
 

  

Abstract—The high density of maritime traffic is 

significantly increasing collision risk. This shows the need for 

more advanced and precise methods to assess collision risk. 

Therefore, this study aimed to introduce Fuzzy Analytic 

Hierarchy Process (F-AHP) to enhance the calculation of 

Collision Risk Index (CRI) using data derived from Automatic 

Identification System (AIS). Although conventional AHP 

effectively applied parameter weights, it often encountered 

limitations in scenarios where there are parameter conflicts, 

leading to less precise risk classifications. These limitations 

could be overcome by the proposed F-AHP, which integrated 

fuzzy logic by refining key parameters such as Distance to 

Closest Point of Approach (DCPA), Time to Closest Point of 

Approach (TCPA), and relative distance (Dr), to improve 

sensitivity in CRI calculation. To validate the effectiveness of 

F-AHP, a comparative analysis with AHP was conducted 

across multiple ship encounters, demonstrating that F-AHP 

provides more adaptive and context-aware CRI values. The 

results showed that F-AHP consistently identified higher-risk 

situations earlier than AHP, reducing underestimations in risk 

classification. Through discrete event simulation of ship 

movements, F-AHP showed stability and reliability in CRI 

assessment, ensuring proactive collision avoidance decisions. A 

statistical significance test (t = 5.1315, p = 0.0068) confirmed 

that F-AHP showed significantly different CRI values, 

suggesting its potential for integration into real-time ship 

traffic management systems (VTMS) and autonomous 

navigation platforms. These results showed the potential of F-

AHP to enhance maritime safety through improved compliance 

with International Regulations for Preventing Collision at Sea 

(COLREGS) regulations and its applicability in real-time 

navigation systems. 

 
Index Terms— AIS Data, Collision Risk Index, F-AHP, 

Maritime Safety  
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I. INTRODUCTION 

EA transportation is important in the global economy, 

particularly for maritime countries such as Indonesia 

with sea area of 3,544,743.9 km², significantly exceeding 

the land area [1]. The increasing maritime traffic, driven by 

the growth of international trade and the need for larger 

ships with great carrying capacity has caused a higher risk 

of ship collision. Moreover, collision, equipment failures, 

and fires, can cause significant losses including life, 

property damage, and environmental pollution [2], [3]. This 

shows the need for risk assessment of maritime collision is 

important to ensure the safety and security of shipping. 

To mitigate risk of ship collision, International Maritime 

Organization (IMO) has implemented International 

Regulations for Preventing Collision at Sea (known as 

Collision Regulation/COLREGS) to provide guidelines on 

ship collision [4]. Additionally, Automatic Identification 

System (AIS) technology has been introduced as a 

navigation aid [5]. AIS data includes critical information 

such as a ship position, speed, course, and identity, enabling 

the tracking of behavior and the identification of potential 

collision [6]. One commonly used method for collision risk 

assessment is Collision Risk Index (CRI), an expert-based 

tool for evaluating the potential for AIS data-based ship 

collision, with values ranging from 1 to 0 [7], [8]. CRI value 

is influenced by several factors including Distance of Close 

Point of Approach (DCPA), Time to Close Point of 

Approach (TCPA), distance from the target ship, relative 

bearing, and speed ratio [3], [4], [9]-[11]. The most 

important characteristic is the uncertainty caused by 

measurement error. Initially, CRI can be assessed by 

summing the weights of DCPA and TCPA, followed by risk 

of ship collision assessment through experienced 

practitioners at sea [13]. When CRI value exceeds a 

predetermined threshold value, risk of collision will occur.  

Several studies have been conducted to assess risk of ship 

collision. According to Yingjun Hu et al, ship collision risk 

assessment can be carried out using fuzzy methods [9]. 

Abebe et al used the D-S theory [12], while Namgung et al 

applied the neural network method [7], and Analytic 

Hierarchy Process (AHP) was introduced by Nguyen, et al 

[10]. These methods have been applied for calculating and 

analyzing risk of collision between ships to facilitate 

decision-making.  

Previous studies on CRI assessment have generally used 

deterministic or probabilistic methods that base risk 
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assessment on numerical values of parameters such as 

DCPA, TCPA, and Dr. Although the methods are useful, 

their application is unable to handle uncertainty and 

ambiguity [12], [11] that arise when parameter values are at 

two different risk levels. This can lead to confusion in 

determining the appropriate course of action, whether to 

follow the higher or lower risk level [10], [11]. 

Based on the description, this study aimed to introduce 

Fuzzy Analytic Hierarchy Process (F-AHP) method, to 

measure the potential for collision between ships. F-AHP is 

a multi-criteria decision-making method, which can be used 

as a determination of risk level evaluation [14]. 

Additionally, fuzzy logic enables models to describe 

uncertain or fuzzy values, similar to human thinking in 

complex situations. Integrating F-AHP facilitates the 

weighting and comparison of criteria that are important in 

risk assessment. The contribution of this study is the 

reduction of uncertainty and ambiguity in decision-making 

regarding risk of ship-to-ship collision at sea. By 

implementing F-AHP, this study offers a more decisive and 

accurate method to assessing collision risk. This is 

particularly important due to the ambiguity that often arises 

when DCPA, TCPA, and Dr parameter values are at two 

different risk levels causing confusion in determining the 

appropriate course of action. F-AHP also enables a clearer 

and more definitive determination of risk levels, allowing 

seafarers to take more appropriate and early precautions in 

accordance with COLREGS. Therefore, this study addresses 

the limitations of conventional methods by improving the 

accuracy and relevance of CRI assessments, ensuring close 

correlation with real-world conditions.  

 

II. LITERATURE REVIEW 

Studies on the use of AIS data for ship collision 

prediction have been conducted. These include the 

investigation by Yuxin Zao et al. with the title of a real-time 

collision avoidance learning system for unmanned surface 

ship. The investigation discusses the detection of collision 

risk of unmanned ships (Unmanned Surface Vehicles) using 

the Evidential Reasoning (ER) method which provides 

efficiency in CRI assessment. The weight of CRI value is 

calculated using AHP method [11]. 

Sheng-Lo Kao et al. explored a fuzzy logic method for 

collision avoidance in ship traffic service. The study used 

fuzzy methods to improve the decision-making ability of 

Vessel Traffic System (VTS) operators. The decision was 

used as a ship collision avoidance warning system. 

Furthermore, a platform called Marine Geographic 

Information System (MGIS) was developed, which provided 

mapping and spatial analysis capabilities to calculate risk of 

collision between several ships [15]. 

