
 

  

Abstract—With the ongoing persistence and global spread of 

the COVID-19 pandemic, numerous viral mutations have 

emerged, alongside the transmission of other infectious diseases, 

such as mpox, primarily via respiratory droplets. As a result, 

automated systems for mask-wearing detection have become 

essential for monitoring individuals in public spaces. Currently, 

deep learning-based object detection technologies dominate the 

field of mask detection systems. However, these methods often 

rely on deep network architectures, leading to slow detection 

speeds. Additionally, conventional large-scale models are 

unsuitable for lightweight deployment, rendering them 

inadequate for meeting specific commercial requirements. To 

address these challenges, we propose a mask detection method 

that integrates the YOLO object detection model with 

knowledge distillation. This approach effectively and accurately 

determines whether individuals are wearing masks while 

enhancing detection speed and enabling lightweight deployment 

for targeted commercial applications. By refining the object 

detection framework, the proposed method improves mask 

detection accuracy and model performance without increasing 

model complexity. Experimental results show that the enhanced 

student network, following the distillation process, achieves a 

2.56% higher accuracy compared to the more complex 

YOLOv5x network. Furthermore, it surpasses state-of-the-art 

object detection algorithms in both speed and accuracy in 

real-world applications. These findings underscore the 

feasibility of the proposed method and its potential for 

widespread practical use across diverse conditions. 

 
Index Terms—Mask-wearing detection, knowledge 

distillation, performance improvement， model compression 

I. INTRODUCTION 

ARGET recognition and location are the main issues in 

computer vision. Image segmentation, target tracking, 

target behavior analysis, and so on are based on target image 

detection. Due to advancements in deep learning technology, the 

target detection algorithm has achieved a notable breakthrough. 

How to further improve the accuracy of target detection and the 

overall performance of the model has become an important issue 

in the current target detection research. Guan et al. [1] suggested 

that attention should be paid to further improving detection 

efficiency among existing methods. In the existing studies, in 
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the context of the widespread transmission of COVID-19 and 

other airborne infectious diseases, there are numerous examples 

of using mathematical models and computer neural networks to 

detect and solve problems[2][3][4]. This also provides certain 

assistance for our research. 

The outbreak of the prevalent diseases has brought mask 

detection to the forefront of research in computer vision. 

Nevertheless, deploying deep learning-based mask detection 

systems in industrial settings presents two primary challenges: 

(1) Large-scale mask datasets, in addition to data augmentation 

techniques, are essential for effective training. (2) Achieving 

robust, real-time, and high-precision models remains a 

formidable task. 

Existing mask detection systems often fail to deliver the 

desired speed and performance, which significantly affects user 

experience. In recent years, researchers have proposed various 

solutions for mask detection. For example, Li [5] introduced a 

mask detection algorithm based on YOLOv3 with the 

integration of a SENET attention mechanism, while Fan [6] 

developed a detection system using YOLO5-Face to determine 

mask usage. Unfortunately, these efforts tend to focus primarily 

on improving accuracy, neglecting the equally critical need to 

enhance both accuracy and detection speed simultaneously.  

To address these challenges, we propose a mask detection 

system based on the first-stage object detector YOLOv5, 

enhanced using a knowledge distillation framework. A key 

innovation of our approach lies in leveraging the knowledge 

distillation process, where the teacher network evaluates the 

complexity of each sample, enabling the student network to 

engage in adaptive learning tailored to the specific 

characteristics of the data. Experimental results demonstrate that 

the student network, optimized through knowledge distillation, 

significantly improves the average accuracy of the detection 

model without compromising detection speed or with only 

minimal accuracy loss. As a result, the network derived from our 

proposed method outperforms existing solutions, making it 

well-suited for industrial deployment. The primary 

contributions of this study encompass: 

1. We propose an enhanced knowledge distillation technique 

that improves mask detection accuracy without adding 

additional parameters or increasing detection time. 

2. We develop a mask detection method based on the YOLO 

object detection model and our novel knowledge distillation 

framework. This approach achieves improved average precision 

(mAP@.5 and mAP@.5:.95), meeting the practical application 

requirements for mask detection systems. 
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II. RELATED WORK 

A. Knowledge distillation 

The traditional target detection algorithm is typically 

segmented into three steps: (1) Candidate region selection: the 

sliding window algorithm delineates potential target regions on 

the input image by iteratively moving windows of varying sizes 

to pinpoint the target initially. (2) Feature extraction: use local 

binary pattern, directional gradient histogram, and other 

algorithms to extract the features of candidate regions. (3) 

Classification: Classify the extracted image features through 

support vector machine (SVM), AdaBoost, and other 

algorithms.  

