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Abstract—To address the limitations of existing Unmanned
Aerial Vehicle (UAV) target detection models in terms of
computational resource constraints and poor performance on
small object detection, this paper proposes a lightweight im-
proved UAV detection algorithm named UL-Yolo (Ultralight-
YOLO). A novel structure DC2f (Depthwise Convolutional C2f)
is designed using lightweight depthwise separable convolution
(DepthSepConv), which significantly reduces model parameters
while enhancing feature extraction capabilities. In addition,
the lightweight backbone PP-L.CNet (PaddlePaddle Lightweight
and Compact Network) is employed, leveraging lightweight
convolutions and pyramid pooling to maintain high detection
accuracy while reducing computational overhead, making the
model more suitable for low-resource and real-time inference
scenarios. Furthermore, MPDIoU (Minimum Point Distance
Intersection over Union) is adopted as the bounding box
regression loss function, which optimizes the matching between
predicted and ground-truth boxes through minimum point dis-
tance, thereby improving detection performance and enhancing
training stability. Experimental results demonstrate that UL-
Yolo achieves a 2.7% improvement in mAP@0.5 on the Det-Fly
dataset compared to YOLOVS, while reducing parameter count
by 75.8%. Although the FPS slightly decreases from 99.7 to 98.7,
the model still maintains a high inference speed, indicating a
well-balanced trade-off between computational complexity and
inference efficiency.

Index Terms—Unmanned Aerial Vehicle, Object detection,
YOLOVS, PP-LCNet, DPConv, MPDIOU.

I. INTRODUCTION

N recent years, unmanned aerial vehicles (UAVs) have

demonstrated tremendous application potential in civil,
agricultural [1], military, and scientific research fields due
to their compact size, high maneuverability, and ease of
operation. They play a critical role in various scenarios,
including ground target detection and tracking, power line
inspection in harsh environments, atmospheric monitoring,
and disaster response [2]-[4]. Additionally, the detection
of other airborne UAVs holds significant importance for
applications such as collision avoidance [5], detection and
countermeasures against enemy drones in combat scenarios,
and coordinated multi-drone operations [6]. However, low-
altitude, slow-speed, and small-sized UAVs pose substantial
detection challenges due to their low flight altitude, slow
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velocity, and compact dimensions. The issue of "unautho-
rized flights" further exacerbates threats to public safety
and national airspace security. Therefore, achieving rapid
and accurate UAV identification is of paramount strategic
importance for safeguarding civilian security, maintaining
social stability, and protecting national interests. This makes
UAV target detection technology a fundamental and essential
component in building an effective defense system. Tra-
ditional vision-based drone detection [7], [8] methods are
typically divided into two stages: feature extraction and clas-
sification. Several traditional feature extraction methods are
widely employed in image processing, including Histogram
of Oriented Gradients (HOG) and Scale-Invariant Feature
Transform (SIFT). These extracted features are subsequently
fed into classification systems utilizing machine learning
approaches such as Support Vector Machines (SVM) [9].
Although visual detection can effectively identify targets
based on shape, color, and texture information, it is highly
susceptible to weather conditions and obstructions. Overall,
these five types of technologies each have their own ad-
vantages and limitations, demonstrating different strengths
in specific scenarios. However, conventional drone detection
and recognition methods mainly rely on handcrafted feature
extraction [10], which is time-consuming, labor-intensive,
and incapable of handling all complex situations effectively.