Ling-zhi Sang et al. conducted a study titled "CPA 

Calculation Method Based on AIS Position Prediction," 

which developed a method to calculate Closest Point of 

Approach (CPA) using AIS data. The study incorporated 

parameters such as Speed Over Ground (SOG), Course Over 

Ground (COG), Course Over Ship (COS), and Rate of Turn 

(ROT) to create a predictive model of a ship's position. This 

model enhanced the accuracy of CPA calculations by 

generating a precise trajectory from AIS data. The proposed 

method enhanced navigation decisions, thereby minimizing 

unnecessary maneuvers, and offering timely alerts regarding 

irregular ship behavior [16]. 

Longhui Gang et al. with the title Estimation of ship 

collision risk index based on support vector machine (SVM) 

discussed the prediction of ship collision. The data used 

consisted of 50 groups collected from six predetermined 

situations. During the analysis, two methods were used, 

namely SVM to predict CRI and genetic algorithm (GA) to 

optimize the parameters of SVM. The results showed that 

the algorithm provided good performance for CRI 

estimation [3]. 

Mingyou Cai et al. with the title Collision Risk Analysis 

on ferry ships in Jiangsu Section of the Yangtze River based 

on AIS data discussed risk assessment of ferry ship collision 

during crossing activities. The study assessed risk of 

collision and its integration from each trip based on 

historical AIS data. Furthermore, the method applied was 

Collision Risk Index of Ferry (CRIF) using several 

parameters including DCPA, TCPA, distance, and relative 

speed. The results obtained were the acquisition of risk of 

ferry collision in real-time and the proposed method 

functioned optimally [8]. 

Jie Ma et al. applied a data-driven method for collision 

risk early warning in ship encounter situations using 

attention-BiLSTM. The study discussed the early warning of 

ship collision risk for sailing safety that allowed officers to 

react to emergencies and take avoidance actions first. In line 

with the study objective, AIS data were from the East China 

Sea from January to April 2019, while the performance of 

LSTM was compared to attention-Bi-LSTM as a capture of 

spatio-temporal behavior dependence and future risks. The 

results provided valuable insights into early warning of risk 

of ship collision. From the comparison, the attention-

BiLSTM algorithm was superior in accuracy and stability 

[17]. 

Building upon previous investigations, this study aimed to 

introduce measuring CRI of potential collision using F-AHP 

method with several factors including DCPA, TCPA, ship 

speed, ship angle, and visibility situation based on AIS data. 

The results provided information to improve uncertainty and 

ambiguity in assessing CRI, making the use of F-AHP 

method more relevant to the actual situation. 

 

III. MATERIALS AND METHODS 

AIS is a maritime communication technology that enables 

ships to continuously transmit and receive key navigational 

data. The data includes ship name, type, timestamp, speed, 

position, heading, and voyage details, which are essential for 

enhancing maritime security and navigational safety [18], 

[19]. AIS plays a fundamental role in ship monitoring and 

collision avoidance by providing real-time situational 

awareness to maritime authorities and other nearby ships. 

Before application, AIS data passes through 

preprocessing, which includes decoding, cleaning, and 

eliminating erroneous or incomplete records to ensure 

accuracy. After the data is refined, essential collision risk 

parameters DCPA, TCPA, and relative distance (Dr) are 

computed. These parameters form the basis for determining 

ship encounter situations, which are classified according to 
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COLREGS. 

To enhance the precision of collision risk assessments, F-

AHP is applied to refine CRI values. This method resolves 

classification ambiguities and provides a more nuanced risk 

assessment by incorporating fuzzy logic into traditional 

AHP-based decision-making. The complete system 

workflow, including AIS data collection, preprocessing, 

parameter computation, encounter classification, and CRI 

assessment using F-AHP, is shown in Fig. 1. This structured 

method ensures that maritime risk assessments are both 

reliable and actionable, supporting real-time navigation 

decisions to mitigate potential collision at sea. 

 

A. AIS Data Collection 

Ship equipped with AIS devices generates a series of data 

containing information about the identity, position, and 

speed. In this study, AIS data used is a 2023 dataset 

covering ship activity in the waters of the Lombok Strait, 

Indonesia, captured from a terrestrial antenna installed at 

Udayana University. 

 

B. AIS Data Preprocessing  

AIS data had NMEA (National Maritime Electronic 

Association) format which requires decoding to obtain the 

real information contained in AIS message using the Python 

programming language. These data contain some 

information such as timestamp, type of mobile, MMSI, 

latitude, longitude, navigational status, ROT, SOG, COG, 

Heading, IMO, call sign, name, ship type, cargo type, width, 

length, type of position fixing device, draught, destination, 

ETA, data source type, A, B, C, and D [19]. AIS data are 

cleaned to remove unused data and improve quality. 

However, SOG value of 0 and COG outside 0-360 show the 

removal of stationary ship [20]. 

 

C. DCPA, TCPA, and Dr 

For each nearby ship, parameter values are calculated to 

determine its position and assess the situation. The relative 

positions of two or more ships in close proximity indicate 

conditions where collision may become possible. The ship 

position will indicate the encounter point between Own Ship 

(OS) and Target Ship (TS). [21]. From the encounter 

conditions between OS and TS, the values of DCPA, TCPA, 

and Dr are derived. The information needed to calculate the 

parameter values is MMSI, Longitude, Latitude, Heading, 

SOG, and COG. Before obtaining the value of the three 

parameters, the bearing of each adjacent ship will be 

calculated by Equation (1): 

 
1
2( , )tan yOS yTS xOs xTS TS

−
= − − −  (1) 

 

Where β is bearing, x is latitude, y is longitude, ɸ is ship 

angle, OS represents Own Ship, and TS denotes Target 

Ship. In addition to bearings, the relative speed of the two 

ships is also calculated. The calculation of the relative speed 

is shown in Equation (2): 

 
2

1 cos( )
VTS VTS

Vr VOS OS S
VOS VOS

 
=  + −   −  

 

 (2) 

 

Where Vr is the relative velocity, and ɸr represents the 

relative angle. The relative angle provides information about 

how far one object is from another. The relative angle can 

be calculated using Equation (3): 

 

1 cos( )
cos (

VOS VTS OS TS
r

Vr

− −   − 
 =   (3) 

 

Relative distance (Dr) is the distance between OS and TS 

based on time units [3]. The equation for calculating the Dr 

value is shown in Equation (4): 

 
Fig. 1.  System overview. 
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2 2( ) ( )Dr xTS xOS yTS yOS= − − −  (4) 

 

DCPA is the closest distance between two ships 

approaching each other, which is influenced by Dr, relative 

angle, and bearing of ship [3]. When DCPA is equal to 0, 

there is a tendency for collision to occur. Meanwhile, DCPA 

value> 0 shows a distance between one ship and another, 

with a tendency for risk of collision. The equation of DCPA 

is shown in Equation (5): 

 

sin( )DCPA Dr r t =   −  −  (5) 

 

TCPA represents the time required for two ships to reach 

DCPA. Furthermore, it provides an estimate of when the 

two ships will be at their closest point to each other, 

maintaining current courses. When TCPA value is negative, 

it indicates that the closest point between the two ships has 

been passed and the ships are moving away from each other. 