However, in recent years, target detection networks have 

grown increasingly complex, with a substantial increase in 

computational parameters. The excessive number of network 

parameters leads to significant memory consumption, high 

computational costs, and considerable inference latency. These 

challenges make deploying trained models on mobile devices 

particularly difficult. To mitigate the issues of increased latency 

and heavy computational demands, model compression 

techniques, such as knowledge distillation, low-rank 

decomposition, and network pruning [7] are widely employed. 

Among these, knowledge distillation, first proposed by Hinton et 

al. [8] in 2015, has demonstrated strong practical utility and 

consistently outperforms other model compression approaches 

in various applications. Knowledge distillation involves 

extracting insights from the teacher model and subsequently 

transferring them to a more streamlined, compact model. 

Through this process, the compact model assimilates the 

generalization capabilities of the larger model, gradually 

converging toward the performance levels of the extensive 

model. Knowledge distillation serves as a potent training 

technique for transferring model insights, streamlining model 

deployment, and expediting inference processes.  

Currently, knowledge distillation finds applications across 

diverse domains. In computer vision, many researchers have 

researched knowledge distillation in image classification. One 

practical and straightforward approach is to utilize the output 

probability of the Softmax network layer as the soft target. The 

schematic diagram is illustrated in Fig.1. Moreover, the 

activation representations, neurons, or features within 

intermediate layers can be leveraged as knowledge to steer the 

learning process of the student network. The interplay among 

distinct activation representations, neurons, or paired samples 

encapsulates the wealth of information gleaned by the teacher 

network from the dataset [6][9][10]. 

In image classification, knowledge distillation plays a good 

role by compressing models, transferring the correlation of 

different labels to student models, integrating heterogeneous 

models, etc. However, more research needs to be conducted on 

object detection. In addition, most of the research on knowledge 

distillation methods has focused on two-stage detectors, whereas 

only some studies have focused on one-stage object detectors. 

Responses in object detection tasks can contain logits and 

bounding box offsets[11]. Choi [12], which built upon the 

two-stage target detection model Faster RCNN, extracted three 

parts of dark knowledge in the teacher network, namely, dark 

knowledge in the intermediate feature layer, dark knowledge in 

the RPN/RCN classification layer, and dark knowledge in the 

RPN/RCN regression layer; the research improved the accuracy 

of small target detection. Meanwhile, Mehta [13] used the 

knowledge distillation method to enhance the one-stage 

detection model; more importantly, it optimized the structure of 

the student network and improved the detection accuracy. 

 Furthermore, Wang [14] solved the problem in which the 

global distillation algorithm introduces background information; 

the study used masked feature maps to ensure that the teacher 

network only transfers knowledge near the actual box, thus 

resulting in better performance. Hou [15] proposed a 

self-attention distillation method, which uses the feature map of 

its convolutional layer as the extraction target of the shallow 

neural network; this application improved the detection effect. 

Moreover, Yang [16] introduced a variant of self-distillation 

termed snapshot distillation, where the initial knowledge of the 

teacher network is transferred to its subsequent student network 

stages, aiding in the training progression within the same 

network. Roheda [17] proposed using GANs to perform 

cross-modal distillation between missing and available models, 

which can subsequently improve object detection performance. 

 

 

Fig. 1. The transmission process of dark knowledge. 
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B. Target detection model YOLO 

The YOLO object detection model, which can detect objects 

in real-time, was first proposed in 2015 [18]. YOLO is a 

“one-stage” idea. The detection object is a regression problem 

but not a classification problem [19], as shown in Fig.2.  

First, the network is divided, and the grid is detected, where 

the object’s center falls into that network. Moreover, the grid is 

responsible for the target. Each grid needs to predict both the 

bounding box and the category simultaneously. Compared with 

the above two-stage target detector, YOLO’s ban on candidate 

frame generation and using a single neural network to complete 

the detection can greatly improve the detection speed. YOLOv5 

significantly reduces the model’s size, improves the operation 

speed, and performs similarly to YOLOv4 [20]. 