With the rapid development of deep learning [11], drone
detection and identification technologies based on deep learn-
ing have achieved significant progress. A key advantage of
deep learning is its ability to autonomously learn features
without relying on manual extraction, greatly enhancing the
accuracy and efficiency of drone detection. Liu Jiaming et
al. [12] proposed a drone recognition method using deep
convolutional neural networks to address low recognition ac-
curacy. Their approach employs the SSD algorithm for drone
target detection in video images, utilizes VGG16 for feature
extraction and classification, and applies the BP algorithm to
optimize network robustness. Zhang et al. [13] investigated
air-to-air visual detection of micro-drones (UAVs) using
monocular cameras. They introduced Det-Fly, a novel dataset
covering diverse complex scenarios, and evaluated eight
representative deep learning algorithms on this benchmark.
For drone defense applications, Li et al. [14] improved the
YOLOVS8 algorithm by incorporating multi-detection heads
and an attention mechanism (CBAM), significantly enhanc-
ing small-object detection precision in complex environ-
ments. Similarly, Cheng Q. [15] optimized YOLOvV5 for
lightweight detection by developing the CF2-MC feature ex-
traction network and an MG fusion module, achieving higher
accuracy with reduced complexity.Recent architectural inno-
vations include Wang et al’s [16] sensory wild attention
module that replaces conventional convolutions, improving
local-global feature integration. Feng Yunsong et al. [17]
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proposed EDU-YOLO (based on YOLOv5s) with a Shuf-
fleNetV2 backbone, Coordinate Attention, and Bidirectional
FPN, while Zhao Yongjuan et al. [18] enhanced YOLOVS
via Edge-Sensitive Cross-Stage Fusion (C2f-ESCFFM) and
Context-Aware Feature Pyramid (CAHS-FPN). Huang Min
et al. [19] further advanced YOLOv8 with Shadow Convo-
lution, EMA attention, and DCNvV2 in their EDGS-YOLOV8
model. These innovations collectively improve UAV detec-
tion accuracy while maintaining model efficiency.

Drone-to-drone object detection faces two main chal-
lenges: First, the onboard computing resources of source
drones are limited, while conventional deep learning-based
detection algorithms typically require substantial computa-
tional power. Second, in aerial images captured by drones,
the target drone occupies only about 0.03% of the image
area. The diversity in scale caused by variations in shooting
distance and angle, along with complex background inter-
ference, significantly increases detection difficulty. Although
existing methods have made progress in improving object
detection performance, they still suffer from high model
complexity, large memory consumption, and poor perfor-
mance in detecting small objects—making them difficult
to deploy on edge devices. Furthermore, these models are
prone to false detections or missed detections in complex
environments. To address the issues of low detection accu-
racy for small objects under limited resources and complex
conditions, this paper proposes a lightweight UL-YOLO
(Ultralight-YOLO) model that enhances the feature extrac-
tion capability for small drone targets with extremely low
parameter count. The model optimizes feature extraction
efficiency, enhances small object detection, and maximizes
computational resource utilization. By constructing a long-
range pixel correlation network alongside spatial information
enhancement and an edge-aware mechanism, it minimizes
feature degradation, reduces missed detections, and elimi-
nates redundant detection errors. As a result, it achieves high-
precision drone target recognition even in resource-limited
scenarios. The key contributions of this work include:

(1) This paper proposes a novel DC2f (Depthwise Convo-
lutional C2f) structure that replaces the original C2f module
in the Neck with DepthSepConv, a lightweight convolutional
operation. This innovation not only enhances the network’s
feature extraction capability but also significantly reduces
model parameters, resulting in a more lightweight and com-
putationally efficient architecture.

(2) The model adopts the lightweight network PP-LCNet
(PaddlePaddle Lightweight and Compact Network) as the
backbone. PP-LCNet combines lightweight convolutions and
pyramid pooling techniques, and utilizes the MKLDNN(Intel
Math Kernel Library for Deep Neural Networks) acceleration
strategy to improve feature extraction accuracy while main-
taining efficient inference.

(3) MPDIoU (Minimum Point Distance Intersection over
Union) is an extension of DIoU that replaces CIOU. It uti-
lizes the minimum point distance metric to measure the sim-
ilarity between predicted and ground-truth bounding boxes
by directly minimizing the distance between their top-left
and bottom-right corners. This approach optimizes bounding
box regression, enhances object detection performance, and
improves training stability.

II. IMPROVED MODEL

YOLOvS [20] is an efficient object detection network
based on improvements to the YOLO [21] series. Its ar-
chitecture mainly consists of three parts: the backbone, the
neck, and the detection head. The backbone is responsible
for extracting features from the input image. YOLOVS uses a
lightweight network architecture, such as CSPDarknet (Cross
Stage Partial Darknet) [22] or other efficient convolutional
networks, to process low-level features of the image and
pass them on to the upper layers for further processing.
The feature extraction module uses deep convolutional neural
networks (CNNs) to extract high-level features from the
image. The neck network is responsible for feature fusion
and constructing a feature pyramid, aimed at enhancing the
representation of multi-scale features. The detection head
generates the final detection results, including bounding box
regression, class prediction, and object confidence.