However, a positive value suggests that two ships are 

approaching each other. When the TCPA value is less than 

or equal to zero, the two ships have crossed the threshold 

and collision will occur. Relative velocity (Vr) has a great 

influence on TCPA because, in Equation (6), TCPA is 

inversely proportional to Vr. In this case, Vr is the 

denominator, hence, the greater the value of Vr, the smaller 

the resulting TCPA value [16]. 

 

cos( ) /TCPA Dr r t Vr=   −  −  (6) 

 

D. Determine Ship Encounter Situation 

IMO issued the Convention on International Regulations 

for Preventing Collision at Sea 1972 which is often known 

as COLREGS 1972. This regulation is a resolution of IMO 

Number A. 464 (XII) that applies internationally and must 

be implemented in full by all ships, owners, skippers, and 

crew to avoid collision at sea [22]. The purpose of 

COLREGS is to provide instructions and rules to avoid 

collision between ships [23]. The five main rules of this 

regulation are 13- overtaking, 14- head-on situation, 15- 

crossing situation, 16- action by give-way ship, and 17- 

action by stand-on ship. These rules are used to verify 

collision avoidance. [24]. Based on rules 13, 14, and 15, 

there are three ship encounter situations which are shown as 

follows [25]: 

1) Head-on: When OS and TS meet on a head-on course 

including risk of collision, each ship must change 

course to starboard. 

2) Crossing: When there is a ship from the starboard side, 

OS must give way. Crossing refers to two ships that 

encounter each other between 15◦ and 112.5◦. 

3) Overtaking: OS will be considered overtaking when 

approaching TS from a direction >22.5 degrees behind 

ship. In this situation, OS will overtake from the port 

or starboard side of TS. 

The classification of ship encounter situations is 

determined based on the relative course (ϕ) and bearing (α), 

which are computed from key navigational parameters 

obtained during AIS data preprocessing phase. These 

parameters include ship speed, COG, heading, and 

positional data (latitude and longitude), which are decoded 

and processed to derive precise encounter conditions, as 

shown in Table I. 

 

E. Fuzzy AHP 

Fuzzy Inference System (FIS) is used to determine the 

output by mapping given inputs using fuzzy logic, which 

includes membership functions, fuzzy logic operators, and 

IF-THEN rules [26]. Fuzzy rules are formulated based on 

input values derived from ship movement parameters, 

ensuring a more adaptive and context-aware classification of 

collision risk. Table II shows the linguistic values assigned 

to the three key parameters, namely DCPA, TCPA, and Dr, 

which define CRI value [27]. 

To enhance the accuracy and adaptability of maritime 

collision risk assessments, this study implements F-AHP on 

the critical parameters. Compared to conventional AHP, 

which assigns rigid numerical thresholds to classify risk 

levels, F-AHP integrates fuzzy logic to smooth transitions 

between linguistic categories, reducing abrupt classification 

shifts that may misrepresent actual risk levels. This hybrid 

method refines uncertain parameter values, ensuring that 

ships with borderline DCPA, TCPA, or Dr values are 

classified more accurately rather than being forced into 

discrete categories. F-AHP implementation starts with the 

construction of a pairwise comparison matrix based on 

expert judgment, which determines the relative importance 

of DCPA, TCPA, and Dr. Subsequently, these parameters 

are converted into fuzzy membership functions, allowing for 

partial classifications across multiple risk categories. 

 
The membership functions adopted in this study are based 

on the methodology presented in [27], which defines the 

input variable ranges for fuzzy evaluation as [0, 3.9] for 

DCPA, [0, 34.3] for TCPA, and [0, 3] for the relative 

distance (Dr). These ranges are carefully selected to 

represent the typical values encountered in maritime 

navigation scenarios and are instrumental in enabling fuzzy 

logic to capture degrees of risk more flexibly than 

conventional thresholding. The mathematical formulations 

of these membership functions, which are integral to the F-

AHP-based CRI assessment, are presented in Equations (7) 

TABLE II 

LINGUISTIC VALUES OF PARAMETERS 

DCPA Value TCPA Value Dr Value 

0-1,3 Collision 0-11,5 Collision 0-1,2 Collision 

1,3-2,6 Danger 11,5-22,9 Danger 1,2-2,1 Danger 

2,6-3,9 Threat 22,-34,4 Threat 2,1-3,0 Threat 

3,9 Attention 34,4 Attention 3 Attention 

 

 

TABLE I 

SITUATION CONDITIONS OF SHIP ENCOUNTERS 

Ship Encounter Situation Conditions 

Overtaking ϕ ≤ 25 
Head On 165 ≤ ϕ ≤ 195 

Crossing gives way to ship passing 

at the bow 

25 < ϕ < 165 or 195 < ϕ < 335 

α ≤ 90 or α ≥ 270 
Crossing gives way to ship passing 

at the stern 

25 < ϕ < 165 or 195 < ϕ < 335 

90 < α < 270 
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to (9) and used consistently throughout the decision-making 

framework. 
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(9) 

F. Calculation of CRI 

CRI calculation is derived from the refined parameter 

values obtained through F-AHP, as shown in Section E. The 

implementation of F-AHP plays an essential role in refining 

DCPA, TCPA, and Dr, ensuring a more adaptive and 

sensitive risk assessment. By transforming these parameters 

into linguistic categories based on fuzzy membership 

functions, F-AHP mitigates abrupt misclassifications and 

ensures a smooth transition between risk levels. CRI 

formula, as defined in Equation (10), integrates defuzzified 

values of DCPA, TCPA, and Dr with their respective weight 

coefficients, showing the relative significance of each 

parameter in collision risk evaluation. 

