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Abstract—Security-Constrained Optimal Power Flow 

(SCOPF) is essential for ensuring reliability in power systems 

while reducing operational costs and losses. Conventional 

approaches encounter difficulties in tackling the nonlinearity 

and nonconvexity inherent in SCOPF problems, thereby 

requiring the implementation of advanced optimization 

techniques. This study presents an Adaptive Swarm Hybrid 

Optimizer (ASHO) designed to address SCOPF challenges 

efficiently. The ASHO integrates multi-swarm dynamics, 

adaptive inertia weights, and mutation operators to optimize 

the balance between exploration and exploitation, mitigate 

premature convergence, and improve solution diversity. The 

IEEE 30-bus system serves as a testbed for the evaluation of the 

proposed approach. Simulation results indicate that ASHO 

outperforms standard Particle Swarm Optimization (PSO), 

Genetic Algorithm (GA), and Differential Evolution (DE). 

ASHO effectively reduces generation costs, minimizes 

transmission losses, and ensures voltage stability while 

adhering to all operational constraints. This method results in a 

generation cost reduction of up to 1.5% relative to alternative 

approaches, while also enhancing voltage profiles and 

accelerating convergence. ASHO demonstrates strong 

performance in contingency scenarios, maintaining security by 

complying with system constraints during critical outages.  The 

findings confirm the efficacy of ASHO in providing efficient 

and reliable SCOPF solutions within contemporary power 

systems. Subsequent investigations will aim to broaden this 

methodology to encompass dynamic SCOPF and more 

extensive test systems.   

 
Index Terms—Security-Constrained, Optimal Power Flow, 

Hybrid Multiswarm, Particle Swarm Optimizer, Power system 

optimization, Swarm intelligence. 

 

I. INTRODUCTION 

HE increasing complexity of power systems and the 

rising demand for reliable, sustainable energy require 

efficient operational planning and optimization. Security-

Constrained Optimal Power Flow (SCOPF) has become an 

essential instrument in this domain [1]. This work expands 

the traditional Optimal Power Flow (OPF) problem by inte-
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grating security constraints to enhance the reliability and 

robustness of power systems in contingency scenarios, in-

cluding line outages and generator failures. SCOPF aims to 

minimize generation costs, reduce transmission losses, and 

ensure secure and stable system operation while adhering to 

all system constraints. Solving SCOPF presents considerable 

challenges owing to its nonlinear, nonconvex, and high-

dimensional characteristics [2]. The Optimal Power Flow 

(OPF) problem, introduced in the 1960s, seeks to identify 

the optimal generation dispatch that minimizes costs or loss-

es while adhering to power balance, generator limits, voltage 

constraints, and transmission line limits. SCOPF enhances 

its framework by integrating contingencies, thereby provid-

ing a more comprehensive approach for real-world applica-

tions [3], [4]. The integration of renewable energy sources 

and the growing complexity of contemporary power grids 

have rendered SCOPF a vital research domain for maintain-

ing efficient and secure grid operations.  Conventional opti-

mization techniques, including linear programming (LP), 

quadratic programming (QP), and nonlinear programming 

(NLP), have been widely utilized to address OPF and 

SCOPF issues. These methods are frequently constrained by 

their inability to address nonconvexity and discrete varia-

bles, which are intrinsic to SCOPF formulations [5], [6]. The 

computational burden of these methods increases exponen-

tially with the size and complexity of the power system, ren-

dering them less suitable for large-scale systems or real-time 

applications. 

 

A. The Role of Metaheuristic Algorithms in SCOPF 

Metaheuristic algorithms have emerged as effective solu-

tions to the limitations of traditional approaches in address-

ing SCOPF problems. Algorithms inspired by natural pro-

cesses, including evolution and swarm behavior, provide 

robust and flexible frameworks for addressing complex op-

timization problems. Particle Swarm Optimization (PSO), 

Genetic Algorithm (GA), and Differential Evolution (DE) 

have received considerable attention in research. Particle 

Swarm Optimization (PSO) is noted for its straightforward-

ness, ease of implementation, and capacity to address non-

convex problems [7], [8]. Standard PSO frequently experi-

ences premature convergence and stagnation at local optima, 

particularly in high-dimensional and multimodal problems 

such as SCOPF. 

