
Abstract—Shared bicycles, as an important mode of urban
short-distance travel, play a significant role in enhancing
traffic efficiency, alleviating traffic congestion and promoting
sustainable mobility. However, the temporal and spatial
volatility of shared bicycle demand makes it difficult to achieve
efficient dispatch balance during peak travel hours, which has
become one of the key factors restricting its rapid development.
A high-precision shared bicycle demand prediction model, the
CEEMDAN-IPSO-LSTM model, has been constructed to
address issues such as low bicycle turnover efficiency and
imbalanced supply and demand. It eliminates noise from time
series data via adaptive noise complete ensemble empirical
mode decomposition (CEEMDAN). This model integrates
improved particle swarm optimization (IPSO) to dynamically
optimize the hyperparameters of the long short-term memory
network (LSTM). Moreover, it adopts an independent
prediction strategy among components to enhance the model's
prediction accuracy. Experimental results indicate that, in
comparison with traditional LSTM, PSO-LSTM, IPSO-LSTM,
and CEEMDAN-LSTM models, the constructed model exhibits
the best performance in terms of error metrics, including mean
absolute error (MAE), root mean square error (RMSE), and
the coefficient of determination (R²). This fully demonstrates
its superiority in prediction accuracy and stability.

Index Terms—shared bicycles, demand prediction, empirical
mode decomposition, improved particle swarm optimization,
long short-term memory network

I. INTRODUCTION

HE emergence of bike-sharing systems has significantly
transformed urban mobility by bridging the gap between

public transportation and final destinations, thereby reducing
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reliance on private cars, taxis, and ride-hailing services [1],
[2]. This innovation has not only mitigated urban traffic
congestion but also curbed greenhouse gas emissions,
making a significant contribution to the sustainable
development goals. Statistical data indicate that over 700
bike-sharing systems are currently in operation across
various countries globally, and the utilization of shared
bicycles is steadily expanding [3]. Nevertheless, enhancing
operational efficiency remains a crucial challenge. There is a
pressing need for advanced predictive models to determine
the optimal number of vehicles and spatial distribution
strategies [4]. Accurate demand forecasting and
well-planned infrastructure are essential for maximizing the
socioeconomic and ecological advantages of bike-sharing
systems, while simultaneously minimizing operational
inefficiencies, such as improper parking and resource
redundancy [5], [6].
Regarding the prediction method, the experimental

findings indicate that the decomposition clustering ensemble
(DCE) learning approach proposed by Wei et al. [7] can
significantly enhance the prediction accuracy. To account
for the spatio-temporal correlations, Lv et al. [8] employed a
stacked autoencoder (SAE) model to characterize the traffic
flow features for prediction purposes and constructed a
traffic flow prediction model grounded in deep learning. The
LSTM is an improvement and extension of recurrent neural
network (RNN) [9]. Cai et al. [10] utilized the LSTM model
to predict the future trajectory of the underwater
vehicle-manipulator system (UVMS) and put forward a
novel prediction framework based on nonlinear model
predictive control (NMPC). Given that the hidden variables
in LSTM lack the representation of high-quality data, a
supervised LSTM (SLSTM) network was proposed for soft
sensing techniques [11]. Huang et al. [12] applied the
CNN-LSTM-Attention model in wind speed prediction.
In the field of shared bicycle demand forecasting,