While the two-stage object detector exhibits superior 

performance, it suffers from significant speed delays, which run 

counter to the low-latency objectives sought after for edge 

devices. Meanwhile, regarding space occupation, only YOLO 

can adapt to hardware with limited storage volume. Therefore, 

the two-stage detection model still needs to be completed on the 

mobile terminal [21]. Furthermore, systems characterized by 

high real-time constraints, such as mask-wearing detection 

systems, persist in their reliance on the one-stage target detector 

YOLO. For the above reasons, the YOLOV5 target detection 

algorithm is used as the baseline and starting point of the 

mask-wearing detection method in the present study. 

 
Fig. 2. The idea of the “one-stage” target detection model: 

Detecting objects based on the central grid. 

 

III.  IMPROVED KNOWLEDGE DISTILLATION MASK-WEARING 

DETECTION METHOD BASED ON YOLOV5 

A. Traditional Knowledge Distillation Algorithm 

Knowledge distillation transfers the dark knowledge from a 

larger model (teacher network) to a more compact model 

(student network). Hence, the tiny model's accuracy reaches the 

large model's level. Thus, the model used for prediction has a 

faster speed and higher accuracy. 

The knowledge distillation method used in this study extracts 

response-based knowledge [22]. Moreover, it simultaneously 

extracts localization and classification knowledge. The teacher 

network predicts the target object's location, category, and 

confidence after sufficient learning from the dataset [23]. We 

impart this knowledge to the student network through 

knowledge distillation. 

The distillation loss is formulated by quantifying the disparity 

between the forecasts of the teacher and the student, delineated 

in formula (1): 

 

𝑳𝑲𝑫 = 𝑳(𝒇𝒕(𝒙, 𝜽𝒕), 𝒇𝒔(𝒙, 𝜽𝒔))                      (1) 

 

Where 𝒇𝒕 denotes the teacher network, 𝒇𝒔 denotes the student 

network, 𝜽𝒕  denotes the model parameters of the teacher 

network, 𝜽𝒔  denotes the model parameters of the student 

network, 𝒙 denotes the input of the same data set, and  𝑳(. ) is 

the measure of the distance between teachers and students, that is, 

a specific type of the loss function. Our method,  𝑳(. ) denotes 

not only the regression loss for location prediction but also the 

classification loss between wearing a mask and not wearing a 

mask. Under distillation and back-propagation, the knowledge 

encapsulated within the teacher network is swiftly conveyed to 

the student network. Furthermore, if the student network merely 

mimics the teacher network during knowledge distillation, its 

potential is constrained by the knowledge of the teacher network. 

It cannot exceed the possibility of the teacher network [24]. 

Therefore, the distillation loss ought to be integrated with the 

original task-specific loss  𝑳𝒉𝒂𝒓𝒅  to facilitate enhanced learning 

for the student network [25]. The calculation method is shown in 

formula (2), where the combination of the distillation loss and 

the loss between the student network and the labeled value 𝑙𝑎𝑏𝑒𝑙 

form the comprehensive loss function: 

 

 𝑳𝒕𝒐𝒕𝒂𝒍 = 𝑳𝒉𝒂𝒓𝒅(𝒇𝒔′ 𝒍𝒂𝒃𝒆𝒍) + 𝝀𝑳𝑲𝑫                       (2) 

 

Where 𝑳𝒕𝒐𝒕𝒂𝒍  denotes the total loss, 𝑳𝒉𝒂𝒓𝒅  denotes the loss 

between the student network and the ground-truth label, while  

𝑳𝑲𝑫 denotes the distillation loss,  𝒇𝒔 denotes the student network, 

and 𝒍𝒂𝒃𝒆𝒍 denotes the ground-truth label. In addition, λ 

represents the equilibrium parameter in distillation, where λ is 

usually regarded as a hyperparameter in previous knowledge 

distillation methods and set as a fixed constant. 

 

B. Improved Knowledge Distillation Algorithm 

The previous knowledge distillation loss function, such as 

formula (2), has encountered hyperparameter sensitivity and 

poor ability to detect simple samples [25]. Therefore, the 

previous loss function is set to a fixed value. Unlike the previous 

practice of setting hyperparameters, the distillation method in 

the present study achieves difficulty awareness. It means the 

network judges the samples with high confidence in the target 

detection training set as low difficulty, thus indicating that the 

teacher network has fully learned and extracted this knowledge. 

Subsequently, the dark knowledge in this scenario is assigned a 

greater weight and transmitted to the student network through 

the teacher network. The process of the knowledge distillation 

algorithm with adaptive difficulty in this study is shown in Fig. 

3. 
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Fig. 3. The overall framework of the improved YOLOv5 algorithm based on knowledge distillation. 

