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Abstract—A wireless multihop network (WMN) uses 

wireless nodes to relay data packets without a controller.  In 

such networks, source nodes' unpredictable routing decisions 

during multihop transmission might decrease network 

performance and throughput. To solve this, we present two new 

path selection algorithms: Noise-Level Path Selection (NLPS) 

and Interference-Level Noise-Learning Path Selection. Both 

approaches dynamically find the most effective multihop routes 

using deep reinforcement learning (DRL) to improve network 

end-to-end (E2E) throughput. To simplify processing, we use a 

nested lattice code (NLC) structure and a factor graph (FG) 

framework.  Simulations show that NLPS and INLPS enhance 

network capacity by 3.1× and 10.5×, respectively, compared to 

traditional FG-based methods. NLPS takes 0.627 seconds, 

INLPS 1.221 seconds, and FG 0.006 seconds.  Both strategies 

improve capacity and are feasible for real-time applications 

despite the longer processing time. 

 
Index Terms—Deep reinforcement learning, Factor graph, 

Nested lattice code, Learning path algorithm, Wireless multi-

hop networks. 

I. INTRODUCTION 

ECENT projections estimate that nearly 65% of the 

global population will be utilizing 5G networks in the 

near future [1]. This growing adoption signals a major in-

crease in the use of connected devices, such as smartphones, 

smartwatches, and other mobile technologies. With the arri-
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val of 6G, users can expect substantial enhancements over 

5G, including extended coverage, higher data rates, support 

for massive connectivity, and ultra-low latency. These im-

provements will be driven by emerging technologies such as 

artificial intelligence (AI)-powered tools for real-time net-

work management, planning, and optimization, along with 

extremely high-frequency bands (beyond 1 THz). Further-

more, 6G is anticipated to usher in a transformative digital 

revolution, transitioning from the traditional Internet of 

Things (IoT)" to the advanced concept of an Internet of In-

telligence [1]. To meet this vision, 6G systems must deliver 

intelligent and ubiquitous AI-driven services across a wide 

spectrum of devices, from cloud infrastructures to edge ter-

minals. AI will play a key role in designing and optimizing 

new architectures, communication protocols, and decision-

making processes. Advanced technologies such as full-

duplex communication, reconfigurable intelligent surfaces 

(RIS), and large-scale distributed MIMO systems are ex-

pected to be integral to future 6G systems. According to 

Trivedi et al. [2], wireless multihop networks (WMNs) will 

be a fundamental component of 6G, owing to their self-

organizing capabilities, high scalability, decentralized archi-

tecture, and adaptability to dynamic environments. 

In WMNs, nodes collaborate to autonomously establish a 

dynamic network structure, enabling data to travel over ex-

tended distances through multiple intermediary nodes. While 

these networks significantly extend coverage, they also in-

troduce challenges such as reduced throughput and increased 

latency, particularly when inefficient routing paths are se-

lected. As network size increases, so does the complexity of 

identifying the optimal transmission path among the many 

possible routes. This decision-making process directly influ-

ences network performance, as each route has unique char-

acteristics and constraints. Additionally, the concurrent for-

warding of packets—both local and relayed—by each node 

leads to delays due to processing and queueing, which be-

come more severe with larger node counts. To address these 

challenges, our study proposes a solution that integrates 

deep reinforcement learning (DRL) with factor graph (FG) 

modeling and nested lattice code (NLC) strategies. The FG-

based DRL (fDRL) framework is designed to enable each 

source node to select the most efficient relay node, forming a 

path that optimizes network throughput. FG assists in identi-

fying the optimal root node for the network, effectively re-

ducing computational overhead in DRL’s iterative processes. 

Meanwhile, NLC, integrated with the compute-and-forward 
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(CoF) strategy, mitigates link errors and improves reliability, 

thereby enhancing network capacity by reducing the re-

quired transmission time slots. 