2 2 2 1

2( 1 2 3 )
DCPA TCPA D

CRI a a a
Ds Ts Ds

−     
= + +     

     

 (10) 

 

In this context, Ds represents the minimum safe distance 

from the ship, while Tₛ refers to the time required to detect 

the risk of collision, formulate an avoidance strategy, and 

execute steering maneuvers. The variable D denotes the 

actual distance between the two vessels at any given 

moment. The parameters α1, α2, and α3 serve as weight 

coefficients corresponding to each factor in the CRI 

equation, which collectively influence the severity of 

collision risk. These weights reflect the relative importance 

of variables such as environmental visibility, vessel 

dimensions (length and width), and the navigational 

characteristics of the waterway, including traffic density and 

maneuvering constraints. Adjusting these coefficients allows 

the model to adapt to varying maritime scenarios and reflect 

real-time conditions more accurately. Furthermore, the 

ability to assign differentiated weights enhances the model’s 

flexibility in assessing risk under diverse conditions, such as 

restricted visibility or high-speed approaches. The collision 

level classification used in this study adheres to the 

COLREGS, as established in the study by [25]. The 

categorization of collision severity into distinct levels is 

detailed in Table III, which serves as a reference for 

interpreting risk thresholds. 

 

According to studies from [10] and [20], the criteria for 

calculating the Collision Risk Index (CRI) and issuing 

navigational warnings suggest that when the CRI value 

exceeds 0.667, the probability of an imminent collision is 

high. In such high-risk conditions, the vessel designated as 

the give-way ship must promptly execute avoidance 

maneuvers. These may include altering course, reducing 

speed, or implementing both actions simultaneously to 

establish a safer separation distance. Timely response is 

essential to avoid last-minute decisions that could increase 

navigational uncertainty. When the CRI falls within the 

range of 0.333 to 0.667, the potential for collision is 

considered moderate. While immediate evasive action may 

not be necessary, the ship giving way should maintain 

heightened vigilance and be prepared to respond 

appropriately if the situation deteriorates. Finally, when the 

CRI < 0.333, the encounter is classified as low-risk. The 

categorized levels of ship encounter conditions are visually 

represented in Fig. 2.  

TABLE III 
COLLISION LEVEL 

Level  Definition 

Collision The two ships collided 

Danger Both ships are required to take the most 

favorable action to help avoid collision. 
Threat Stand-on ship takes action to avoid collision. 

Give Way ships are required to take early and 

substantial action to achieve a safe distance to 
travel. 

Attention Stand on the ship must maintain ship angle and 

speed. 
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IV. RESULT AND DISCUSSION 

AIS data used in this study are the 2023 dataset captured 

from terrestrial antennas installed at Udayana University. 

The data history has a CSV file format which is divided into 

daily files. The following is AIS data message which can be 

seen in Table IV. 

 
In Table IV, there are several attributes including 

timestamp, MMSI, Latitude, Longitude, Heading, COG, and 

SOG. Timestamp is the time AIS signal is sent by the ship. 

Latitude and Longitude are the geographical locations of 

ship. The heading is the forward direction of ship in motion. 

COG is the direction of travel by ship at any given moment. 

Meanwhile, SOG is ship speed relative to other objects. 

Table IV is obtained from the results of the initial distance 

classification on the ship pair. In the calculation of CRI, the 

initial distance between pairs of ships is 6 nautical miles 

(nm) [3]. 

A. Near-Collision Ships Condition 

In the domain of maritime collision risk assessment, the 

spatial closeness between vessels serves as a vital indicator 

for identifying potential collision situations. This study 

defines a near-collision scenario using a relative distance 

threshold of 6 nm. When two ships are detected within this 

range, the encounter is flagged for detailed analysis. This 

threshold acts as a trigger for further evaluation, prompting 

the calculation of essential collision risk parameters to 

assess the seriousness of the situation and support timely 

navigational decision-making.  

The processed AIS data are mapped to visualize positions 

and detect near-collision conditions. This map enables the 

identification of ships that are in critical or close proximity 

to each other. To show and further analyze these situations, 

AIS data recorded on February 2, 2023, was examined, at 

07:45, as presented in Table IV. A corresponding 

visualization of this encounter is shown in Fig. 3, 

representing ships that are near the threshold and forms the 

basis for further analysis. 

According to Fig. 3, ships are plotted based on their 

relative positions. Black dots represent ships that are in the 6 

nm threshold, indicating a near-collision condition. 

Meanwhile, red dots show ships that are still at a safe 

distance. This initial identification in Fig. 3 provides an 

essential context for narrowing down encounters that require 

closer examination, emphasizing specific ship pairs where 

collision risk parameters must be calculated in detail. 

 
Fig. 2.  The situation of ship encounters by level. 

  

TABLE IV 

HISTORICAL AIS DATA 

Received MMSI Lat/Long Heading COG SOG 

02-02-2023 
07.45 

9130290 -8,659/115,4 268 268,7 22,8 

636018336 -8,362/115,8 199 199,2 12,7 

310499000 -8,901/115,6 190 184,9 13 

636021134 -8,828/115,6 192 188,3 9,8 

525401357 -8,681/116 283 283 9,8 

353321000 -8,653/115,8 16 16,8 12,8 

357203000 -8,408/115,8 199 198,6 12 

01-02-2023 

00.02 
525010356 -8,437/115,8 323 319 10,3 

265829000 -8,928/115,6 201 199,6 12,9 

525401357 -8,559/115,5 108 104,9 10,2 

525008083 -8,573/115,6 72 77,7 8,9 

235108988 -8,873/115,6 199 195,2 9 

477087800 -8,6/115,8 21 19 9,6 

370968000 -8,881/115,6 201 194,7 9,4 

02-02-2023 

08.01 
525301422 -8,14/116,0 269 276,9 7,2 

525119205 -8,075/117,1 266 268,5 7,7 

310499000 -8,96/115,6 188 183,1 13,4 

636018336 -8,415/115,8 200 199 12,4 

538005107 -8,189/115,8 200 196 11,5 

636021134 -8,872/115,6 192 187,2 10,1 

636017158 -8,738/115,7 17 14 13,2 

354707000 -7,971/116,0 22 25 11,3 

353321000 -8,601/115,8 17 18,3 12,2 

02-02-2023 

10.20 
563119200 -8,060/115,9 208 206,5 12,7 

351772000 -8,046/115,9 202 201,8 10,7 

636018336 -8,824/115,6 195 192,7 10,4 

357203000 -8,840/115,6 195 193,3 10,1 
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Fig. 4 presents an in-depth visualization of two critical 

ship encounters initially identified in Fig. 3 as near-collision 

cases. These encounters, designated as Ship Pair 1 and Ship 

Pair 2, were flagged based on their relative distance in a 6 

nm threshold, requiring further analysis to assess collision 

risk. The examination of these encounters includes 

calculating essential risk indicators, such as DCPA, TCPA, 

and Dr, with the results shown in Table V. 