 

Confidence indicates the certainty that the predicted bounding 

box encompasses the object and the precision of the bounding 

box prediction. The confidence score for the grid is computed as 

illustrated in formula (3): 

 

𝒄𝒐𝒏𝒇 = 𝑷𝒓(𝒐𝒃𝒋𝒆𝒄𝒕) × 𝑷𝒓(𝒄𝒍𝒂𝒔𝒔𝒊|𝒐𝒃𝒋𝒆𝒄𝒕) × 𝑰𝑶𝑼𝒑𝒓𝒆𝒅𝒊𝒄𝒕
𝒍𝒂𝒃𝒆𝒍    (3)                                         

 

Where 𝑷𝒓(𝒐𝒃𝒋𝒆𝒄𝒕) = 𝟏 if a target falls on the grid; otherwise, 

𝑷𝒓(𝒐𝒃𝒋𝒆𝒄𝒕) = 𝟎  . For the class 𝒊  predicted by the grid, 

𝑷𝒓(𝒄𝒍𝒂𝒔𝒔𝒊|𝒐𝒃𝒋𝒆𝒄𝒕) indicates the probability that the predicted 

object belongs to class. 𝑰𝑶𝑼𝒑𝒓𝒆𝒅𝒊𝒄𝒕
𝒍𝒂𝒃𝒆𝒍  represents the 

intersection-over-union ratio between the ground-truth box and 

the predicted bounding box. 

To realize the adaptive adjustment of dark knowledge weights 

for samples of different difficulties, this study defines different 

weights in distillation loss [λ1, λ2, λ3, λ4, … , λn] corresponding to 

different samples, as shown in Equation (4): 

 

[𝝀𝟏, 𝝀𝟐, 𝝀𝟑, . . . , 𝝀𝒏] =

                           𝒔𝒊𝒈𝒎𝒐𝒊𝒅([𝒄𝒐𝒏𝒇𝟏, 𝒄𝒐𝒏𝒇𝟐, . . . , 𝒄𝒐𝒏𝒇𝒏] − 𝒕)   (4) 

 

Among them, [λ1, λ2, λ3, λ4, … , λn]  is the distillation loss 

balance parameter for each sample of different difficulties in 

formula (2).  The number of samples is  𝒏 . In addition, 

[𝒄𝒐𝒏𝒇𝟏, 𝒄𝒐𝒏𝒇𝟐, 𝒄𝒐𝒏𝒇𝟑, … , 𝒄𝒐𝒏𝒇𝒏] is the confidence of each 

object predicted by the teacher network, and 𝒕  is the 

hyperparameter employed to regulate the extent to which 

knowledge is assimilated from the teacher. 

On the one hand, a hyperparameter is used when calculating 

the weight 𝝀 of knowledge passed by the teacher to control how 

much knowledge is obtained from the teacher model. The 

hyperparameter 𝒕 is akin to the “temperature T” hyperparameter 

in prior knowledge distillation techniques. A higher value of 𝒕 

enables the student network to glean more knowledge from the 

teacher network, and a lower value of  t serves to shield the 

student network from potential errors in teacher predictions. On 

the other hand, using the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function not only remaps the 

confidence interval to [0, 1], but it also diminishes the range 

within which the teacher network perceives the difficulty level.  

Initially, the teacher network gauges the complexity of the 

samples. Then, it guides the student network to conduct targeted 

learning with different learning plans for samples of various 

problems; meanwhile, the student network focuses on the 

learning, which improves the distillation effect [25] and the 

performance of the student network in practical applications. 

 

Here is the algorithm description for the framework of 

improved part calculation: 

 

Algorithm 1: Framework of improved part calculation. 

 

Input: 𝒙𝒕, 𝒚𝒕, 𝒉𝒕, 𝒙𝒔, 𝒚𝒔, 𝒘𝒔, 𝒉𝒔 from the output of the teacher 

and the output of the student network's previous round, 𝒄𝒐𝒏𝒇 

given by the teacher network; 

 

Output: 𝑳𝒕𝒐𝒕𝒂𝒍 used for neural network backpropagation; 

1: Calculate student network weight 𝜆  of knowledge 

distillation, that is, [𝝀𝟏, 𝝀𝟐, 𝝀𝟑, … , 𝝀𝒏]. 