Within this fDRL framework, we introduce two novel 

learning path selection (LPS) algorithms. The first leverages 

the signal-to-noise ratio (SNR) as a reward to boost end-to-

end (E2E) throughput. The second extends this approach by 

employing the signal-to-interference-and-noise ratio (SINR) 

to further refine the selection of optimal paths for each 

source-destination pair. Numerous studies have explored 

techniques to improve WMN capacity, often focusing on 

analytical modeling, routing strategies, and power control 

mechanisms. For instance, Fujimura et al. [3] provided ana-

lytical insights into E2E throughput concerning hop count 

and payload size in linear topologies. S. Rezaei et al. [4] 

expanded this by integrating node distribution, routing strat-

egies, and MAC layer considerations. Other researchers, 

such as Lee et al. [5] and Gui et al. [6], have proposed rout-

ing strategies that optimize for fairness and energy efficien-

cy, respectively. Tree-based network structures have also 

gained attention, with Eliiyi et al. [7] proposing a parallel 

method to identify root nodes, thereby minimizing energy 

consumption and processing time. Yu et al. [8] introduced 

the CTPC technique to enhance E2E performance in densely 

populated WMNs, incorporating full-duplex communication 

for better results. Similarly, Khun et al. [9], [10] developed 

the OATC scheme to support concurrent transmission (CT) 

modes while maintaining low interference levels and high 

transmission rates regardless of network density. 

Despite the promising applications of FG in wireless 

communications, its use in capacity modeling remains lim-

ited. For instance, Mao et al. [11] utilized FG in a central-

ized sensor network to iteratively estimate link loss, while Li 

et al. [12] presented a sequential particle-based SPA frame-

work for distributed target state estimation in WSNs. Jiang 

et al. [13] applied FG to real-world scenarios like pedestrian 

tracking using smartphone-based dead reckoning. In the do-

main of coding theory, Bu et al. [14] incorporated network 

coding into WMNs to solve cooperative communication 

problems, optimizing scheduling, routing, and node selection 

simultaneously. However, lattice coding theory remains un-

derexplored in WMNs. Xue et al. [15] demonstrated that 

lattice decoders can maintain a low word error rate even 

under stringent power constraints in wireless systems. 

The growing role of AI in wireless communication has 

spurred a wave of research into AI-augmented network solu-

tions. Rosenberger et al. [16] proposed a multi-agent DRL 

system for the Industrial IoT, allowing decentralized re-

source allocation with minimal computation delay. Inspired 

by this, our work adopts DRL to reduce path computation 

time in dynamic network environments. Wang et al. [17] 

presented a multigranular DRL strategy for channel alloca-

tion in WMNs, integrating mobile-edge computing to ensure 

reliable data transmission. Ho et al. [18] applied DRL in 

multi-access edge computing (MEC) to optimize offloading, 

server selection, and handovers in 5G networks, significantly 

enhancing performance and reducing overhead. Deep learn-

ing (DL), a prominent branch of AI, has also contributed to 

wireless network advancements [19], [20]. Reinforcement 

learning (RL), in particular, has shown promise for path se-

lection tasks in WMNs. Dugaev et al. [21] introduced an 

adaptive packet-forwarding protocol based on RL, outper-

forming conventional routing in terms of reliability and re-

covery speed. Among RL techniques, Q-learning is widely 

applied due to its model-free nature and ability to function 

without predefined environment models. Wongphatcha-

ratham et al. [22] demonstrated how multi-agent Q-learning 

can improve SINR by optimizing interference channels more 

effectively than traditional approaches. Similarly, Wang et 

al. [23] designed a Q-learning-based path selection method 

in clustered multihop networks, achieving near-optimal E2E 

throughput by decentralizing path computations. Su et al. 

\[24] proposed a Deep-Q-network solution to improve node 

selection in cooperative wireless sensor networks, signifi-

cantly boosting both capacity and efficiency. Despite these 

advancements, no prior studies have investigated the integra-

tion of FG and NLC within a Q-learning-based routing 

framework. Therefore, our research uniquely contributes to 

this domain by merging FG modeling, Q-learning algo-

rithms, and NLC strategies to significantly enhance network 

capacity and efficiency in wireless multihop network envi-

ronments. 