 

For Ship Pair 1 (MMSI 636018336 and 357203000), 

shown in Fig. 4(a), ship positions are in the 6 nm threshold, 

indicating a near-collision scenario. According to 

calculations in Table V, DCPA for the encounter is 

approximately 0.59 nm, categorizing it in Collision risk 

level due to ship close proximity. This low DCPA value 

suggests a high risk, requiring careful monitoring and 

possibly preemptive measures. TCPA is -0.35 minutes, 

indicating that ships have already passed their closest 

approach point and are now moving away. However, the 

low DCPA value shows that ships are recently at a critical 

proximity. Dr is calculated as 2.75 nm, determined based on 

ship latitude and longitude positions on Earth’s curved 

surface, confirming the seriousness of this near-collision 

situation.  

Regarding Ship Pair 2 (MMSI 636021134 and 

310499000) in Fig. 4(b), the position variable values are 

similarly placed in the 6 nm threshold, suggesting a crossing 

scenario. DCPA for this encounter is -1.71 nm, which places 

it in Collision risk level, emphasizing the high-risk nature of 

the proximity. Compared to Ship Pair 1, TCPA for this 

encounter is positive at 0.53 minutes, indicating that ships 

are still approaching their CPA. The positive value indicates 

a potential collision risk as the ships encounter. Dr, 

calculated as 4.44 nm based on latitude and longitude, 

reinforces the close proximity and converging paths, 

underscoring the need for vigilance and possibly evasive 

action. 

 
The results in Table V show that DCPA and TCPA values 

are sensitive to changes in Dr, relative angles, ship bearings, 

and relative speeds. For both encounters, DCPA values in or 

near zero indicate a high-risk level. Encounter 1 has a 

particularly low DCPA value, showing a severe risk at a 

recent time point. Meanwhile, encounter 2, with a positive 

TCPA, confirms an approaching condition that requires 

preventive action 

 
(a) 

 
(b) 

Fig. 4.  Detailed visualization of ship position: (a) Encounter 1; (b) 
Encounter 2. 

  

TABLE V 

PARAMETER CALCULATION RESULTS 

Encounter 

Number 
Ship MMSI 

DCPA 

(nm) 

TCPA 

(minute) 

Dr  

(nm) 

1 Ship 1 636018336 
0.59184 -0.34659 2.75345 

Ship 2 357203000 

2 Ship 1 310499000 
-1.71045 0.52879 4.44362 

Ship 2 636021134 

 
 

 

 
Fig. 3.  Visualization of near collision condition. 
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B. Identify the Ship Encounter Situation 

In this study, the identification of ship encounter 

situations depends on a quantitative interpretation of the 

relative course and relative bearing values between two 

ships, as shown in Table II. These navigational parameters 

provide the basis for classifying encounter types and 

defining appropriate navigational actions according to 

international maritime regulations. In this section, the 

classification of ship encounters based on data in Table V 

was discussed in detail, with the results clearly summarized 

in Table VI and further visualized in Fig. 5 to support 

accurate situation analysis. 

 

Understanding and accurately classifying encounter 

situations, such as crossing scenarios, are essential 

components of collision risk assessment in maritime 

navigation. The analysis in Table VI, based on relative 

course and bearing values, classifies both encounters in this 

study as crossing situations. The classification is shown in 

Fig. 5, offering a detailed depiction of each ship positioning 

and the navigational responsibilities presented by 

COLREGS framework. These results show the importance 

of role designation in managing collision risk effectively 

 

In Encounter 1 (Fig. 5(a)), Ship 1 (OS) and 2 (TS) are 

positioned in a crossing scenario, as determined by a relative 

course of 0.59 and a bearing of 0.35. In this configuration, 

Ship 1, designated as the give-way ship, is required to yield 

to Ship 2, acting as the stand-on ship. The arrangement is 

shown in Fig. 5(a), with OS (in blue) positioned to pass in 

front of TS (in red). The respective headings of each ship 

are indicated by colored lines, confirming the obligation of 

OS to adjust its speed or course to maintain a safe distance 

when passing ahead of TS. This scenario shows a typical 

crossing encounter, where the give-way ship is obligated to 

take proactive measures and prevent a potential collision. 

Ship Encounter 2 (Fig. 5(b)) presents a crossing situation, 

although with a different relative positioning compared to 

Encounter 1. Specifically, Ship 1 (OS) and Ship 2 (TS) have 

a relative course of 1.71 and a relative bearing of 0.53, 

placing OS behind TS. In this configuration, OS, must 

adjust its course or speed to pass behind the stand-on ship 

(TS), which maintains heading and speed as shown in Fig. 

5(b). The visualization emphasizes the role of OS in 

maneuvering to avoid crossing in front of TS and adhering 

to navigational protocols to ensure a safe distance. This 

situation further shows how different relative positions in 

crossing scenarios impact the actions required from the 

give-way ship. 

In both Encounter 1 and Encounter 2, the classification of 

the situations as crossing encounters, along with the 

consistent designation of Ship 1 as the give-way vessel, 

highlights the critical importance of interpreting relative 

course (ϕ) and bearing (α) accurately in maritime collision 

risk assessment. As detailed in Table VI and illustrated in 

Fig. 5, this analytical approach clarifies each ship’s 

navigational responsibility, reinforcing compliance with 

COLREGS, particularly Rules 15 and 16. Such clarity is 

essential for ensuring coordinated actions between vessels. 

By following their designated roles based on encounter 

geometry, ships can effectively reduce the likelihood of 

dangerous proximity and miscommunication. This 

classification method enhances situational awareness and 

reinforces proactive collision avoidance behavior, 

particularly in congested maritime zones or restricted waters 

where decision latency can significantly elevate operational 

risk. 

 

C. CRI Assessment 

CRI serves as a key measure for assessing potential ship 

collision in maritime navigation. This section builds on the 

encounter situations identified in Section B and introduces 

F-AHP to enhance the precision and reliability of CRI 

assessment. Although conventional AHP methods are 

effective, there are challenges when parameter values fall 

between thresholds, causing ambiguity in risk 

categorization. By integrating fuzzy logic, F-AHP resolves 

ambiguities through fuzzy membership functions, ensuring a 

smooth transition between risk categories and producing 

crisp values for decision-making [28][29]. This method has 

been widely applied in decision-making tasks where 

uncertainty and overlapping criteria are prevalent [30]. 