To improve detection efficiency on edge devices, we pro-
pose several enhancements to YOLOVS8n, aiming to increase
target detection accuracy while reducing the model size.
The network structure of our proposed method is illustrated
in Figure 1. The architecture employs PP-LCNet as the
backbone network, followed by a DC2f component designed
to replace the original C2f module. Additionally, we integrate
DepthSepConv into the DC2f component. By replacing tra-
ditional convolutions with DPConv, we significantly reduce
computational overhead, resulting in a more compact and
efficient model. These modifications collectively improve
detection accuracy and robustness.

Since the target drones occupy only 0.03% of the image
area, we introduced the P2 small-object detection head to
mitigate accuracy loss from the lightweight design. Posi-
tioned at the shallowest level of the feature pyramid, P2
captures fine-grained features and improves sensitivity to
small targets. To further optimize efficiency, we removed the
PS5 large-object detection head. While P5 excels at detecting
large-scale objects, its lower resolution struggles to preserve
small-target details. Eliminating P5 reduces computational
redundancy, avoids over-optimization for large objects, and
enhances both accuracy and efficiency for small-object de-
tection.

A. Backbone

PP-LCNet (PaddlePaddle Lightweight and Compact Net-
work) is a lightweight convolutional neural network devel-
oped by Baidu’s PaddlePaddle team to address the compu-
tational constraints of deep learning models on edge devices
[23]. By incorporating efficient architectural components like
depthwise separable convolutions and bottleneck layers, it
achieves significant reductions in both model parameters and
computational complexity while preserving high accuracy
and real-time performance. As illustrated in Figure 2, the
network mainly consists of stacked depthwise separable
convolutional (DepthSepConv) blocks.

DepthSepConv [24] decomposes the standard convolution
operation into two sequential steps: depthwise convolution
(DW) and pointwise convolution (PW). The depthwise con-
volution applies independent convolutional filters to each
input channel, while the pointwise convolution employs
Ix1 kernels to combine channel-wise outputs and generate

Volume 52, Issue 9, September 2025, Pages 3363-3369



TAENG International Journal of Computer Science

Backbone

Conv[3,2]

Neck

Head

Conv

"

~ De2f | -Jl Detect(P4)

Fig. 1. UL-YOLO Structure Diagram

new feature maps. This decomposition dramatically reduces
both parameter count and computational complexity, thereby
enhancing overall efficiency.

The depthwise convolution operation applies separate spa-
tial filtering to individual input channels while preserving
channel independence. This process can be mathematically
expressed as:

k k
DW =" "Wim,n)  Xc(i+m,j+n) (1)

m=1n=1
The pointwise convolution performs a linear combination
between channels using 1 x 1 convolution kernels:

C
PW = Wu(c) Xe(i, ) )
c=1

By combining depthwise and pointwise convolutions, the
final output of the depthwise separable convolution is:

Y = PW(DW (X)) 3)

The Squeeze-and-Excitation (SE) module [25] explicitly
models inter-channel relationships, allowing the network to
adaptively amplify informative features while suppressing
less useful ones. In PP-LCNet, to maintain an optimal
accuracy-speed tradeoff, SE modules are strategically placed
only in the final network stages. Specifically, they are in-
corporated exclusively in the last two layers of depthwise
separable convolution blocks containing 5x5 kernels. This
design enhances model accuracy without compromising in-
ference efficiency.

B. DC2f module

To further enhance the model’s multi-scale feature extrac-
tion capabilities while reducing computational complexity,
we propose the DC2f module. This module is an opti-
mized improvement based on the C2f structure. Specifi-
cally, the DC2f module employs a channel-wise partitioning
strategy, dividing the input feature map into two parallel
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Fig. 2. PP-LCNet network backbone structure. DepthSepConv means
depth-wise separable convolutions, DW means depth-wise convolution, PW
means point-wise convolution, GAP means Global Average Pooling.

processing pathways: one branch retains the original in-
formation directly, while the other is processed through
multiple DC2f_Bottleneck modules composed of depthwise
separable convolutions. As shown in Figure 3 This design
not only preserves the integrity of the original features
but also reduces computational load through lightweight
convolution operations. Subsequently, the feature maps from
both pathways are concatenated along the channel dimension
and fused using a 1x1 convolution layer, further compressing
the channel count and reducing redundant information.
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Fig. 3.

