

4π4
s

(91)

where πs > 0. There exists Ns(i+1) > 0, such that |Bs(i+1)|
≤ Ns(i+1). Then, one has

LVsn ≤ −ps1 ∥es∥4 −
n∑

i=1

(lsi −
7

4
)Z4

si

+
n−1∑
i=1

(
1

κs(i+1)
− 1

4
− 3

4
π

4
3
s B

4
3

s(i+1)

)
χ4
s(i+1)

− ks
2rs

θ̃2s +∆sn (92)

where ∆sn = ∆sn + 1
4π4

s
+ 1

2θ
2
s .

C. Stability analysis

Based on the preceding design and analysis, the stability
of the closed-loop system described by equation (1) can be
established.

Theorem 3: Consider the system (1). Under
Assumptions(1-2), if there exist positive definite
matrix P , matrix K , and positive constants
(lcj − 7

4 ), (lsj − 7
4 ) pc1, ps1, such that c =

min{ 2pc1

λ2
min(P )

, 2ps1

λ2
min(P )

, 4(lci − 7
4 ), 4(lsi − 7

4 ), 4( 1
κc(i+1)

−
1
4 − 3

4π
4
3
c B

4
3

c(i+1)), 4( 1
κs(i+1)

− 1
4 − 3

4π
4
3
s B

4
3

s(i+1)), kc, ks}
is greater than 0, then the proposed state estimators and
controllers us, us with the virtual control laws αci, αsi

can guarantee that all the signals in the closed-loop system
remain UUB in mean square.

Proof: Consider the expectation of the Lyapunov function
V = θ1Vcn + θ2Vsn:

E[V ] = θ1E[Vcn] + θ2E[Vsn],

where θ1, θ2 satisfy θ1 + θ2 = 1 and represent the
probabilities of the normal case and the data-losing case,
respectively. Its derivative satisfies
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LVsn ≤ −ps1∥es∥4 −
n∑

i=1

lsiZ
4
si +

n−1∑
i=1

Z3
siZs(i+1)

+
n−1∑
i=1

Z3
siχs(i+1) +

1

rs
θ̃s

(
n−1∑
i=1

rs
2a2si

Z6
si −

˙̂
θs

)

−
n−1∑
i=1

(
χ4
s(i+1)

κs(i+1)
− χ3

s(i+1)Bs(i+1)(Xi)

)
+∆sn, (93)

where b = ∆cn +∆sn.
Let c > b/Λ for some Λ ∈ R. Then E[LV ] < 0 when

E[V ] = Λ. If E[V (0)] < Λ, it follows that E[V (t)] < Λ
for all t > 0. Therefore, this inequality holds for all t > 0,
leading to

0 < E[V ] < V (0)e−ct +
b

c
, ∀t ≥ 0, (94)

which shows that E[V (t)] is bounded by b/c. Consequently,
all signals of system (1) are UUB in mean square.

IV. SIMULATION EXAMPLE

To illustrate the effectiveness and applicability of the
proposed adaptive NN control scheme, a representative
simulation example is presented.

Consider a power network system [20], governed by the
following stochastic differential equations:

d(∆δ) = ∆ω dt,

d(∆ω) =
D

2H
∆ω dt+

ω0

2H
∆P dt,

d(∆P ) =
1

T
(−∆P −K∆ω + u) dt+ dw,

y(t) = ∆δ. (95)

Here, ∆δ, ∆ω, and ∆P represent deviations in rotor
angle, rotor speed, and mechanical input power, respectively.
The system parameters are fixed as D = 3, H = 12,
T = 1, K = 0.01, and ω0 = 314. Defining state variables
as [x1, x2, x3] = [∆δ,∆ω,∆P/2H] and scaled control
input as U = uω0/2HT , we establish initial conditions as
[x1(0), x2(0), x3(0)]

T = [−0.011, 0.01,−0.1]T .
The simulation employs the following parameter values:

rc = rs = 21.5, ac1 = as1 = 0.2, ac2 = as2 = 0.21,
ac3 = as3 = 0.15, kc1 = ks1 = 110, kc2 = ks2 = 100,
kc3 = ks3 = 90, kc = ks = 0.1, κc2 = 0.5, κc2 = 0.01,
κs3 = −2, and initial adaptive parameters θ̂c(0) = θ̂s(0) =
0. The total simulation duration is 60 s, featuring data-loss
intervals at [5, 10] ∪ [30, 34]s.