CRI calculation incorporates DCPA, TCPA, and Dr 

values as shown in Table VII, following the method outlined 

 
(a) 

 
(b) 

Fig. 5.  Ship encounter situations: (a) Crossing, give-way ship passes at the 

bow; (b) Crossing, give-way ship passes at the stern. 

  

TABLE VI 

SITUATION RESULTS OF SHIP ENCOUNTERS 

Encounter 

Number 
Ship 

Relative 

Course 

Relative 

Bearing 
Situation 

1 
Ship 1 

0.59 0.35 
Crossing gives way to 
ship passing at the 

bow Ship 2 

2 
Ship 1 

1.71 0.53 
Crossing gives way to 
ship passing at the 

stern Ship 2 

. 
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in Equation (10). Parameter weights were assigned based on 

their significance in collision prediction, as derived from 

AHP framework. Previous studies [10] identified TCPA as 

the most critical parameter, with a weight of 0.525, followed 

by DCPA (0.334), and Dr (0.142). To enhance the 

evaluation process, thresholds for minimum safe distance 

(0.5 nm) and time (15 minutes) [31], were integrated into F-

AHP model. The thresholds ensure the correlation of CRI 

calculations with established maritime safety standards, 

thereby influencing the degree of membership for each 

parameter. This is to ensure that CRI categorization is in line 

with established safety standards. The incorporation of 

fuzzy logic refines the input values into a crisp CRI score, 

classifying collision risk into three levels, namely high (CRI 

> 0.667), moderate (0.333 ≤ CRI ≤ 0.667), and low (CRI < 

0.333), as shown in Fig. 2. The integration of fuzzy logic 

refines these inputs into a crisp value, categorizing each CRI 

level, as presented in Table VII. 

 

Table VII provides a summary of the CRI calculations for 

the analyzed ship encounters. In Encounter 1, the input 

values for DCPA, TCPA, and Dr were 0.59 nm, -0.3 

minutes, and 2.75 nm, respectively. These raw values were 

refined through F-AHP process, which applied fuzzy 

membership functions to resolve uncertainties. The 

defuzzified crisp values were calculated as 1.3 nm, 11.5 

minutes, and 3 nm for DCPA, TCPA, and Dr, respectively. 

Based on these values, DCPA and TCPA were classified at 

Collision level, while Dr was categorized at Threat level. 

CRI value was 0.361, placing the encounter in Threat 

category. This process ensures consistent classification of 

risk levels, providing mariners with clear guidance for 

decision-making in real-time navigation. 

CRI levels derived from F-AHP model provide actionable 

insights that are in line with COLREGS rules, particularly 

rule 15 (Crossing Situation) and 16 (Action by Give-Way 

Ship). In Encounter 1, ship 1 must adjust its course or speed 

to pass safely ahead of the stand-on ship 2. Meanwhile, the 

stand-on ship should avoid crossing in front of the give-way 

ship. The refined CRI values offer clear and reliable 

assessments of potential risks, enabling ship to take 

proactive measures to avoid collision. By incorporating F-

AHP, this method enhances the consistency and reliability 

of CRI calculations, supporting safer and more effective 

navigation in challenging maritime environments. 

 

D. Comparative Analysis of Collision Risk Assessment 

Section D evaluates the performance of AHP and the 

proposed F-AHP in CRI measurement, showing their 

differences through Table VIII, Fig. 6, Fig. 7, Fig. 8, Fig. 9, 

and Fig. 10. Although AHP effectively weights parameters, 

it often faces challenges with ambiguities near linguistic 

category boundaries and conflicting parameter 

interpretations. F-AHP addresses these challenges by 

incorporating fuzzy membership functions and 

defuzzification, producing CRI values that are more 

sensitive, accurate, and correlated with real-world ship 

dynamics. 

Table VIII compares CRI values calculated using AHP 

and F-AHP across four ship encounters. Although AHP 

depends on fixed thresholds for categorization, F-AHP 

refines ambiguous parameter values into definitive linguistic 

categories such as Collision (C), Danger (D), Threat (T), 

and Attention (A). The sensitivity of F-AHP suggests that 

the refinement in DCPA values from the ambiguous 

thresholds in AHP (DCPA for Encounter 1 adjusted from 

0.59 to 1.3 causes a CRI that transitions from Attention 

(0.178) to Threat (0.361). Across all analyzed ship 

encounters, F-AHP consistently reduces classification 

ambiguity, with an average of 40% improvement in 

sensitivity for high-risk scenarios. To further show these 

refinements, Fig. 8 shows the differences in DCPA, TCPA, 

and Dr values across AHP and F-AHP, with shaded regions 

representing the linguistic ranges for each parameter. The 

graph shows that the refinement process applied by F-AHP, 

where parameters such as DCPA (from 0.59 to 1.3) and 

TCPA (from -0.34 to 11.5) are adjusted to reflect real-world 

ship dynamics. These refinements not only address the 

inconsistencies observed in AHP classifications but also 

enhance compliance with COLREGS Rule 15 by providing 

clearer thresholds for preventive actions. The shaded regions 

in Fig. 7 validate fuzzy membership ranges applied, 

ensuring that CRI values correlate with safety-critical 

scenarios.  

Fig. 6, Fig. 8, Fig. 9, Fig. 10 provide visual validation of 

the numerical refinements presented in Table VIII. 

Specifically, Fig. 8 and Fig. 9 show how F-AHP refines 

ambiguous CRI values in crossing scenarios, resolving 

parameter misclassifications that arise with AHP. Building 

upon the results, which show the limitations of AHP in 

detecting collision risk, Fig. 6 and Fig. 10 further validate 

the superiority of F-AHP in handling complex maritime 

scenarios, specifically addressing head-on and overtaking 

encounters. The scenario is characterized by the relative 

course (ϕ) and bearing (α) of vessels, as defined in Table II, 

which are critical indicators in determining encounter types. 

Furthermore, Fig. 11 and Fig. 12 introduce the results of 

discrete event simulation (DES), offering a dynamic 

perspective on how CRI values evolve over time in response 

to ship movements. Fig. 11 presents a simulation of ship 

movement under an overtaking scenario, showing how F-

AHP provides an earlier and more sensitive CRI warning 

TABLE VII 

CRI CALCULATION RESULTS 

Encounter Number 1 2 

DCPA 

(nm) 
0.59 -1.7 

TCPA  
(minutes) 

-0.34 0.53 

Dr  

(nm) 
2.75 4.44 

CRISP Value 
DCPA 

1.3 1.3 

CRISP Value 

TCPA 
11.5 11.5 

CRISP Value  
Dr 

3 3 

Situation 

Crossing, the give-

way ship passes at the 
bow 

Crossing, the give-

way ship passes at 
the stern 

CRI 0.361 0.361 

Level Threat Threat 
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compared to AHP, allowing for more timely navigational 

decisions. Fig. 12 further validates the impact of F-AHP by 

comparing CRI trends between AHP and F-AHP in ship 

movement simulation. 