 This study presents an Adaptive Swarm Hybrid Optimiz-

er (ASHO) designed to overcome the limitations of tradi-
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tional Particle Swarm Optimization (PSO) in solving Securi-

ty-Constrained Optimal Power Flow (SCOPF) problems. 

The principal innovations of the proposed ASHO are as fol-

lows: ASHO utilizes several interacting swarms, with each 

swarm investigating distinct areas of the solution space. This 

improves the algorithm's capacity to investigate and evade 

local optima. The algorithm modifies the inertia weight dy-

namically to achieve a balance between exploration and ex-

ploitation in the optimization process [9]. A mutation mech-

anism is integrated to enhance diversity within the solution 

space and mitigate premature convergence. The proposed 

method is evaluated using the IEEE 30-bus system, which 

serves as a standard benchmark in power system research.  

The comparative analysis with standard PSO, GA, and DE 

indicates that ASHO outperforms these methods in cost min-

imization, loss reduction, constraint satisfaction, and compu-

tational efficiency. 

 

II. RELATED WORK 

Early approaches to solving OPF and SCOPF utilized de-

terministic optimization techniques, including LP, QP, and 

NLP. These methods were among the first to conceptualize 

the OPF problem as a mathematical programming task.  Lat-

er developments led to the introduction of SCOPF formula-

tions that included N-1 contingency criteria. These methods 

yielded precise solutions under specific conditions; however, 

their applicability was constrained by computational com-

plexity and sensitivity to initial conditions [10]. Interior-

point methods and decomposition techniques were intro-

duced to enhance computational efficiency. A gradient-

based method for optimal power flow (OPF) has been exam-

ined, while other research has investigated Lagrangian relax-

ation for stochastic optimal power flow (SCOPF). Despite 

these efforts, traditional methods frequently exhibited re-

duced performance when faced with nonconvexity, discrete 

variables, and large-scale systems [11]. SCOPF solution 

methods involve significant computational effort to ensure 

both accuracy and feasibility under various operating condi-

tions. Numerous techniques have been proposed and ana-

lyzed to solve the SCOPF problem efficiently. Reference 

[12] presented a comparative analysis of SCOPF methods 

using linear sensitivity factors-based contingency screening. 

Their study highlights how contingency screening techniques 

can reduce computational burden while maintaining reliabil-

ity, offering a practical approach for identifying critical con-

tingencies before applying more complex optimization algo-

rithms. This helps enhance the tractability and effectiveness 

of SCOPF in real-world systems. Reference [13] presents a 

methodology for addressing the preventative SCOPF 

(PSCOPF) problem, aimed at enhancing power system plan-

ning and operation. It effectively addressed the N-1 contin-

gency analysis. The reactive compensation strategy effec-

tively addresses post-contingency voltage issues. Reference 

[14] outlines a methodology for assessing the SCOPF solu-

tion, incorporating probabilistic generation and transmission 

contingencies. This achieved the optimal level of system 

security through the optimization of security expenditures. 

Reference [15] presents a method for addressing the SCOPF 

problem in a hybrid AC/DC grid. This applies to preventa-

tive SCOPF, where corrective measures are not allowed after 

a contingency, and to corrective SCOPF with adjustable 

control action limits. Reference [16] proposes a hybrid mul-

tiswarm particle swarm optimization (HMPSO) technique to 

effectively solve the Security-Constrained Optimal Power 

Flow (SCOPF) problem. The method enhances the explora-

tion and exploitation abilities of the standard PSO algorithm 

by using multiple interacting swarms, which improves the 

convergence rate and avoids premature stagnation in local 

optima. The primary objective of this approach is to mini-

mize the total generation cost while strictly adhering to sys-

tem operating limits, such as power balance, generator ca-

pacity, and voltage constraints, as well as ensuring network 

security under both normal and contingency conditions. By 

integrating the hybrid multiswarm concept, the optimizer is 

capable of efficiently handling the nonlinear and complex 

nature of SCOPF problems, leading to more reliable and 

cost-effective power system operations. Reference [17] dis-

cusses the application of the adaptive partitioning flower 

pollination method to solve the SCOPF problem in a utility 

grid. This study provides a thorough analysis of key chal-

lenges and emerging trends in SCOPF computations as dis-

cussed in reference [18]. 