 

[𝝀𝟏, 𝝀𝟐, 𝝀𝟑, … , 𝝀𝒏] =

𝒔𝒊𝒈𝒎𝒐𝒊𝒅([𝒄𝒐𝒏𝒇𝟏, 𝒄𝒐𝒏𝒇𝟐, 𝒄𝒐𝒏𝒇𝟑, … , 𝒄𝒐𝒏𝒇𝒏] − 𝒕); 

 

2: Calculate the distillation loss 

 

𝑳𝑲𝑫 = 

(𝒙𝒕 − 𝒙𝒔)𝟐 + (𝒚𝒕 − 𝒚𝒔)𝟐 + (𝒘𝒕 − 𝒘𝒔)𝟐 + (𝒉𝒕 − 𝒉𝒔)𝟐 

+𝑩𝑪𝑬𝑳𝒐𝒔𝒔 (𝒔𝒐𝒇𝒕 𝒎𝒂𝒙 (
𝑫𝒕

𝑻
) , 𝒔𝒐𝒇𝒕 𝒎𝒂𝒙 (

𝑫𝒕

𝑻
)) 

 

3: Calculate the total loss 

 

 𝑳𝒕𝒐𝒕𝒂𝒍 = 𝑳𝒉𝒂𝒓𝒅(𝒇𝒔′ 𝒍𝒂𝒃𝒆𝒍) + 𝝀𝑳𝑲𝑫 

 

4: Return 𝑳𝒕𝒐𝒕𝒂𝒍 

 

The process of transferring dark knowledge and training the 

student network is shown in Fig.4. 
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Fig. 4. Dark knowledge transfer and the process of training the student network. 

 

The process involves extracting the forecasted center position 

from the teacher network, the frame's width and height, and the 

probabilities associated with each category as a soft label, 

denoted by the following symbols: 𝒙𝒕, 𝒚𝒕, 𝒘𝒕, 𝒉𝒕  and Dt 

respectively. When specifically guiding students to network 

learning, the knowledge distillation loss function 𝐿𝐾𝐷  in this 

study is defined as follows: 

 

𝑳𝑲𝑫 = (𝒙𝒕 − 𝒙𝒔)𝟐 + (𝒚𝒕 − 𝒚𝒔)𝟐 + (𝒘𝒕 − 𝒘𝒔)𝟐 + (𝒉𝒕 − 𝒉𝒔)𝟐 

+𝑩𝑪𝑬𝑳𝒐𝒔𝒔 (𝒔𝒐𝒇𝒕 𝒎𝒂𝒙 (
𝑫𝒕

𝑻
) , 𝒔𝒐𝒇𝒕 𝒎𝒂𝒙 (

𝑫𝒕

𝑻
)) 

(5) 

The distillation loss comprises the squared distance between 

the teacher and student prediction locations and the BCELoss 

function applied to the probability distributions of the teacher 

and student prediction categories. 𝒙𝒕, 𝒚𝒕, 𝒘𝒕, 𝒉𝒕, 𝒙𝒔, 𝒚𝒔, 𝒘𝒔 and hs 

respectively represent the rectangle box predicted by the teacher 

and student network, 𝑫𝒕  and Ds  represent the teacher’s and 

student’s probability distribution of the object category 

predicted by them. For example, in Fig.4,  𝑫𝒕  is [0.70, 0.30]. 

This value indicates that, for the lady in the upper left corner, the 

probability of belonging to the "without a mask" category is 0.7, 

while the probability of belonging to the category of “wearing a 

mask” is 0.3. 𝒔𝒐𝒇𝒕 𝒎𝒂𝒙(. ) ensures that the probability 

distribution is normalized. 𝑻  represents the distillation 

temperature, 𝑩𝑪𝑬𝑳𝒐𝒔𝒔(. )  represents the 𝐵𝐶𝐸𝐿𝑜𝑠𝑠  function 

and the BCELoss function between 𝑪𝒕 and the 𝑪𝒔 is as follows: 

 

𝑩𝑪𝑬𝑳𝒐𝒔𝒔(𝑪𝒕||𝑪𝒔) = −𝟏/𝒏 ∑ 𝑪𝒕[𝒊] ∗ 𝒍𝒐𝒈𝑪𝒔[𝒊] +
𝒊

 

(1- 𝑪𝒕[𝒊]) ∗ 𝒍𝒐𝒈(𝟏 − 𝑪𝒔[𝒊])) (6) 
 

Where 𝒊 represents the 𝒊𝒕𝒉 category. 

The optimization objective of distillation  𝑳𝑲𝑫  delineates the 

variance between the forecasted values of the teacher network 

and those of the student network. The actual label loss  𝑳𝒉𝒂𝒓𝒅  is 

incorporated to derive the total loss of the student network, as 

depicted in Equation (2), thereby facilitating the transmission of 

dark knowledge. The student network optimizes the model 

parameters through backpropagation to simultaneously fit dark 

knowledge and actual labels, realize the learning of dark 

knowledge and actual labels, and finally obtain a student model 

with higher performance and accuracy. 