 

II. SYSTEM MODEL 

This section introduces and elaborates on the proposed 

factor graph-based Deep Reinforcement Learning (fDRL) 

framework. The overall architecture of the fDRL system is 

illustrated in Figure 1. Within the context of a Wireless 

Mesh Network (WMN), numerous wirelessly connected 

devices—such as smartphones, robots, vehicles, and com-

puters—are interconnected through multihop communica-

tion. The fDRL framework is composed of three primary 

components that collaboratively enable efficient information 

routing among the devices. First, in the root selection phase, 

a Factor Graph (FG) model is utilized alongside the Average 

Link Metric (ALM) and a Shortest Path Spanning Tree 

(SPST) algorithm to identify the most suitable root node 

within the tree-based network structure. Next, during the 

learning phase, two Q-learning-based algorithms—Naïve 

Learning Path Selection (NLPS) and Improved NLPS 

(INLPS)—are deployed to determine optimal forwarding 

paths for data packets from each device. In the final phase, 

known as the enhancement stage, the Node-Link Clustering 

(NLC) and Coordination Function (CoF) are employed to 

manage and optimize data transmissions between paired 

nodes.  

This strategy enhances communication reliability, espe-

cially in environments with high noise or interference, and 

reduces the required time slots for data delivery. This ap-

proach is particularly well-suited for large-area network de-

ployments, such as those found in stadiums or exhibition 

centers, where communication devices are largely stationary 

and typically rely on a single-root tree topology for data 

exchange. The Factor Graph (FG) model, in this context, is a 

bipartite graphical representation that decomposes a global 

function into a product of smaller, local functions. FG com-

prises two main types of nodes: variable nodes and factor 

nodes.  
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Fig. 1. The fDRL scheme's structural diagram 

 

 
 

Fig. 2. SPST calculation for node 𝐴 utilizing Dijkstra’s algorithm 

 

 

Variable nodes represent known values (evidence varia-

bles) or values to be inferred (query variables), while factor 

nodes define the relationships between them based on local 

functions. Factor graphs (FGs) are graphical models that 

express the relationships between variables using two types 

of nodes: variable nodes and factor nodes. Each factor node 

corresponds to a function over a subset of variables and 

connects to multiple variable nodes to define their interde-

pendencies. These factor functions are typically weighted to 

reflect their influence, with weights either manually set or 

learned from data. Due to their ability to model local de-

pendencies effectively, FGs are widely applicable in solving 

optimization problems in robotics and artificial intelligence. 

The sum–product algorithm is commonly used in FGs to 

combine local functions into a global function, enabling in-

ference across the network. This is particularly useful for 

computing optimal network capacity in tree-based topolo-

gies. In such structures, a global function encompasses the 

entire FG and supports efficient evaluation through message 

passing between nodes. The FG approach decomposes com-

plex global functions into smaller, tractable components, 

represented in a bipartite graph format. Here, evidence vari-

ables have known values, while query variables represent 

unknowns to be inferred. Each factor node connects to vari-

able nodes via factor functions, and its influence is quanti-

fied using a weight. These weights play a critical role in 

evaluating the overall network structure. Thanks to the local-

ity property of many optimization challenges in robotics, 

FGs can model a wide array of AI problems. To identify the 

optimal root node that maximizes network capacity, the FG 

framework operates in three stages: 

Shortest Path Spanning Trees (SPSTs) Construction: Each 

node in a wireless mesh network (WMN) is considered as a 

potential root, and Dijkstra’s algorithm is applied to com-
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pute the shortest paths from that root to all other nodes. This 

step results in multiple SPST topologies—each rooted at a 

different node—with links assigned weights using the Air-

time Link Metric (ALM). These SPSTs represent tree-

structured topologies optimized for minimum transmission 

cost. ALM Link Weight Aggregation via Sum–Product Al-

gorithm: For each SPST, the total link weight is calculated 

by summing the ALM values of individual links. While a 

simple summation might suffice, it fails to capture the net-

work's complex interdependencies. Instead, the sum–product 

algorithm is used to compute the total ALM link weight 

more precisely by leveraging factor graph principles. It per-

forms additions and multiplications across interconnected 

nodes, thereby considering the topology’s structural influ-

ence. Within this process, all nodes are treated equally, and 

only the root node acts as a parent in the node hierarchy. The 

relationship among nodes is modeled multiplicatively. Op-

timal Root Node Selection: After computing the total ALM 

link weight for each SPST using the sum–product method, 

the root node associated with the lowest total cost is select-

ed. This node forms the most efficient routing backbone for 

the network. This procedure is visually depicted in Step (3) 

of Figure 2, where the most optimal SPST topology is de-

termined based on minimized link cost. By integrating factor 

graphs and the sum–product algorithm, this method offers a 

robust mechanism to evaluate and select optimal routing 

configurations in full-duplex wireless multihop networks, 

surpassing traditional metric aggregation techniques. 