Structure diagram of the DC2f module

The DC2f_Bottleneck module applies two depthwise sepa-
rable convolutions (DepthSepConv) sequentially to the input
feature x:

y = Ya(Yi(z)) “4)

The complete DC2f module can be divided into the
following steps:

Input Processing:
The input feature x is first passed through a 1 x 1 convo-
lutional layer convy, and then split into two parts: y; and
yo:!

[y1,y2] = Split(Convy(x)) 5)

Application of Bottleneck Modules:
The second part y, is sequentially passed through n
DC2f_Bottleneck modules to produce a series of features:

y3 = Bottleneck(yz)

y4 = Bottleneck(ys)
. (6)

Ynto = Bottleneck(Yn+1)

Feature Concatenation:
All the generated features are concatenated along the channel
dimension together with y;:

fconcat = Concat(yh fla ey fn) (7)

Output Processing:
The concatenated feature map is passed through a final 1 x 1
convolutional layer convs to generate the output:

®)

Yout = ConUQ(fconcat)

C. MPDIOU loss function

To enhance detection accuracy, we propose a novel loss
function named MPDIoU (Minimum Point Distance IoU)
[26], which improves upon the traditional IoU metric. Unlike
standard IoU that solely considers the overlap area between
predicted and ground-truth boxes — potentially causing mis-
judgment by ignoring their positional displacement — MP-
DIoU incorporates the minimum point distance between their
top-left and bottom-right corners for more precise similarity
measurement. This approach comprehensively accounts for
overlap coverage, center point distance, and aspect ratio
discrepancy while maintaining computational efficiency, ul-
timately boosting object detection accuracy.

MPDIoU addresses this limitation by introducing Partial
Distance (PD), which quantifies the displacement between
bounding boxes to measure their dissimilarity. By replacing
CIOU with MPDIoU, we enhance small drone detection
accuracy and stabilize the training process. MPDIoU signifi-
cantly boosts model performance in complex object detection
scenarios by incorporating relative geometric relationships
between boxes. The computation of MPDIoU involves the
following steps:

1. Compute the IoU between the two bounding boxes to
obtain the IoU value.

2. Calculate the Partial Distance (PD) between the two
boxes.

3. Divide the PD value by the IoU value to obtain the
MPDIoU score.

MPDIoU provides a more accurate assessment of object
detection algorithm performance, especially for detecting
distant objects. It has been widely used in object detection
competitions and has become an important evaluation metric
for object detection algorithms.

The inference formula for MPDIoU is defined as follows:

df = (" = 2%)? + (" = of)? ©)
di = (" — 25)° + (18" — 45)° (10)
Let (9",49%) and (23',y3") define the top-left and bottom-
right vertices of the ground truth box, while (a:de,yde)
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Fig. 4. Schematic diagram of the MPDIoU parameter structure

and (x’;’”d,yé”d) specify the corresponding corners of the
predicted bounding box.
ANB d? d3
MPDIoU = — — 11
oU AUB  w?+h? w?+h? (b
‘CMPDIOU =1 — MPDIoU (12)

III. EXPERIMENTS

A. Experimental Condition Setting

The hardware setup consists of an AMD Ryzen 7 7735H
CPU with 8 cores and 16 threads, running at a base clock
speed of 3.20 GHz, 16GB of RAM, and an NVIDIA GeForce
RTX 4060 GPU with 8GB of VRAM. The experimental
setup utilizes Python 3.10.15 along with PyTorch 2.0.1 and
Torchvision 0.15.2 as the deep learning platform. Model
training is implemented based on officially released pre-
trained weights.