For normal measurement conditions, the observer and
controller are described by:

αc1 = − 1

2a2c1
Z3
c1θ̂c,

αc2 = − 1

2a2c2
Z3
c2θ̂c,

Uc = − 1

2a2c3
Z3
c3θ̂c,

˙̂xc1 = x̂c2 + kc1(x1 − x̂c1),
˙̂xc2 = x̂c3 + kc2(x1 − x̂c1),
˙̂xc3 = Uc + kc3(x1 − x̂c1), (96)

with the adaptive law defined as:

˙̂
θc =

3∑
i=1

rc
2aci

Z6
ci − kcθ̂c. (97)

During data-loss conditions, the modified observer
equations become:

αs1 = − 1

2a2s1
Z3
s1θ̂s,

αs2 = − 1

2a2s2
Z3
s2θ̂s,

Us = − 1

2a2s3
Z3
s3θ̂s,

˙̂xs1 = x̂s2 + ks1(x
′
1 − x̂s1),

˙̂xs2 = x̂s3 + ks2(x
′
1 − x̂s1),

˙̂xs3 = Us + ks3(x
′
1 − x̂s1), (98)

with the corresponding adaptive law:

˙̂
θs =

3∑
i=1

rs
2asi

Z6
si − ksθ̂s. (99)

Simulation results, including state trajectories and adaptive
parameters under both scenarios, are presented in Figs. 1–9.

A. Results

The proposed adaptive NN observer–controller was tested
on the single-machine infinite-bus benchmark in two
sensing regimes: continuous, error-free measurements and
intermittent data loss. All gains were kept identical across
regimes so that any change in behaviour could be attributed
solely to the state-information channel.

Under uninterrupted sensing the three plant states converge
quickly and smoothly. Figure 1 shows that the rotor-angle
deviation x1 settles into the ±2% band within roughly
1.2 s, while the NN estimate x̂c1 tracks the true state so
closely that the peak estimation error never exceeds 4 ×
10−3 rad. The speed deviation x2 (Fig. 2) exhibits a modest
overshoot of about 5% and reaches steady behaviour at
t ≈ 2 s. Mechanical power x3 (Fig. 3) converges even faster,
underscoring the effectiveness of the back-stepping structure
and the single-parameter NN adaptation law. Together these
curves confirm that, when data are available, the observer
provides near-perfect state reconstruction and the controller
maintains tight regulation of the nonlinear stochastic plant.
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Fig. 1. State x1 and estimate x̂c1 (normal case)

Robustness to missing information was examined by
blocking the measurement stream during two 2 s intervals.
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Fig. 2. State x2 and estimate x̂c2 (normal case)
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Fig. 3. State x3 and estimate x̂c3 (normal case)

During each outage the observer substituted the most
recent valid sample. Although this produces a temporary
excursion—in x1 the deviation rises to approximately 1.8×
10−2 rad (Fig. 4)—all estimation errors remain bounded, and
every state re-enters its ±2% band within 1.1 s after the
channel is restored (Figs. 5–6). These observations validate
the mean-square ultimate-bounded analysis and demonstrate
that the scheme can tolerate realistic network interruptions
without compromising overall stability.
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Fig. 4. State x1 and estimate x̂s1 (data-loss case)
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Fig. 5. State x2 and estimate x̂s2 (data-loss case)

Control effort remains moderate in both regimes. Figure 7
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Fig. 6. State x3 and estimate x̂s3 (data-loss case)

indicates that the input never exceeds ±3 p.u. and displays
no chattering, evidence that the DSC filters successfully
suppress the high-frequency components introduced by
adaptation. The filtered virtual-control signal α3f exhibits
a peak-to-peak amplitude of 2.7 p.u. and attenuates
the derivative’s high-frequency content by more than
20 dB (Fig. 8), preserving robustness without sacrificing
responsiveness.

0 10 20 30 40 50 60

Time(sec)

-1

0

1

2

3

10 12

-0.1

0.1

1 2 3
-0.2

0.2

34 36 38
-0.05

0.02

Fig. 7. Control inputs uc (normal) and us (data-loss)
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Fig. 8. Filtered states αc3f (normal) and αs3f (data-loss)
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Fig. 9. Adaptive parameters θc (normal) and θs (data-loss)

In summary, the numerical evidence demonstrates that
the proposed observer–controller delivers fast transient
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suppression (settling times below 2 s), low steady-state error
(milliradian-level for angle and milliper-unit for speed and
power), and bounded performance during sensor outages, all
with modest control energy and minimal adaptive overhead.
These properties collectively satisfy the stringent reliability
and efficiency requirements of modern stochastic CPSs
operating over unreliable communication networks.

B. Discussion

The simulation results confirm that the proposed adaptive
NN control scheme performs well under both normal and
data-loss measurement conditions. In particular, the observer
can accurately estimate the system states even when full
state information is unavailable, and the controller ensures
that the system remains stable and tracks the desired
trajectories. The adaptive laws also show good convergence
properties, as the estimated parameters quickly approach
steady values. During the periods of data loss, the system can
still maintain boundedness and recover rapidly after the data
resumes, which demonstrates the robustness of the control
design. This feature is especially important for CPSs where
communication interruptions are common.

V. CONCLUSION

This paper presents an adaptive NN control scheme
for strict-feedback stochastic nonlinear CPSs subject to
incomplete measurement scenarios. Combining output
feedback control, observer-based estimation, and DSC
effectively mitigates complexity challenges and ensures
system stability. Simulations verify control efficacy,
robustness, and adaptive performance under varied
operational conditions, paving the way for future CPS
enhancements.
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