To sum up, the core of the method in this study is to use the 

teacher’s network to perceive the sample's difficulty in the early 

training stage. Using the network helps to obtain the coefficient 

of the teacher’s mastery of the sample, which can guide the 

student network learning with different confidence levels for 

samples of other difficulties. The student network can 

effectively grasp straightforward examples with the teacher's 

assistance. Yet, its capability to comprehend the teacher's 

knowledge when confronted with intricate samples remains 

limited. Therefore, for students, the focus of learning from the 

teacher network should be biased toward simple samples [25]. In 

the realm of practical application, particularly in mask-wearing 

detection, the presence of the teacher network notably 

accelerates the training and comprehension of the student 

network, especially for uncomplicated instances. 

 

C. Selected teacher network and student network 

1) Determine a standard YOLO network 

In the experiment, the chosen teacher network is YOLOv5x, 

comprising 86,180,143 parameters. The chosen baseline models 

are the YOLOv5m model and the YOLOv5s model, trained 

separately without distillation. The selected student network1 is 

YOLOv5s, and the student network2 is YOLOv5m. 

 

2) Determine a lightweight YOLO network 

The target detection algorithm emphasizes real-time 

monitoring. Therefore, to substantiate the efficacy of the 

proposed algorithm in enhancing lightweight models and to 

showcase its applicability in practical engineering scenarios, a 

more lightweight target detection model, YOLO-Lite [26], has 

been chosen for the experiment. YOLO-Lite is an enhanced 

real-time target detection network built upon YOLOv5. 

Compared with YOLOv5, YOLO-Lite is faster, lighter, and 

easier to deploy. 

After thoroughly studying the ablation experiments, the 

YOLO-Lite network implements the removal of the focus point 
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layer to avoid multiple slicing operations. Improvements such as 

preventing the use of high-channel C3 layers at various times 

have also been made, thus enabling easy deployment on the 

mobile side without reducing the feature extraction capability of 

the model. Regarding space occupation, when the YOLO5s 

model still has 12.4M, the size of the YOLO-Lite model is only 

3.2 M. Moreover, the number of parameters of the YOLO-Lite 

model is 1/5 of that of the YOLO5s model. This network can 

also be used on the edge device, the Raspberry Pi. After 

deployment on Raspberry Pi 4B, the detection speed meets the 

real-time requirements.  

In YOLO-Lite-s and YOLO-Lite-g, we choose our 

experiments' lighter network, YOLO-Lite-s, as the student 

network. In our enhanced knowledge distillation approach for 

mask-wearing detection using YOLOv5, the identical network is 

chosen as the baseline and student networks in the knowledge 

distillation algorithm. This ensures that the number of student 

network parameters after knowledge distillation remains aligned 

with the baseline network, without any addition.  

The network structure of YOLO-Lite-s is shown in the 

following table Ⅰ: 

 
TABLEⅠ 

THE STRUCTURE OF THE STUDENT NEURAL NETWORK, ALONG WITH THE 

PARAMETER COUNT IN EACH LAYER.  
(AGGREGATE OF ALL WEIGHTS AND BIASES) 

Neural network layer name 
Parameters of each layer of the 

YOLO5 Lite-s student network 

Maxpool 928 

Shuffle_Blocks 8812 

Shuffle_Blocks 44588 

Shuffle_Blocks 167968 

Conv 59648 

Upsample 0 

Concat 0 

C3 104192 

Conv 8320 

Upsample 0 

Concat 0 

C3 26496 

Conv 36992 

Concat 0 

C3 74496 

Conv 147712 

Concat 0 

C3 296448 

Detect 9471 

IV. EXPERIMENT RESULTS AND ANALYSIS 

A. Dataset 

The implementation of this system requires two classes of 

training images: mask and no mask. Then, the mask images are 

crawled to realize the mask detection system. In addition, the 

dataset we chose came from public datasets and pictures on the 

network, and the characters and backgrounds in the pictures are 

closer to the scenarios that require lightweight deployment and 

commercial use in real life. 

Simultaneously, instances where facial features are partially 

obscured without the utilization of facial masks are incorporated 

to enhance the network's capacity for generalization and 

resilience. The curated dataset consists of 577 images, 

distributed with a partition ratio of 8:1:1 among the training, 

validation, and test sets. 