In Ship Encounter 1, AHP classifies the Collision Risk 

Index (CRI) as 0.178 (Attention), based on DCPA = 0.59 

(Collision), TCPA = -0.34 (Attention), and Dr = 2.75 

(Threat). However, the visual evidence in Fig. 8 contradicts 

this classification, as it clearly shows both ships moving 

along the same heading (199°) with the target ship (TS) 

directly ahead of the ownship (OS). This indicates a 

potentially hazardous overtaking situation. When the same 

data is re-evaluated using F-AHP, the TCPA is adjusted to 

11.5 (Collision) and DCPA to 1.3 (Collision), resulting in a 

revised CRI of 0.361 (Threat). This updated classification is 

more consistent with the spatial arrangement depicted in the 

simulation. The numerical shift confirms that AHP 

underrepresents the risk in scenarios where course and speed 

similarities create persistent convergence. The recalculated 

CRI under F-AHP thus reflects the actual collision potential 

observed in the plotted trajectory, particularly where the 

ships maintain close proximity without sufficient lateral 

separation. Fig. 8 validates that the refined output better 

corresponds to the real encounter geometry and supports the 

need for further cautionary action in this specific case. 

Ship Encounter 2 (Fig. 9) provides further compelling 

evidence of the limitations associated with traditional AHP 

in managing conflicting parameter values in collision risk 

scenarios. In this encounter, AHP calculates a CRI of 0.105 

(Attention), based on DCPA = -1.7 (Attention), TCPA = 

0.53 (Attention), and Dr = 4.44 (Attention). The negative 

DCPA value implies that the vessels have already passed 

their closest point of approach and are diverging. However, 

visual inspection in Fig. 9 contradicts this assumption; it 

clearly illustrates that both vessels are still on converging 

paths, indicative of a continuing collision threat. This 

discrepancy underscores the potential for misclassification 

when relying solely on AHP's rigid thresholding system. 

Upon applying F-AHP, the DCPA is refined to 1.3 

(Collision), TCPA to 11.5 (Collision), and Dr to 3.0 

(Threat), producing a revised CRI of 0.361 (Threat). These 

updated parameter values align closely with the spatial 

configuration shown in Fig. 9, where the ownship (OS) and 

target ship (TS) remain in close proximity along nearly 

parallel headings. The recalculated CRI more accurately 

reflects the actual navigational context and highlights a 

substantial risk that requires action. The refinement 

demonstrates F-AHP’s capacity to correct underestimations 

inherent in AHP, particularly in cases involving ambiguous 

trajectory interpretations. The consistency between 

numerical results and visual evidence reinforces the 

advantage of F-AHP in providing operationally meaningful 

classifications. This encounter confirms fuzzy logic 

enhances reliability and precision in maritime risk 

assessment. 

Fig. 10 shows a head-on encounter scenario. In this case, 

AHP assigns a CRI of 0.14 (Attention), based on DCPA = 

3.1823, TCPA = 0.5921, and Dr = 3.6. Although the values 

indicate a moderate level of risk, AHP fails to accurately 

capture the high-risk trajectory observed in the scenario. F-

AHP refines these parameters to DCPA = 1.3 (Collision), 

TCPA = 11.5 (Collision), and Dr = 3.0 (Threat), 

recalculating CRI to 0.36 (Threat). The refinement is in line 

with COLREGS Rule 14, which requires early and decisive 

action in head-on situations. By addressing the ambiguity 

inherent in AHP, F-AHP provides clearer and more 

actionable guidance to navigators, facilitating timely 

compliance with COLREGS Rules 14, 15, and 16. 

Fig. 6 shows an overtaking scenario governed by 

COLREGS Rule 13. The rule specifies that the overtaking 

ship should keep clear of the other. Specifically, AHP 

assigns CRI of 0.14 (Attention), based on parameter values 

of DCPA = 1.6446, TCPA = -0.4459, and Dr = 3.0323. This 

classification underestimates collision risk, as the negative 

TCPA fails to adequately show the proximity of the 

overtaking ship. In comparison, F-AHP refines these 

parameters to DCPA = 1.3 (Collision), TCPA = 11.5 

(Collision), and Dr = 3.0 (Threat), recalculating CRI to 0.36 

(Threat). The reclassification is more accurate with the 

overtaking dynamics shown in Fig. 6, enabling navigators to 

take early and decisive actions to avoid potential collision. 

 

 
Fig. 6.  Simulation of ship encounter 6. 

IAENG International Journal of Computer Science

Volume 52, Issue 9, September 2025, Pages 3348-3362

 
______________________________________________________________________________________ 



 

To evaluate the significance of F-AHP refinements in 

real-time maritime navigation, a discrete event simulation 

(DES) was performed. The results, presented in Fig. 11, 

demonstrate the effectiveness of F-AHP in computing the 

Collision Risk Index (CRI) during simulated ship 

movements. The simulation models ship trajectories under 

constant speed and heading, allowing their relative positions 

to evolve dynamically. This approach aligns with prior 

research in maritime traffic risk assessment [32], where real-

time trajectory updates are used to assess collision risks 

more accurately. Furthermore, the simulation provides 

temporal insights into how CRI values fluctuate as ships 

approach or diverge, highlighting periods of elevated risk. 

By continuously monitoring CRI in a dynamic setting, the 

simulation reveals the added precision of F-AHP in 

capturing transitional risk states that conventional methods 

might overlook. This dynamic evaluation enhances decision-

making in navigational control systems under uncertainty. 

Based on the results, the initial Dr between ships is 2.75 

nautical miles (nm), with OS traveling at 12.7 knots and TS 

at 12 knots, both on a heading of 199°. As the simulation 

progresses, an overtaking situation occurs, governed by 

COLREGS Rule 13. This rule mandates that the overtaking 

vessel must keep clear of ship being overtaken. In the initial 

condition, AHP calculates CRI of 0.178 (Attention), while 

F-AHP refines CRI to 0.361 (Threat). This difference 

illustrates the limitations of AHP’s rigid threshold approach, 

which may underestimate early-stage risks in overtaking 

scenarios. F-AHP, using fuzzy membership functions, 

identifies elevated risk earlier, enabling timely navigational 

responses such as speed adjustments or course alterations. 