 A constraint-driven machine learning approach is devel-

oped to tackle the SCOPF problem with multiple line outag-

es, as cited in [19]. The application of line outage distribu-

tion factors (LODF) facilitates this process. This method 

deterministically evaluates N-k security and probabilistic 

security. Reference [20] presents a comprehensive analysis 

of machine learning proximity-based methods applied to 

SCOPF solutions. The methods' comparative effectiveness is 

assessed using parameters such as load distribution, power 

factors, online generators, network topology, and generator 

costs. Reference [21] presents a dynamic fitness-distance 

balance-based growth optimizer (dFDB-GO) method for 

addressing SCOPF in utility grids. This strategy demon-

strates effectiveness, achieving a mean success rate of 

94.87% in addressing the SCOPF problem. Reference [22] 

presents a methodology for solving the integrated ac-dc 

SCOPF problem in large power systems, which has been 

applied within the Australian National Electricity Market. 

This strategy produces a solution within five minutes in real-

time situations.  Reference [23] presents a mathematical 

programming approach designed to tackle SCOPF, integrat-

ing dynamic security constraints within an AC-microgrid.  

This strategy is effective for islanded operation and transi-

tion. 

Metaheuristic algorithms show promise in solving com-

plex optimization problems like SCOPF, but they also face 

several challenges. Standard PSO often suffers from prema-

ture convergence and is highly sensitive to parameter set-

tings. While hybrid methods improve performance, they tend 

to increase algorithm complexity and computational cost. 

Additionally, most existing research focuses on static 

SCOPF, with limited exploration of dynamic or real-time 

scenarios [24], [25]. This study aims to address these gaps 

by developing a robust and efficient Adaptive Swarm Hybrid 

Optimizer (ASHO) capable of handling SCOPF challenges 

effectively under both normal and contingency conditions. 
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III. ADAPTIVE SWARM HYBRID OPTIMIZER 

The study is organized in a sequential manner, covering 

the design of the study, the procedures followed (including 

algorithms, pseudocode, or other techniques), the methodol-

ogies for testing, and the processes for acquiring data. The 

description of the research process should be backed by ref-

erences to guarantee the scientific validity of the explana-

tion. This section presents the mathematical formulation of 

the Security-Constrained Optimal Power Flow (SCOPF) 

problem and introduces the Adaptive Swarm Hybrid Opti-

mizer (ASHO) developed for its resolution. 

  

A. SCOPF Problem Formulation 

The SCOPF problem aims to minimize the total genera-

tion cost while satisfying power flow equations, operational 

constraints, and security constraints under contingency sce-

narios. The objective function of the optimal power flow 

problem is to minimize the total generator fuel cost and ex-

pressed as follows: 






NG

i

GiiGiii PcPbaJ

1

2 )(                           (1) 

The OPF problem is subjected to the following equality 

and inequality constraints. 

)cos(

1

jiijijj

NB

j

iDiGi YVVPP   
          (2) 

)sin(

1

jiij

NB

j

ijjiDiGi YVVQQ   
          (3) 
maxmin

GiGiGi VVV      i ∈ NG                      (4) 

maxmin
GiGiGi PPP 

          
 i ∈ NG                     (5) 

maxmin
GiGiGi QQQ           

 i ∈ NG            (6) 

maxmin
iii TTT 

           
 i ∈ NT                    (7) 

maxmin
LiLiLi VVV 

          
 i ∈ NLB                   (8) 

max
LiLi SS                        i ∈ NL                            (9) 

 