researchers have proposed various methods to address the
complex spatio-temporal characteristics of bicycles. For
example, Qiao et al. [13] presented a three-in-one dynamic
shared bicycle demand forecasting model, which was
developed in response to the complex demand for bicycles
under non-classical circumstances. This model combines
three core technologies: station clustering, dynamic factors,
and LSTM network prediction. Wang et al. [14] initiated
their research from geographical and spatial perspectives.
They analyzed the influence of non-motorized transportation
facilities, intersection density, and land use on bicycle
demand and employed a multi-scale geographically
weighted regression (MGWR) model for demand prediction.
Building on this, Feng et al. [15] proposed a novel
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spatio-temporal aggregation graph neural network
(STAGNN) to overcome the limitations of existing models
in capturing the dynamic characteristics of bicycle flows.
Additionally, Hong [16] carried out time series clustering
analysis to categorize 263 shared bicycle stations in the four
major entrance areas of central Seoul and constructed a
random forest regression model to precisely predict the
demand at each station. Continuing this line of research, Shi
et al. [17] utilized the shared bicycle data in London as the
dataset and applied LSTM neural network models as well as
machine learning models grounded on meteorological and
temporal factors to forecast the hourly demand for shared
bicycles. Given that the utilization of shared bicycles is
influenced by numerous diverse factors, accurately
predicting the quantity of shared bicycles poses a challenge.
To address this critical issue, Huang et al. [18] put forward a
bimodal gaussian non-homogeneous poisson (BGIP)
algorithm for forecasting shared bicycle demand. Moreover,
to enhance the service quality of bike-sharing systems
(BSSs) and resolve the problem of uneven distribution of
bike-sharing space, Ashqar et al. [19] proposed a novel
spatial prediction model during the search for new stations.
Finally, Ma et al. [20] presented a CNN-LSTM-Attention
prediction model based on the traffic flow prediction theory
to accomplish precise demand forecasting for shared
bicycles.
Despite the fact that certain scholars have carried out

relevant research on the demand prediction of shared
bicycles, the issue of matching bicycle usage with demand
across stations remains to be further investigated. This is
particularly the case during peak hours when the borrowing
and returning volumes exhibit significant fluctuations. To
scientifically establish the dispatch frequency and quantity,
it is essential to conduct a thorough analysis of the
borrowing and returning demand characteristics of stations.
This analysis can optimize resource allocation and enhance
system efficiency. In this chapter, a demand forecasting
method for shared bicycles based on the
CEEMDAN-IPSO-LSTM model is explored. The objective
is to construct an accurate and efficient forecasting model
that can capture the dynamic characteristics of demand.

II. MODEL CONSTRUCTION

A. Model framework construction

In the integrated model for forecasting urban shared
bicycle demand, removing random noise from prediction
data and optimizing neural network parameters are crucial to
tackle the complexity and non-stationarity of time-series
data. First, CEEMDAN is employed to decompose
time-series data into multiple intrinsic mode functions
(IMFs) of varying frequencies and complexities, together
with a residual component (Res), which lays the foundation
for noise elimination. Next, the IPSO algorithm is
introduced to dynamically adjust LSTM parameters
[21]—such as the number of neurons, learning rate, and
iteration count—thereby enhancing the model's adaptability
to nonlinear patterns. This sequential integration of
CEEMDAN decomposition and IPSO optimization
facilitates the establishment of the CEEMDAN-IPSO-LSTM
model, whose operational flowchart is depicted in Fig. 1.

Fig. 1. CEEMDAN-IPSO-LSTM Prediction Model Flowchart

B. CEEMDAN-IPSO-LSTM Prediction Model Flowchart

Adaptive noise complete ensemble empirical mode
decomposition (CEEMDAN) represents an adaptive
posterior decomposition approach that has been enhanced
based on empirical mode decomposition (EMD) and
ensemble empirical mode decomposition (EEMD). This
method is capable of adaptively decomposing the given data
into multiple mode components [24]. By adaptively
introducing opposite white noise to the original signal,
CEEMDAN effectively circumvents the problems of mode
mixing in EMD and reconstruction errors in EEMD
decomposition after the addition of white noise [25]. The
decomposition steps of CEEMDAN are as follows:
Let Gi (ꞏ) denote the i-th IMF mode component obtained

after EMD decomposition of the sequence, ɛi be the noise
coefficient added by CEEMDAN to the input sequence at
the i-th stage, and cm(t) denote the m-th IMF component
generated by the CEEMDAN algorithm at a certain stage.
Add N instances of Gaussian white noise to the original
signal y(t) to generate N preprocessed sequences yn(t) (n=1,
2, …, N).