 

B. Experimental configuration 

The research experiment was conducted within the Windows 

11 operating system environment. Moreover, PyTorch is 

selected as the deep learning framework. In addition, the 

graphics card NVIDIA GeForce RTX 4060 and the acceleration 

library CUDA 12.4 is used. 

C. Experimental results 

In assessing the efficacy of the target detection model in this 

study, evaluation metrics such as mAP@0.5, Precision, 

mAP@0.5:0.95, and Recall are chosen as performance 

indicators. 

 

(1) Precision and recall. They are fundamental metrics utilized 

in model evaluation. Precision is the ratio of correctly identified 

positive samples to all samples identified as positive, while 

recall is the ratio of correctly identified positive samples to all 

truly positive samples based on the ground truth labels. These 

rates are calculated using formula (7): 

 

{
𝑷 = 𝑻𝑷/(𝑻𝑷 + 𝑭𝑷)

𝑹 = 𝑻𝑷/(𝑻𝑷 + 𝑭𝑵)
                              (7) 

In this context, TP (True Positives) denotes the count of 

samples where the predicted object type by the target detection 

model aligns with the actual object type. Conversely, FP (False 

Positives) represents the count of samples where the predicted 

object type by the target detection model differs from the actual 

object type. Finally, FN is the number of real objects in the 

sample not detected by the object detection model. 

(2) mAP@.5, mAP@.5:.95 (mean Average Precision). The 

precision-recall curve (P-R curve) is obtained by drawing a 

dotted line on the (P, R) value of the target detection result. The 

mAP for each object category is computed by aggregating the 

area under the P-R curve, and the overall mAP is derived by 

averaging the mAP values across all object categories. The 

formula for calculating the mAP is delineated as shown in the 

formula (8): 

 

𝒎𝑨𝑷 = ∑
𝑨𝑷𝒋

𝑪

𝑪
𝑱=𝟏                                       (8) 

TABLE Ⅱ 

The super-parameter setting of the experiment 

Super-parameter Value 

batch size 4 

image scale 640 x 640 

initial learning rate 0.01 

mixup 0.1 
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1) Analysis of experimental results on the standard 

YOLO network 

 

First, the processes outlined in Section 3.2 are adhered to for 

training the teacher network. The training loss curve of the 

teacher network is depicted in Fig.5. 

 Subsequently, the teacher network undergoes distillation, 

extracting dark knowledge. The subsequent phase encompasses 

the training of the student network. 

The performance of YOLO5s baseline model and student 

network 1 (average accuracy index map@.5, map@.5:.95) is 

shown in Fig. 7. Above are performance images of the 

YOLOV5s baseline network, and below are performance images 

of student network 1 after distillation. 

The performance of the YOLO5m baseline model and student 

network 2 (average accuracy index chart @. 5, map@. 5:.95) is 

shown in Fig. 8. Above are performance images of the 

YOLOV5m baseline network, and below are performance 

images of student network 2 after distillation.  

  

 
Fig. 5. Loss convergence image of the teacher network. 

  
Fig. 6. The loss convergence images, top left YOLOV5s baseline network, top right YOLOV5m baseline network, bottom left student 

network 1, and bottom right student network 2. 
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Fig. 7. Experimental results of the distillation experiment on YOLOV5s, map@.5, and map@.5:.95 of YOLO5s baseline network and 

YOLO5s student network. 

 

 
Fig. 8. Experimental results of the distillation experiment on YOLO5m, map@.5, and map@.5:.95 for YOLO5m baseline network 

and YOLO5m student network. 
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Fig. 9. map@.5 and map@.5:.95 of teacher network (YOLOV5x). 

 

The performance on each evaluation metric is shown in 

Table Ⅲ : 

The results of this experiment are analyzed as follows: 

(1) Table Ⅲ  reveals a notable enhancement in the 

performance of each evaluation metric for Student Network 1 

when juxtaposed with the baseline model. Fig.7, 8, and 9 

illustrate that through the transmission of dark knowledge from 

the teacher network, during the initial training stages, the student 

network progressively diminishes the disparity with the teacher 

network. In the later stage of training, the student network is 

infinitely close to the teacher network in each evaluation index, 

surpassing the teacher network in some evaluation metrics.  

Fig. 10. a Teacher network. 

Fig. 10. b Student network1.             Fig. 10. c Student network2. 

Fig. 10. Results of teacher network, student network1, and 

student network2 predicting the examples. 