B. Adaptive Swarm Hybrid Optimizer (ASHO) 

The ASHO algorithm improves upon the standard PSO by 

incorporating multiswarm dynamics, adaptive inertia 

weights, and a mutation operator. Particle Swarm Optimiza-

tion (PSO) is an optimization algorithm based on the collec-

tive behavior observed in populations, such as birds flocking 

or fish schooling. James Kennedy and Russell Eberhart in-

troduced it in 1995. Particle Swarm Optimization (PSO) is 

extensively utilized across multiple domains owing to its 

straightforward nature, ease of implementation, and effec-

tiveness in addressing optimization challenges. Adaptive 

Swarm Hybrid Optimizer (ASHO) denotes improved itera-

tions of the standard Particle Swarm Optimization (PSO) 

algorithm. These versions integrate hybridization with addi-

tional optimization techniques, along with alterations in the 

algorithm's structure, parameters, or operators. This study 

seeks to rectify the limitations of conventional Particle 

Swarm Optimization (PSO), including premature conver-

gence, insufficient diversity, and challenges in managing 

complex, high-dimensional problems. Hybridization inte-

grates Particle Swarm Optimization with complementary 

optimization techniques to improve performance by utilizing 

the advantages of various methods. a) Genetic Algorithm 

(GA): In Hybrid PSO-GA, GA operators such as crossover 

and mutation are employed to enhance diversity and prevent 

premature convergence. Combines the positions of two par-

ticles to generate offspring translates stochastic alterations in 

particle positions to investigate novel areas. b) Differential 

Evolution (DE): The mutation and crossover strategies of 

DE are integrated to improve global exploration.  c) Simu-

lated Annealing (SA): The temperature-based exploration 

mechanism of SA is employed in ASHO to improve local 

search capabilities. ASHO can integrate ES operators, in-

cluding selection and recombination, to enhance conver-

gence and robustness. 

Velocity Update: The velocity of each particle is updated 

using the formula: 

 

Vi(t+1)=w⋅vi(t)+c1⋅r1⋅(pbest−xi(t))+c2⋅r2⋅(gbest−xi(t))   (10) 

 

vi(t+1): Updated velocity of particle,   

xi(t): Current position of particle. 

w: Inertia weight, balancing exploration and exploitation 

c1, c2: Acceleration coefficients (typically between 0 and 2) 

r1,r2: Random values between 0 and 1. 

Position Update: The new position is calculated as: 

 

xi(t+1)=xi(t)+vi(t+1)               (11) 

 

This methodology provides a clear framework for imple-

menting and validating the ASHO algorithm in the context 

of SCOPF.  

 

IV. RESULTS AND DISCUSSION 

This section presents the results of applying the Adaptive 

Swarm Hybrid Optimizer (ASHO) to the Security-

Constrained Optimal Power Flow (SCOPF) problem on the 

IEEE 30-bus system, which includes 6 generators, 41 trans-

mission lines, and 21 load buses, with a base load of 283.4 

MW and 126.2 MVAr, using standard IEEE parameters. 

Comparisons are made with Standard PSO (SPSO), Genetic 

Algorithm (GA), and Differential Evolution (DE), focusing 

on convergence, cost reduction, and computational efficien-

cy. For ASHO, the population size is 50 particles per swarm 

with three swarms, a maximum of 100 iterations, a mutation 

factor of 0.1, and a penalty factor of 1000. ASHO demon-

strated a faster convergence rate compared to SPSO, GA, 

and DE. 

 

A. Base Case (No Contingency) 

In the Base Case, the Adaptive Swarm Hybrid Optimizer 

(ASHO) demonstrates the lowest total generation cost com-

pared to the other optimization techniques evaluated. The 

primary objective is to distribute power generation among 

the various generators to minimize costs while meeting the 
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required demand. Additional optimization techniques evalu-

ated include Standard Particle Swarm Optimization (SPSO), 

Genetic Algorithm (GA), and Differential Evolution (DE). 

The optimization process considers multiple factors, includ-

ing generation capacities, cost curves, and the operational 

constraints of each generator. The techniques are designed to 

optimize load distribution across various generators, thereby 

reducing fuel consumption and operational inefficiencies. 

Figure 1 compares the total generation costs associated 

with various optimization methods, including ASHO, SPSO, 

DE, and GA. ASHO exhibits the lowest generation cost at 

$802.34, underscoring its effectiveness in reducing opera-

tional expenses. 