     0n ny t y t t   (1)

In the equation, ɛ0 is the noise weighting coefficient, and
δn(t) is the n-th addition of Gaussian white noise.
Perform modal decomposition on the yn(t) sequence,

extract the first IMF component, and calculate its mean
value, which is the first component c1(t) obtained from the
CEEMDAN decomposition. Simultaneously, obtain the first
sequence r1(t), which is the residual, as shown in (2) and (3).

     1 1
1

1
, 1,2,...,

N
nc t c t n N

N
  (2)

     1 1r t y t c t  (3)

Gaussian white noise is added to the residual sequence
r1(t) to construct N new sequences. Modal decomposition is
then continued to compute their mean values, yielding the
next modal component c2(t), as described in (4). Subtracting
c2(t) from the residual sequence results in r2(t), as shown in
(5).

         2 1 1 1 1
1

1
, 1,2,...,

N

nc t E r t E t n N
N

    (4)

     2 1 2r t r t c t  (5)

Repeat the above steps, and the residual formula for stage

IAENG International Journal of Computer Science

Volume 52, Issue 9, September 2025, Pages 3410-3420

 
______________________________________________________________________________________ 



m is shown in (6).

     1m m mr t r t c t  (6)

Continue performing N modal decompositions to obtain
the (m+1)-th sequence, as shown in (7). By following this
recursive process, the decomposition continues until the
final residual sequence is obtained, ultimately yielding (8)
upon completion of the signal decomposition.

         1 1
1
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, 1, 2,..., ?

N
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     (7)

     
1

M

my t R t c t  (8)

C. Long short-term memory network (LSTM)

Long short-term memory network (LSTM) is an
extension of RNNs [26] specifically designed to address the
gradient vanishing and gradient explosion issues
encountered by traditional RNNs when processing
sequential data. LSTM achieves this by introducing a gating
mechanism (input gate, forget gate, and output gate), which
effectively controls the flow and update of information,
enabling long-term information transmission and persistence
across different time steps [27].
The forget gate and input gate collaborate to manage the

cell state. The forget gate outputs a vector of values between
0 and 1, selectively discarding information from the
previous cell state. Concurrently, the input gate decides
which elements from the current input and candidate cell
state should be added to update the cell state. By controlling
information retention and addition, these two gates update
the cell state at each time step, refining it further with
candidate cells to preserve only relevant information.
Subsequently, the output gate processes the updated cell
state, generating a vector that determines the hidden state
and controls the information flow to the next layer, serving
as the final output of the LSTM unit.

Fig. 2. LSTM Process Flow Diagram

As shown in the Fig. 2, a typical LSTM neural network is
composed of an input layer, an output layer, and a hidden
layer. The storage units in the hidden layer consist of input
gates it, output gates ot, and forget gates ft, which are used to
control the unit state. The forget gate ft determines which
information to delete from the unit state Ct-1 at the previous
moment.

D. Improved particle swarm optimization (IPSO)

Particle swarm optimization (PSO) has been widely
applied in various fields such as neural network
optimization, image processing, decision scheduling,
machine learning, and data mining [28]. However, the
traditional PSO algorithm uses inertial weights ω and
learning factors c1 and c2, which are typically set as
constants. This leads to drawbacks such as premature
convergence, insufficient global convergence capability, low
search efficiency in later iterations, and poor accuracy.
When the inertial weight ω is too large, particles may move
too far during iterations, leading to missing the optimal
solution or causing iterative convergence oscillations.
Conversely, when ω is too small, the iterative step size
becomes too small, resulting in slow convergence and the
inability to reach the optimal solution. To address these
issues, a linearly decreasing inertial weight ω is adopted to
improve the initial global search efficiency of particles. As
the number of iterations increases, the inertial weight ω is
gradually reduced to enhance the local search capability of
particles in the solution space and achieve more precise
local search in the later stages of the solution process. The
inertial weight ω is expressed as:

 max min
max

max
k

k

G

 
 