(2) Fig.10 demonstrates the detection results of our 

well-trained teacher network, student network 1, and student 

network 2, respectively. The student network, after distillation, 

performed better in detecting mask-wearing. Following 

knowledge distillation, the performance of the student network 

surpasses that of the preceding two networks in terms of 

mAP@0.5 and mAP@0.5:0.95. The experimental findings 

substantiate the efficacy of the teacher network in imparting 

knowledge to the student network through the knowledge 

distillation approach in this study. 

(3) In comparing the outcomes of two sets of experiments 

involving the YOLO5s model and the YOLO5m model, it is 

observed that while there is a minimal disparity in performance 

between the YOLO5s model and the YOLO5m model before 

knowledge distillation, the YOLO5m student network exhibits 

significantly enhanced performance post knowledge distillation 

in contrast to the YOLO5s student network. This outcome also 

confirms the conclusion of Mirzadeh [27] and Huang [28] et al., 

who observed that distilling between networks with smaller 

capability gaps might yield better performance. The above 

experiments are improved based on the standard YOLO [29] and 

a more lightweight target detection model, YOLO-Lite [26]. 

 

2) Analysis of experimental results on the lightweight 

YOLO network 

 
The experimental outcomes of the lightweight YOLO 

network are depicted in Table Ⅳ: 

The comparison of some output images of the YOLO-Lite 

baseline network and the YOLO-Lite student network is shown 

in Fig. 11: 

TABLE Ⅳ 

Performance of baseline network and student network in each target 
detection evaluation metric. 

models map@.5 precision map@.5:.95 recall 

YOLO-Lite-s 

baseline 
77.6 84.2 42.8 67.9 

YOLO-Lite-s 

student network 
83.3 86.6 45.3 76.6 

 

 

 

 

TABLE Ⅲ  

The performance of the teacher network, baseline networks, and student 
networks is assessed across each target detection evaluation metric. 

models map@.5 precision map@.5:.95 recall 

YOLOv5x 

(teacher network) 
82.9 86.0 44.7 76.5 

YOLOv5s before 

distillation 

(baseline network1) 

77.6 84.2 42.8 67.9 

YOLOv5s after 

distillation 

(student network1) 

83.3 86.6 45.3 76.6 

YOLOv5m before 

distillation 

(baseline network2) 

79.2 81.7 44.3 72.5 

YOLOv5m after 

distillation 

(student network2) 

81.6 88.2 46.1 67.8 
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Fig. 11. a Example of YOLO-Lite-s baseline. 

 
Fig. 11. b Example of YOLO-Lite-s student network. 

Fig. 11 Results of YOLO-Lite-s baseline and student network 

predicting the examples. 

 

Experiments show that the lightweight student network 

obtains better feature extraction ability under the teaching of the 

powerful teacher network. As shown in Fig.11. a and Fig.11. b, 

in cases where many targets appear in the picture simultaneously, 

the distilled student network can make more accurate 

predictions.  

 

V. CONCLUSION 

Complex models can significantly enhance the learning 

performance of deep learning tasks. However, the extensive 

network parameters associated with these models substantially 

increase computational demands and lead to delays in practical 

applications. Such delays pose serious challenges to the 

deployment and utilization of neural network models on edge 

devices. To address these limitations, knowledge distillation 

methods have emerged as a promising solution to balance time 

efficiency and hardware constraints in industrial applications. 

This study presents a novel approach to effectively distill 

complex tacit knowledge, enabling the efficient transfer of "dark 

knowledge" from a sophisticated teacher network to a 

lightweight student network. Our proposed method achieves 

optimized detection times, enhanced detection accuracy, and 

improved overall model performance without increasing the 

number of parameters. Experimental results demonstrate that, 

after applying knowledge distillation, the student network 

achieves notable improvements in accuracy and overall 

performance, even surpassing the teacher network. Furthermore, 

the distilled student network exhibits substantial performance 

gains when compared to the baseline network. Most importantly, 

the proposed method demonstrates broad applicability in both 

industrial scenarios and commercial applications. 

Nevertheless, there remain areas for improvement in our 

approach. For instance, in real-world scenarios involving dense 

crowds or significant obstructions between individuals, the 

model's performance may decline, limiting its effectiveness. 

Addressing these challenges will be a central focus of our future 

work. Our goal is to further enhance detection accuracy and 

model performance while ensuring seamless integration of target 

detection systems into real-world applications. We are confident 

that continued research will uncover more effective solutions to 

these challenges in the future. 
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