 
 

 
Fig. 1. Convergence Curves of Algorithms 

 

TABLE 1 

COMPARISON OF GENERATION SCHEDULES 

Generator ASHO (MW) SPSO (MW) GA (MW) DE (MW) 

G1 176.9 170.2 171.4 172.2 

G2 47.6 48.8 47.5 49.2 

G3 21.9 21.4 25.8 22.4 

G4 21.7 25.4 27.6 20.68 

G5 12.2 15 13.2 18.5 

G6 12.5 14.6 12.7 13.5 

Total Cost 802.34 $ 815.21 $ 825.67 $ 820.54 $ 

 

TABLE 2 

COST AND VOLTAGE PROFILE UNDER CONTINGENCY (GENERATOR 2 OUTAGE) 

Metric ASHO SPSO GA DE 

Total Cost ($) 832.15 845.67 856.23 850.79 

Voltage Deviation (p.u.) 0.028 0.034 0.039 0.036 

Line Flow Violations 0 1 2 1 

 

 
Fig. 2. The contingency analysis results. 
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Table 1 presents a summary of the optimized generation 

schedule for each optimization technique along with the cor-

responding costs for the Base Case scenario. ASHO (802.34 

$): The Adaptive Swarm Hybrid Optimizer yields the mini-

mal total generating cost. This is due to its good distribution 

of load among the generators, which saves fuel consumption 

by optimally utilizing each generator's capabilities. SPSO 

(815.21 $): Standard Particle Swarm Optimization exhibits 

marginally lower efficiency compared to ASHO, resulting in 

a slightly elevated overall cost. The load distribution re-

mains fairly balanced but may not be optimized for reducing 

operational expenses. The Genetic Algorithm technique in-

curs the highest total generation cost at $825.67, indicating 

that although it produces a satisfactory solution, it fails to 

optimize the generation schedule as efficiently as the other 

methods.  DE (820.54 $): Differential Evolution outperforms 

Genetic Algorithms but incurs a greater expense than 

ASHO. It may require further iterations to achieve an appro-

priate solution, thereby elevating operational expenses. The 

results clearly indicate that ASHO is the most efficacious 

method for cost reduction in this context. Alternative ap-

proaches, although offering satisfactory answers, do not 

achieve the cost-effectiveness of ASHO. Enhancing genera-

tion scheduling is crucial for minimizing operational ex-

penses, and sophisticated optimization methods such as 

ASHO can greatly enhance the economic efficiency of pow-

er generation systems. 

 

B. Contingency Analysis 

Contingency analysis is a vital procedure in power system 

operation that assesses the stability and dependability of the 

system during exceptional conditions, such as the failure of 

crucial components like transmission lines or generators. 

The objective is to evaluate the system's response to these 

potential interruptions and determine its capacity to function 

securely and cheaply. This analysis involved subjecting the 

system to N-1 contingencies, simulating the breakdown of a 

single important component, such as a generator or transmis-

sion line. This elucidates how the residual system resources 

mitigate the deficit caused by the malfunctioning compo-

nent. Table 2 illustrates the efficacy of various optimization 

methods (ASHO, SPSO, GA, and DE) in a contingency sce-

nario involving the unavailability of Generator 2. Generator 

outages complicate the maintenance of operational stability, 

as the system must depend on the surviving generators to 

fulfill demand. The contingency is modeled by excluding 

Generator 2 from the system, and multiple performance 

measures are assessed to determine the system's robustness.  

Table 2 illustrates that several algorithms exhibit differing 

levels of efficacy in system management during the contin-

gency scenario. 

 The ASHO (Adaptive Swarm Hybrid Optimizer) algo-

rithm demonstrated superior performance, achieving the 

lowest overall cost of $832.15 and the minimal voltage devi-

ation of 0.028 p.u.  Furthermore, it guaranteed the absence 

of line flow violations, a crucial indicator of system security. 

The SPSO (Standard Particle Swarm Optimization) tech-

nique yielded a greater overall cost ($845.67) than ASHO 

and exhibited a somewhat larger voltage variation (0.034 

p.u.). It exhibited a single line flow violation, suggesting that 

the system's security was compromised under this approach. 