  (9)

In the formula, ω k represents the inertial weight at the
k-th iteration; ω min and ω max denote the maximum and
minimum values of the inertial weight settings, respectively;
Gmax denotes the maximum number of iterations. Its
characteristic is that the inertial coefficient dynamically
adjusts according to the state of the particle swarm. When
the values of the particle swarm tend to be consistent, ω

increases; when the particle swarm disperses, ω decreases.
This promotes global search, thereby balancing the global
search speed and local search accuracy. The c1 and c2 are:

 1,max 1,min

1, 1,max
max

k

c c k
c c

G


  (10)

 2,max 2,min

2, 2,min
max

k

c c k
c c

G


  (11)

c1,k and c2,k denote the learning factors at the kth iteration;
c1,max and c1,min denote the maximum and minimum values of
c1, respectively; c2,max and c2,min denote the maximum and
minimum values of c2, respectively; Gmax denotes the
maximum number of iterations.
To demonstrate the superiority of the IPSO algorithm,

this study selected four classic benchmark functions to
compare PSO and IPSO, focusing on evaluating the
advantages of IPSO in terms of global search capability,
convergence speed, and solution accuracy, and verifying its
effectiveness in complex optimization problems [29]. The
Sphere function was used to examine convergence speed,
the Rosenbrock function to test global search capability,
while the Rastrigin and Griewank functions assess the
ability to escape local optima. To ensure fairness, the
population size for all algorithms was set to 30, and the
maximum number of iterations was set to 100. The
performance comparison results of the benchmark functions
are shown in Fig. 3.
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(a) Sphere function performance test comparison

(b) Rosenbrock function performance comparison

(c) Rastrigin function performance comparison

(d) Comparison of Griewank function performance tests

Fig. 3. Benchmark function performance comparison results
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III. CASE STUDY

A. Data set selection

The experimental data for this study were obtained from
the Kaggle website (https://www.kaggle.com/datasets) and
consist of bicycle trip data from Citi Bike in New York City.
A total of 1.06 million bicycle trip records were extracted on
an hourly basis from July 1 to 31, 2023. The study
considered the impact of time-related features (hour,
weekday, and holiday) and weather-related features
(temperature, wind speed and precipitation) on the demand
for shared bicycles. By integrating these multi-dimensional
features, a multivariate time-series prediction model was
developed to provide a more robust basis for operational
scheduling and resource allocation in shared bicycle
systems.
Using the shared bicycles station distribution data and the

number of bicycles parked at each station obtained from the
official website of the New York City government
(https://www.nyc.gov), a visualization analysis of the
bicycle supply and demand situation at each station was
conducted. According to the availability status of the
bicycles, each station is color-coded as shown in Fig. 4.
Specifically, red represents the absence of available bicycles
at the station; yellow indicates that a limited number of
bicycles are available, which can partially satisfy the
demand but the supply is insufficient; and green denotes that
an adequate number of bicycles are available to meet the
riding requirements of users.

Fig. 4. Shared bicycles station status

B. Model parameter optimization

To assess the superiority and prediction accuracy of the
CEEMDAN-IPSO-LSTM hybrid model, this study performs
a comprehensive comparative analysis against benchmark
models including LSTM [30], PSO-LSTM [13],
IPSO-LSTM [14], and CEEMDAN-LSTM.
1) Initialize particle swarm parameters
To determine the population size, number of iterations,

learning factors, and value ranges for particle positions and
velocities, the following specific parameter settings are
adopted: the number of particles is set to PN = 50, the
number of iterations is 200, and the search dimension is 8.
The weighting factors are defined as ωmax = 0.9, ωmin = 0.4,
with learning factors c1 = 2, c2 = 2, and random coefficients
r1 = 0.8, r2 = 0.3. Particles are initialized by randomly
generating a particle vector Xi=(n, lr, h1, h2), where: n
denotes the algorithm iteration count (ranging between 10
and 100), lr represents the learning rate (ranging between
0.001 and 0.01), and h1 and h2 denote the number of neurons
in the first and second hidden layers, respectively (both
ranging between 1 and 100). The particle velocity Vi = (Vi1,
Vi2, Vi3, Vi4) is generated using uniformly distributed random
samples within the interval [0, 1), as described in [14].