Its enhanced sensitivity supports proactive collision 

avoidance aligned with COLREGS. The dynamic 

performance of F-AHP is further demonstrated in Fig. 12, 

where CRI values over time confirm its superiority in 

tracking and responding to evolving encounter conditions 

compared to conventional AHP-based evaluations. 

The graph in Fig. 12 compares CRI values calculated 

using AHP and F-AHP over multiple time steps. CRI values 

for AHP show fluctuations, indicating inconsistency in risk 

assessment. In comparison, CRI values for F-AHP remain 

constant at 0.361, suggesting a stable and refined risk 

assessment method. This consistency in F-AHP shows the 

ability to provide reliable and early risk detection without 

abrupt changes in classification. To statistically validate the 

significance of F-AHP in CRI calculation, a paired t-test 

was conducted between CRI values obtained using AHP and 

F-AHP. The results showed a t-statistic of 5.1315 and a p-

value of 0.0068, indicating a statistically significant 

difference between the two methods. Since the p-value is 

well below the standard threshold of 0.05, F-AHP is 

considered to provide significantly different and more stable 

CRI assessments compared to AHP [33]. This result 

confirms that F-AHP enhances sensitivity in collision risk 

assessment, ensuring early identification of potential risk 

more consistently. 

The explanation provided by Table VIII as well as Fig. 6, 

Fig. 7, Fig. 8, Fig. 9, and Fig. 10 show that F-AHP enhanced 

capability can refine parameter values near linguistic 

thresholds. This shows that CRI values accurately reflect 

real-world ship dynamics and risk levels. Table VIII 

underscores the recalibration of ambiguous AHP parameters 

such as DCPA, TCPA, and Dr into definitive linguistic 

categories like Collision and Threat, effectively resolving 

misclassifications inherent in AHP. Fig. 7 visually validates 

the refinements, showing how F-AHP correlates ambiguous 

values with precise risk categories. These improvements are 

further substantiated by Fig. 6, Fig. 8, Fig. 9, and Fig. 10, 

where recalibrated CRI values consistently correlate with 

observed ship dynamics across crossing, head-on, and 

overtaking scenarios. For example, in crossing encounters 

(Fig. 8 and Fig. 9), F-AHP accurately identifies elevated risk 

levels that AHP underestimates. Head-on and overtaking 

encounters in Fig. 10 and Fig. 6 show F-AHP’s superior 

sensitivity and accuracy in detecting and classifying high-

risk situations, fully complying with COLREGS Rules 13, 

14, 15, and 16. To extend the analysis beyond static cases, 

Fig. 11 and Fig. 12 introduce a discrete event simulation to 

evaluate CRI variations over time.  

The results indicate that despite the fluctuation of AHP 

CRI, F-AHP maintains consistent and stable values, 

showing a more reliable risk assessment. The statistical 

analysis using a t-test (t = 5.1315, p = 0.0068) confirms the 

significant difference between AHP and F-AHP. This 

confirms that F-AHP provides statistically valid 

improvements in collision risk evaluation. The practical 

implications of these results are substantial. The ability of F-

AHP to provide consistent and sensitive CRI values 

suggests its potential integration into real-time vessel traffic 

management systems (VTMS) and autonomous navigation 

platforms. Compared to conventional AHP-based models, 

which are limited in handling parameter ambiguities, F-AHP 

offers a more robust framework for early-warning systems. 

 

V. CONCLUSION 

In conclusion, this study showed that F-AHP enhanced 

maritime collision risk assessment by refining key        

parameters such as DCPA, TCPA, and Dr, to improve the 

sensitivity and accuracy of CRI calculations. Comparative 

analyses between AHP and F-AHP, as presented in Table 

VIII, Fig. 6, Fig. 7, Fig. 8, Fig. 9, Fig. 10, showed that F-

AHP significantly reduced misclassification issues in 

conventional AHP-based models. The results from Fig. 11 

and Fig. 12, supported by discrete event simulations, further 

confirmed that F-AHP provided stable and higher CRI 

values in critical scenarios, ensuring earlier and more 

accurate risk detection. Statistical validation using a paired 

t-test (t = 5.1315, p = 0.0068) confirmed the significant 

difference between AHP and F-AHP. This showed the role 

of F-AHP in improving maritime safety by reducing 

classification ambiguity and enhancing risk detection 

capabilities. 

The results indicated that integrating F-AHP into 

maritime decision-support systems could enhance real-time 

collision avoidance in complex environments. The method 

aligns with COLREGS and provides early, actionable 

insights for navigators. Further studies are encouraged to 

assess F-AHP scalability in congested waters and its 

integration with autonomous navigation systems and AI-

based predictive risk assessment frameworks. 
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APPENDIX 

 

 

 

 

  
Fig. 7.  Comparison of parameter values between AHP and F-AHP. 

TABLE VIII A.1 
COMPARISON RESULTS OF CRI VALUES  

Encounter 

Number 
AHP F-AHP 

 DCPA TCPA Dr CRI DCPA TCPA Dr CRI 

1 
0.59 

(C) 

-0.34 

(A) 
2.75 (A) 

0.178 

(A) 

1.3 

(C) 

11.5 

(C) 

3 

(T) 

0.361 

(T) 

2 
-1.7 

(A) 

0.53 

(C) 
4.44 (A) 

0.105 

(A) 

1.3 

(C) 

11.5 

(C) 

3 

(T) 

0.361 

(T) 

3 17.86 (A) 
0.95 
(C) 

22.7 (A) 
0.037 

(A) 

3.9 
(T) 

11.5 
(C) 

3 
(T) 

0.197 

(A) 

4 
5.1 

(A) 

-1.46 

(A) 
12.3 (A) 

0.091 

(A) 

3.9 

(T) 

11.5 

(C) 

3 

(T) 

0.197 

(A) 

5 
-3.01 

(A) 

0.19 

(A) 
3.18 (A) 

0.11 

(A) 

1.3 

(T) 

11.5 

(C) 

3 

(T) 

0.361 

(T) 

6 
1.64 
(A) 

-0.45 
(A) 

3.03 (A) 
0.14 

(A) 

1.3 
(T) 

11.5 
(C) 

3 
(T) 

0.361 

(T) 
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Fig. 10.  Simulation of ship encounter 5. 

 
Fig. 9.  Simulation of ship encounter 2. 

 
Fig. 8.  Simulation of ship encounter 1. 
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Fig. 12.  Comparison of CRI values between F-AHP and AHP on simulation of ships movement. 

 
Fig. 11.  DES-based simulation showing evolving CRI values under overtaking scenario. 
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