The Genetic Algorithm (GA) yielded a total cost of $856.23 

and a voltage deviation of 0.039 p.u., surpassing both ASHO 

and SPSO results. It also experienced two-line flow viola-

tions, illustrating the difficulties in sustaining system stabil-

ity and efficiency with this method. The Differential Evolu-

tion (DE) resulted in a total cost of $850.79 and a voltage 

deviation of 0.036 per unit, marginally inferior to SPSO but 

superior to GA. It also encountered a single line flow viola-

tion, akin to SPSO, indicating that this approach offers a 

reasonable performance level during contingencies. 

 The investigation indicates that ASHO surpasses the oth-

er algorithms regarding cost minimization, voltage regula-

tion, and system stability during generator outages. Its ca-

pacity to circumvent line flow violations and sustain minimal 

voltage deviation renders it an exceptionally effective strate-

gy for resilient power system functioning during contingency 

situations. The contingency analysis illustrates the signifi-

cance of optimization methods in ensuring secure and effi-

cient power system operations, especially in situations where 

essential components are inaccessible. 

The Figure 2 illustrates the total generation cost incurred 

by four optimization methods—ASHO, SPSO, GA, and 

DE—during a generator outage (Generator 2). Among all 

the methods, ASHO (Adaptive Swarm Hybrid Optimizer) 

performs the best, achieving the lowest cost of $832.15, in-

dicating its strong ability to manage the system efficiently 

under contingency conditions. SPSO (Standard Particle 

Swarm Optimization) and DE (Differential Evolution) fol-

low with costs of $845.67 and $850.79, respectively, while 

GA (Genetic Algorithm) results in the highest cost of 

$856.23. From figure 2 it clear that ASHO is the most cost-

effective option, compared to the others. This confirms that 

ASHO not only reduces operating expenses but also ensures 

reliable power system performance during generator failures. 

 

C. Computational Efficiency 

The assessment of optimization approaches, particularly 

for complex problems requiring high-performance solutions, 

is contingent upon computing efficiency. Computational 

efficiency is often assessed by the duration required for an 

algorithm to converge or operate effectively. A comparative 

analysis of computing time was conducted among the Adap-

tive Swarm Hybrid Optimizer (ASHO), Standard Particle 

Swarm Optimization (SPSO), Genetic Algorithm (GA), and 

Differential Evolution (DE). ASHO requires a little longer 

computation time than SPSO due to its multiswarm dynam-

ics. These dynamics require more oversight to coordinate 

and control several sub-swarms, hence enhancing algorith-

mic exploration. Notwithstanding this slight increase in 

computational time, ASHO surpassed GA and DE in terms 

of time efficiency. 

ASHO's hybrid characteristics harmonize exploration and 

exploitation by amalgamating the advantages of multiple 

swarms, elucidating its exceptional performance. SPSO was 

more straightforward and expedient than ASHO, although 

exhibited diminished exploratory capability. Its streamlined 

structure, which updates velocity and location without multi-

IAENG International Journal of Computer Science

Volume 52, Issue 9, September 2025, Pages 3403-3409

 
______________________________________________________________________________________ 



 

swarm management, results in a computing time of 11.2 sec-

onds. SPSO is effective for uncomplicated landscapes but 

may encounter difficulties during prolonged investigations.  

GA required 22.4 seconds for computation, the most pro-

longed duration among the four approaches.  The computa-

tional duration of genetic algorithms is attributable to popu-

lation-based genetic operators such as selection, crossover, 

and mutation, which necessitate many evaluations per gener-

ation. Despite GA's robustness and global searchability, its 

efficacy is frequently impeded when addressing large or 

intricate problems. DE outperformed GA by completing the 

task in 18.5 seconds. The mutation and recombination pro-

cesses of DE are more straightforward than the genetic oper-

ators of GA, hence decreasing computational overhead. DE 

required more time for computation than ASHO and SPSO, 

indicating a greater demand for function evaluations to 

achieve convergence. 
 