TABLE I
PSO AND IPSO PARAMETER SETTINGS

PSO parameter values IPSO parameter values

Number of particles 50 50

Number of iterations 200 200

Search dimension 8 8

Weight inertia ωmax=0.9 ωmin=0.4 ωmax=0.9 ωmin=0.4

Learning factor
c1,max=2 c1,min=0.5

c2,max=2 c2,min=0.5
c1,max=2 c1,min=0.5
c2,max=2 c2,min=0.5

2) Update particle positions and velocities
The fitness function is defined to evaluate the

performance of parameter combinations for each particle. It
quantifies the model's error or performance metric on the
validation set, as shown in (12):

 21
fit y y

n
   (12)

In the formula: n denotes the the number of prediction
sample points, y´ represents the actual output of the sample
points, and y is the expected output of the same sample
points.
During each iteration, the position of each particle and its

fitness value are computed. By comparing the latest fitness
value with the initial fitness value of the particle's position,
the optimal individual position and subsequently the optimal
population position are determined. In each iteration,
particles update their velocity and position based on the
fitness function to continuously optimize the search process.
Through updating the optimal individual positions and the
global optimal position, particles gradually converge to the
optimal solution. Within the maximum number of iterations,
particle positions are continuously adjusted, and the optimal
particle is finally output, representing the optimal
parameters of the LSTM neural network.
In the IPSO-LSTM, PSO-LSTM, and

CEEMDAN-IPSO-LSTM models, the corresponding
optimization algorithms dynamically determine the number
of neurons in the hidden layer. The optimization results of
the particle swarm algorithm are shown in TABLE Ⅱ, and
those of the CEEMDAN-IPSO-LSTM are listed in TABLE
Ⅲ.
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C. Evaluation criteria selection

These metrics include mean absolute error (MAE), root
mean square error (RMSE), mean absolute percentage error
(MAPE), and coefficient of determination (R²) [15].

1

1
| |

n

i i
i

MAE y y
n 

  (13)
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(16)

In the formula, xr represents the actual demand data for a
single vehicle, ˆrx represents the predicted demand value for