TABLE I
TRAINING PARAMETER CONFIGURATIONS

Parameters Setup
Epochs 300
Batch 8
Optimizer SGD
NMS IoU 0.7
Base Learning Rate 0.01
End Learning Rate 0.01
Momentum 0.937
Weight-Decay 0.0005
Image Translation 0.1
Image Scale 0.5
Mosaic 1

Close Mosaic Last 10 epochs

B. Experiment Dataset

This paper employs the Det-Fly dataset, comprising over
13,000 in-flight drone images captured by a chase drone.
Compared to existing datasets, Det-Fly offers superior com-
prehensiveness by encompassing diverse background scenes,
viewing angles, relative distances, flight altitudes, and light-
ing conditions — resulting in both high complexity and
diversity while closely mimicking real-world operational
scenarios. The dataset is split into 80% for training, 10%
for validation, and 10% for testing. All images are nor-
malized to 640x640 resolution, striking an optimal balance

between real-time processing and detection accuracy. This
standardized resolution enables efficient edge-device deploy-
ment while maintaining critical visual features for reliable
detection.

C. Ablation Studies

To verify the efficacy of our method, we conduct sys-
tematic ablation experiments to analyze each component’s
contribution. The evaluation results, based on different met-
rics (mAP50, mAP95, GFLOPS, Parameters, and FPS),
are shown in Table II. The baseline model (A), designed
backbone (N), addition of small object detection head P2
and removal of P5 (P), replacement of loss function (I),
and construction of DC2f module replacing C2f (C) are
evaluated.

The table systematically compares five model configura-
tions: the baseline (A), and its progressive enhancements
(A+N, A+N+P, A+N+P+I, and A+N+P+I+C), quantitatively
analyzing the metric variations across these versions. This
approach ensures a thorough assessment of model effective-
ness. Furthermore, the mAP@0.5 curve provides intuitive
visualization of algorithmic improvements.

TABLE II
ABLATION EXPERIMENT

Model Map@0.5 Map@0.5:0.95 Params/M GFLOPs FPS(Tasks/s)
A 0.883 0.543 2.385 6.1 99.7
A+N 0.853 0.489 1.260 35 104.2
A+N+P 0.888 0.536 0.681 7.1 102.6
A+N+P+I 0.900 0.553 0.681 7.1 102.1
A+N+P+I +C  0.907 0.545 0.578 6.5 98.7
10 Ablation Experiment mAP@0.5
0.84
w0 0.64
o
A !
o i ;I '0.925
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Fig. 5. mAP@0.5 curve

Through a series of ablation experiments, we systemat-
ically evaluated the impact of different improvements on
the model’s performance. The baseline model was opti-
mized through several modifications: adjusting the backbone,
adding the small object detection head P2 while removing
P5, replacing the loss function, and substituting the C2f
module with DC2f, resulting in the final improved model.
The experimental results indicate that different modules
have varying effects on model performance and resource
consumption. The baseline model A performs well but has a
high parameter count and computational complexity. After
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adjusting the backbone, the model’s parameter count and
computational complexity were significantly reduced, and
inference speed improved, although with a slight perfor-
mance decrease. The addition of the small object detection
head module led to improved performance and parameter
efficiency, but increased computational complexity. Replac-
ing C2f with the DC2f module further compressed the
model’s parameters and computational complexity, making
the model more lightweight. The improved model achieved
an mAP@0.5 of 0.907, representing a 2.7% improvement
over the baseline model, while reducing the parameter count
by 75.8% and decreasing the model size by 3.3 times, effec-
tively lowering storage and computational costs. In terms of
inference speed, although FPS dropped from 99.7 to 98.7, it
remained at a high level, indicating that the improved model
achieves a good balance between computational complexity
and speed. Additionally, replacing the original CloU with the
MPDIoU loss function further enhanced detection accuracy.
Overall, the final improved model strikes a good balance
between small object detection, model lightweighting, and
computational efficiency, making it suitable for resource-
constrained applications demanding high detection accuracy,
such as drone detection and embedded device deployments.

To validate the performance of the UL-YOLO algo-
rithm in achieving model lightweighting and small ob-
ject detection, we conducted comparative experiments
with the Faster R-CNN (a general object detection al-
gorithm) and seven advanced YOLO-series algorithms
(including YOLOvS, YOLOvVS8, Shufflenetv2-YOLOV8n,
GhostNet-YOLOv8n, MobileNetV3-YOLOv8n, YOLOvVIO0,
and YOLOV11). These state-of-the-art algorithms were com-
pared against the proposed UL-YOLO algorithm. All models
were trained and tested on the Det-Fly dataset, and the
comparison results in terms of parameter count, FPS, and
GFLOPs are shown in Table III.