TABLE 3 

THE COMPUTATIONAL TIME ANALYSIS OF THE FOUR ALGORITHMS 

Algorithm Time (seconds) 

ASHO 12.8 

SPSO 11.2 

GA 22.4 

DE 18.5 

 

The investigation indicates that ASHO provides a bal-

anced compromise between computational efficiency and 

optimization efficacy. Although its computing time is mar-

ginally more than that of SPSO, its superior capability in 

addressing complicated problems renders it the preferable 

option. The results emphasize the necessity of choosing an 

algorithm that corresponds with the problem's specifications, 

especially in contexts where time economy is paramount.  

Table 3 illustrates the relative efficiency of the algorithms, 

underscoring ASHO's equilibrium between performance and 

computational duration, rendering it a feasible option for 

intricate optimization problems. 

 To further validate the robustness and efficiency of the 

proposed Adaptive Swarm Hybrid Optimizer (ASHO), a 

multi-contingency (N-2) scenario was simulated involving 

the simultaneous outage of Generator 2 and Transmission 

Line 6 and it is presented in Table 4. This type of stress test 

is critical for assessing system reliability under severe oper-

ating conditions. As shown in Table 4, ASHO maintained 

the lowest total generation cost ($860.25) compared to 

SPSO ($876.12), GA ($890.45), and DE ($880.67), demon-

strating its superior cost-efficiency even during major dis-

ruptions. 
TABLE 4 

MULTI-CONTINGENCY ANALYSIS (GENERATOR 2 AND LINE 6 OUTAGE) 

Metric ASHO SPSO GA DE 

Total Generation 

Cost ($) 860.25 876.12 890.45 880.67 

Voltage Deviation 

(p.u.) 0.032 0.041 0.045 0.042 

Line Flow Viola-

tions 0 2 3 2 

 

Moreover, ASHO recorded the least voltage deviation 

(0.032 p.u.) among all algorithms, indicating better voltage 

stability across the system buses. Most notably, ASHO en-

sured zero-line flow violations, a key indicator of secure 

operation under contingencies. In contrast, SPSO and DE 

each experienced two violations, while GA suffered the 

highest number of violations (three), which could threaten 

the operational safety of the power system. These results 

confirm that ASHO is not only effective under standard op-

erating conditions but also resilient under severe disturb-

ances, making it a highly suitable optimization technique for 

real-world security-constrained power systems. 

The analysis of computational efficiency indicates that 

ASHO provides an effective equilibrium between computa-

tional time and optimization performance, rendering it a 

versatile choice for various tasks. Although its computing 

time is slightly more than that of SPSO, its superior capabili-

ties warrant the compromise. This research offers significant 

information for choosing algorithms suited to certain optimi-

zation difficulties, especially in areas where computing effi-

ciency is paramount. 

 

V. CONCLUSION 

This research introduces a novel Adaptive Swarm Hybrid 

Optimizer (ASHO) to tackle the complexities of Security-

Constrained Optimal Power Flow (SCOPF) in power sys-

tems. The IEEE 30-bus system was utilized to assess the 

suggested method, with findings validating its effectiveness 

in reducing generation costs, minimizing transmission loss-

es, and ensuring system security in both normal and contin-

gency conditions. The ASHO method proficiently integrates 

multiswarm dynamics, adaptive inertia weights, and muta-

tion operators to attain an equilibrium between exploration 

and exploitation. These improvements tackle critical issues 

such as premature convergence and solution stagnation, 

commonly found in conventional optimization techniques.  

ASHO attains enhanced performance relative to Standard 

Particle Swarm Optimization (SPSO), Genetic Algorithm 

(GA), and Differential Evolution (DE). The technique im-

proved voltage stability throughout the network, hence aug-

menting overall system reliability. The resilience and flexi-

bility of ASHO highlight its capacity as an effective instru-

ment for contemporary power system optimization. ASHO 

provides a viable solution for integrating renewable energy 

sources, enhancing grid reliability, and reducing operational 

costs by tackling the intrinsic nonlinearity and nonconvexity 

of SCOPF problems in complex power networks. Subse-

quent study will concentrate on expanding the ASHO 

framework to encompass dynamic SCOPF situations and 

larger power systems, in addition to investigating its amal-

gamation with machine learning methodologies for predic-

tive and adaptive optimization. These developments would 

augment its usefulness in practical power system operations, 

ensuring sustainable and safe energy management amidst 

increasing demands and problems. 
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