a single vehicle, and rx represents the predicted average

value.
TABLEⅣ

LSTM PARAMETER SETTINGS

Parameter Name Parameter Value Parameter Name Parameter Value

Time step 12 Loss function MSE

Number of
hidden layers

2 Epoch 100

Optimization
function

Adam Batch size 32

Activation
function

Sigmoid Dropout 0.2

TABLE Ⅱ
PARAMETER OPTIMIZATION RESULTS OF PARTICLE SWARM OPTIMIZATION ALGORITHM

IMF

IPSO-LSTM PSO-LSTM

Number of
iterations

Learning rate Hidden layer 1 Hidden layer 2
Number of
iterations

Learning rate Hidden layer 1 Hidden layer 2

IMF1 184 0.0056 159 24 154 0.0041 105 21

IMF2 175 0.0061 121 81 114 0.0021 114 19

IMF3 192 0.0081 239 16 144 0.0084 144 8

IMF4 177 0.0031 147 73 135 0.0031 135 16

IMF5 202 0.0011 167 27 150 0.0074 150 6

IMF6 182 0.0036 146 33 118 0.0061 18 25

IMF7 184 0.0051 194 19 104 0.0081 104 31

IMF8 176 0.0071 144 91 121 0.0067 121 22

Res 182 0.0014 139 67 110 0.0039 110 28

TABLEⅢ
PARAMETER OPTIMIZATION RESULTS OF CEEMDAN-IPSO-LSTM

IMF

CEEMDAN-IPSO-LSTM

Number of

iterations
Learning rate Hidden layer 1 Hidden layer 2

IMF1 200 0.0012 248 20

IMF2 194 0.0025 241 26

IMF3 201 0.0011 244 19

IMF4 198 0.0021 231 21

IMF5 189 0.0039 222 33

IMF6 204 0.0010 235 19

IMF7 195 0.0018 248 20

IMF8 203 0.0041 248 21

Res 206 0.0011 247 19
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IV. ANALYSIS OF EXPERIMENTAL RESULT

A. CEEMDAN decomposition

The original data decomposed by CEEMDAN present a
multi-level modal structure [31]. This study effectively

decomposes the original bicycle flow data into multiple
IMF components and residual terms of different frequencies.
Each IMF possesses distinct characteristics in terms of
frequency, amplitude, and period. These IMFs are arranged
in descending order of frequency, as shown in Fig. 5.

Fig. 5. Bicycle Flow Data CEEMDAN Decomposition

High-frequency IMFs (such as IMF1 and IMF2) primarily
manifest as short-term fluctuations. These modes typically
reflect noise or short-term fluctuations in bicycle usage,
often associated with sudden events, holidays, or weather
changes. Such fluctuations are small in amplitude but occur
frequently and with significant variability.
Mid-frequency IMFs (such as IMF5 and IMF6) often

reflect relatively stable periodic fluctuations. They reveal
mid-term trends in the data, such as regular changes in
bicycle usage on weekends or weekdays, which may exhibit
more pronounced periodic characteristics.
Low-frequency IMFs (e.g., IMF8 and IMF9) primarily

capture long-term trend changes. These modes change
slowly, have longer periods, and exhibit larger amplitudes,
typically revealing long-term trends in the data, such as
changes in bicycle usage due to policy changes, population
migration, or urban development.
CEEMDAN decomposition effectively separates

high-frequency and low-frequency components, reduces
modal aliasing, and clearly distinguishes short-term
fluctuations from long-term trends, thereby revealing the
multi-scale characteristics of shared bicycle data. By
introducing adaptive noise, CEEMDAN reduces random
noise, improves the stability and accuracy of the
decomposition, and provides more precise input data for
subsequent model analysis.

B. IMF forecasts and reconstruction

1) IMF forecast analysis
This paper adopts the independent prediction of IMF

components (IMF-by-IMF) strategy, which predicts each
modal function (IMF) obtained from decomposition
separately to more accurately capture the characteristics of
changes in different frequency components, as shown in Fig.
6. By decomposing a complex time series into multiple IMF
components with distinct characteristic frequencies and
predicting them separately, this approach preserves the
inherent characteristics of each component while effectively
avoiding frequency aliasing. This allows the model to
capture dynamic changes within their respective frequency
ranges, which are then reconstituted into the original time
series signal. This not only improves the prediction accuracy
of the model but also facilitates the analysis of the
contribution of each frequency component to the overall
trend prediction, thereby providing a robust basis for error
analysis and model improvement.
By plotting the trend lines of the predicted values and

actual values for each IMF, we visually demonstrate the
model's prediction performance across different frequency
components. We calculate the RMSE, MAE, and R² for each
IMF using these metrics to quantify the prediction
performance of each IMF. as shown in TABLE Ⅴ. The
CEEMDAN-IPSO-LSTM model exhibits varying prediction
performance for different frequency components. Overall, as
the IMF frequency decreases, the RMSE and MAE show a
decreasing trend, while the R² gradually approaches 1,
indicating that the model predicts low-frequency
components more accurately with smaller errors.
The prediction errors in the high-frequency components
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(IMF1 and IMF2) are relatively small, with RMSE values of
81.3 and 62.5, respectively, and MAE values of 35.1 and
30.4, respectively. The coefficient of determination R² is
relatively high (0.865 and 0.914), but there is still some
deviation.
The prediction performance of the mid-frequency