TABLE III
COMPARATIVE EXPERIMENT

Model Map@0.5 Map@0.5:0.95 Params/M GFLOPs FPS (Tasks/s)
Faster R-CNN  0.656 0.356 54.534  129.7 8.1
YOLOVS5n  0.921 0.566 1.761 4.1 101.2
YOLOVSn  0.883 0.543 2.385 6.1 99.7
YOLOVS8n*  0.831 0.450 1.243 34 89.3
YOLOVS8n*  0.847 0.507 2.883 5.4 49.8
YOLOVS8n*  0.821 0.463 1.884 42 57.3
YOLOV1On  0.876 0.515 2.707 8.4 92.4
YOLOV1In  0.864 0.535 2.590 6.3 91.6
UL-YOLO  0.907 0.545 0.578 6.5 98.7

YOLOv8n* ranks as follows: Shufflenetv2-YOLOv&n,
MobileNetV3-YOLOvS8n.

GhostNet-YOLOvVS8n,

As shown in the table, the UL-YOLO model achieves
an excellent balance between lightweight design and detec-
tion performance, demonstrating significant practical value.
It attains an mAP@0.5 of 0.907, ranking second only
to YOLOvVS5n. In terms of lightweight design, UL-YOLO
contains merely 577,887 parameters, accounting for 32.8%
of YOLOv5n’s and 24.2% of YOLOv8n’s. Compared to
YOLOv8n and YOLOVSn, it reduces the parameter count
by 69.9% and 62.1%, respectively, substantially decreasing
storage requirements and computational complexity. This
lightweight architecture makes UL-YOLO an ideal solution
for resource-constrained environments, particularly suited for

embedded devices and edge computing. Additionally, UL-
YOLO exhibits outstanding computational efficiency, achiev-
ing 98.7 FPS. Although marginally lower than YOLOv5n and
YOLOVSn, it still satisfies real-time processing demands. In
applications such as drone-based air-to-air target detection
and tracking, it can rapidly process targets amid complex
backgrounds. Overall, UL-YOLO achieves an optimal bal-
ance among high detection accuracy, model lightweighting,
and computational efficiency.

D. Visualization Analysis

(a) mountain

(d) urban

Fig. 6. Test results in different scenarios

The test results demonstrate that under different back-
ground conditions, our proposed UL-YOLO model surpasses
the baseline model in partial performance metrics. In certain
test images, the baseline model exhibits significant issues
with both false negatives and false positives, including
misclassifying highlighted background regions as targets or
failing to detect small distant targets. By incorporating a
lightweight feature extraction network and an enhanced loss
function, our model effectively addresses these limitations,
exhibiting remarkable robustness and detection accuracy.
These experimental results and visual analyses collectively
validate the superior capability of our proposed model in
handling small target detection and complex background
interference scenarios.
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IV. CONCLUSIONS AND PROSPECTS

Vision-based air-to-air target detection for drones shows
significant potential in military, security, and logistics ap-
plications. This paper presents a lightweight air-to-air drone
detection method specifically optimized for the constrained
computational resources of drone platforms. Experimental
results demonstrate that the proposed UltraL-YOLO algo-
rithm achieves excellent performance across multiple key
metrics: compared with conventional methods, it reduces
model parameters by 75.8% and compresses model size to
69.9% of the original, substantially decreasing computational
and storage requirements. Remarkably, the model maintains
superior detection accuracy, particularly in processing com-
plex backgrounds and identifying small targets, rendering
it highly suitable for edge computing devices including
handheld terminals and low-power drones.

Future research will focus on assessing the algorithm’s
performance on video datasets and further optimizing its in-
tegration with target tracking algorithms [27]. The proposed
framework will employ UL-YOLO for initial drone target
detection and location prediction, subsequently feeding these
results into a tracking algorithm. By incorporating advanced
tracking methodologies, the system is designed to achieve
efficient and precise air-to-air target tracking. In cases where
targets are lost due to occlusion or illumination variations, the
detection module will automatically reactivate when targets
reappear within the field of view, enabling smooth detection-
to-tracking transitions. This integrated approach not only im-
proves tracking stability and robustness but also establishes a
foundation for drone interaction and cooperative operations
in complex dynamic environments, thereby extending the
practical applications and value of the proposed algorithm.
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