component (IMF4 and IMF5) improved, with RMSE and
MAE of 56.1/24.9 and 42.3/26.1, respectively, and the
coefficient of determination significantly increased to 0.954
and 0.987, indicating that the model has a strong ability to
capture mid-frequency fluctuations.
The prediction performance of the low-frequency

component (IMF8 and IMF9) was optimized, with RMSE
gradually decreasing to 28.9 and MAE reaching a minimum
of 18.2. The coefficient of determination R² approached 1
(0.986 to 0.991), indicating that the model performs
exceptionally well in predicting long-term trends with
minimal error.

TABLE Ⅴ
EVALUATION OF PREDICTION PERFORMANCE

IMF RMSE MAE R2

IMF1 62.3 35.1 0.865

IMF2 60.5 30.4 0.914

IMF3 56.1 24.9 0.937

IMF4 42.3 26.1 0.954

IMF5 27.1 18.2 0.987

IMF6 31.8 19.3 0.984

IMF7 32.2 20.4 0.986

IMF8 30.1 21.5 0.986

IMF9 28.9 18.6 0.991

(a) High-frequency component prediction

(b) Mid-frequency component prediction

(c) Low frequency component prediction

Fig. 6. Component-wise Independent Prediction (IMF-by-IMF) Strategy Diagram

As is evident from the table, the model demonstrates a
relatively minor error in predicting high-frequency
short-term fluctuations. This implies that it possesses a
certain degree of adaptability to short-term fluctuations and
local characteristics, and showcases excellent robustness
when processing rapidly varying signals. The model exhibits

remarkable performance in predicting medium-frequency
and low-frequency components, particularly in accurately
capturing long-term trends. Moreover, as the frequency
diminishes, the prediction error decreases, and the
coefficient of determination R² approaches unity, indicating
that the model has a robust trend-capturing ability.
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In summary, the CEEMDAN-IPSO-LSTM model
demonstrates good balance when dealing with signal
components of different frequencies: it can accurately
predict short-term fluctuations and effectively capture
medium- and long-term trends. This adaptability to signals
across the entire frequency range provides a solid
foundation for the model's wide application and also
provides a clear direction for further improving prediction
accuracy and optimizing the model.
2) IMF forecast results reconstructed
This paper adopts an independent prediction strategy for

each component (IMF-by-IMF), in which each IMF and
residual term is separately predicted by the prediction model,
then recombined to form the overall prediction result. At
each time t, all IMF prediction values and residual terms
corresponding to the prediction results at that time are added
together to obtain the reconstructed value at that time. The
reconstruction formula is as follows:

         1 2 .ˆ ˆ ˆ .. ˆ ˆ
nX t IMF t IMF t IMF t R t     (17)

In the equation,  X̂ t is the reconstruction prediction

value at time t,  
ˆ

i tIMF is the prediction value of the i-th

IMF component at time t, and  R̂ t is the residual term at

time t.
By connecting the reconstructed values at each time point

into a complete time series, the overall reconstructed
prediction result is obtained. The reconstructed prediction
values not only contain the characteristics of each IMF
component but also capture the long-term trend information
from the residual term, thereby reflecting the comprehensive
changes of the original data across various time scales.

C. Model comparison and evaluation

To further understand the performance advantages of the
CEEMDAN-IPSO-LSTM model in the urban shared bicycle
demand forecasting scenario, it needs to be compared and
analyzed with various benchmark deep learning models,
especially through comparison with the LSTM, PSO-LSTM,
IPSO-LSTM, and CEEMDAN-LSTM models. This will
clearly demonstrate the synergistic effect of CEEMDAN
decomposition and the IPSO algorithm and quantify the
performance improvement, as shown in Fig. 7.

(a) Overall chart of shared bicycle demand forecast results

(b) Localized enlargement of prediction results

Fig. 7. Performance Comparison Analysis Chart of Baseline Models
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TABLEⅥ
EVALUATION METRICS FOR FIVE MODELS

Model
Evaluation Criteria

MAE RMSE MAPE/% R2

LSTM 34.81 50.39 20.19 0.859

PSO-LSTM 29.95 43.12 16.47 0.913

IPSO-LSTM 25.36 35.61 14.36 0.931

CEEMDAN-LSTM 26.78 37.21 18.91 0.952

CEEMDAN-IPSO-LSTM 20.47 30.84 10.56 0.995

Model prediction results show that the overall trends of
the five models are generally consistent with the actual
values, especially in terms of the peak and trough positions
of the time series, where all models accurately capture the
trends in bicycle flow. However, there are significant
differences among the models in terms of handling local
fluctuations, capturing complex changes, and predicting
long-term trends. Compared to other models, it not only
demonstrates excellent robustness and predictive capability
in handling nonlinear fluctuations in time-series data but
also effectively eliminates noise interference, providing
reliable support for high-precision shared bicycle scheduling.
Therefore, the CEEMDAN-IPSO-LSTM model exhibits
significant advantages in practical applications, particularly
in bicycle flow prediction scenarios with complex
fluctuation characteristics.
By comparing the convergence curves of the five models

over 100 training cycles, we can specifically evaluate the
convergence speed and final performance of each model. As
shown in Fig. 8, the CEEMDAN-IPSO-LSTM model
exhibits the best convergence performance. The
convergence curve of this model drops rapidly in the early
stages, indicating extremely fast initial convergence, and
remains highly stable throughout the training process, with
the final loss value significantly lower than that of other
models. This result indicates that the combination of
CEEMDAN's signal decomposition method and IPSO's
optimization strategy not only significantly accelerates the
model's convergence speed but also effectively improves
prediction accuracy while significantly reducing potential
fluctuations during the training process.

Fig. 8. Convergence curve comparison of models

Through the comparison of the residuals of the five
models, a residual comparison plot was constructed. The
scatter plot shows the correspondence between the predicted
values and the actual values of each model, while the box
plot further reveals the distribution characteristics of the
residuals of different models. As presented in Fig. 9, there
are significant differences among the models in terms of
prediction accuracy and stability. The residuals of the
CEEMDAN-IPSO-LSTM model nearly coincide with the
zero line, and the residual range is the narrowest, indicating
a high degree of consistency between its predicted and
actual values, thereby demonstrating exceptional prediction
accuracy and stability. This implies that the integrated
strategy of multi-model optimization and time series
decomposition enables this model to attain optimal
prediction performance.

Fig. 9. Residual comparison analysis of five models

V. CONCLUSION

In order to solve the demand problem of shared bicycles,
this study utilizes the New York shared bicycle dataset to
construct the CEEMDAN-IPSO-LSTM combined prediction
model. This model effectively resolves two crucial problems
in the demand prediction of shared bicycles: eliminating
data noise and optimizing neural network parameters.
Moreover, an optimization strategy integrating CEEMDAN
decomposition and IPSO optimization is proposed.
Through the decomposition of time series data into

multiple modal functions and residual terms, CEEMDAN
effectively reduces noise interference. Specifically, the
IPSO further enhances the predictive performance of the
model by dynamically optimizing the key parameters of the
LSTM model. The proposed prediction model adopts a
multivariate forecasting strategy, integrating diverse factors
from real-world scenarios, including weather types, rainfall
amounts, wind speeds, and holidays. This approach
effectively validates the model's superiority in dealing with
complex multivariate time-series data.
By conducting a comprehensive comparison of diverse

experimental results, we validate the superiority and
efficacy of the model, which is expected to further enhance
the prediction accuracy. This research offers novel
perspectives and methodologies for tackling intricate
forecasting challenges within urban transportation systems.
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It holds substantial application value and potential for the
advancement of intelligent transportation systems and the
refined management of shared mobility services.
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