 

III. RESULTS AND DISCUSSION  

This simulation-based evaluation investigates the perfor-

mance of network capacity and computational time across 

two distinct scenarios. The first scenario assesses the effec-

tiveness of the Factor Graph (FG) and Node Link Capacity 

(NLC) approaches, whereas the second focuses on analyzing 

the performance of the proposed Learning-based Path Selec-

tion (LPS) algorithms. The simulation assumes that each 

intermediate node is responsible for transmitting one packet 

to a central destination node. Nodes are designed to transmit 

and receive simultaneously, and can also handle two incom-

ing packets at the same time. 

The simulation environment was implemented in 

MATLAB R2022a, running on an Apple Mac mini (2018) 

with a 3.2 GHz Intel Core i7 processor and 64 GB of DDR4 

RAM. In terms of the Q-learning setup, the initial learning 

rate was set to 1.0. However, due to modifications in the Q-

function design specific to this study, a reevaluation of the 

optimal learning rate was necessary. As depicted in Figure 3, 

comparisons were conducted using network sizes of 50 and 

100 nodes under consistent discount factors and threshold 

values. The analysis revealed that a learning rate of 1.0 pri-

oritized only newly acquired information during Q-value 

updates, completely ignoring prior knowledge. To better 

simulate real-world conditions and incorporate historical 

data, the learning rate was adjusted to 0.9. 

 

 

 
 

 

Fig. 3. Efficacy of learning rate in Q-learning 
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Fig. 4. The discount factor's performance in Q-learning 

 

 

 
 

 

Fig. 5. Q-learning threshold performance 

IAENG International Journal of Computer Science

Volume 52, Issue 9, September 2025, Pages 3421-3428

 
______________________________________________________________________________________ 



 

 
 

Fig. 6. Average E2E throughput against iterations for NLPS and INLPS algorithms 

 

 
 

Fig. 7.  Assessment of FG, NLPS, and INLPS performance 

 

The discount factor in Q-learning reflects how much im-

portance is assigned to future rewards when choosing ac-

tions. A higher discount factor implies that long-term gains 

are considered, whereas a lower factor favors short-term 

benefits. Figure 4 presents the results of varying discount 

factors, showing that a value of 0.5 maximizes average end-

to-end throughput, making it the preferred setting for the 

training phase in this context. The Q-learning threshold de-

termines when the training process concludes. Typically, 

smaller thresholds lead to more refined performance out-

comes, although they may also extend the number of training 

iterations. As shown in Figure 5, testing with different 
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threshold values in 50- and 100-node setups demonstrates 

that lower thresholds yield better average end-to-end 

throughput. When the threshold is set at 1 bps, training con-

tinues efficiently and stabilizes after approximately 300 iter-

ations. Since throughput remains unchanged beyond that 

point, a threshold equivalent to 1 basis point is adopted for 

the final simulation configuration. 

The numerical simulations are structured in two main 

phases to evaluate network capacity and computation time 

under various scenarios. In the first phase, we assess the 

performance of the system with and without the integration 

of Factor Graphs (FG) and Node Location Control (NLC), 

focusing on their influence on network capacity and 

computational efficiency. We also explore how employing 

FG aids in root node identification, contributing to the 

performance enhancement of the proposed factor graph-

based Deep Reinforcement Learning (fDRL) model. 

In the second phase, two algorithms—NLPS and its 

improved variant INLPS—are utilized to determine the 

optimal network topology within a Wireless Mesh Network 

(WMN). Specifically, the NLPS and INLPS configurations 

represent the use of their respective algorithms for path 

optimization, while the CoF (Combination of Factors) 

strategy is integrated with NLC to further enhance network 

throughput during data transmission. 

Figure 6 highlights that the INLPS algorithm not only 

improves network performance but also manages power 

resources effectively. Although there is a slight reduction in 

average end-to-end (E2E) energy consumption when 

compared to NLPS, the gain in network capacity does not 

drastically compromise energy efficiency. This observation 

underscores the importance of simultaneously addressing 

energy conservation and performance optimization in 

network protocol design. 

The results of network capacity analysis, shown in Figure 

7(a), demonstrate that as the number of nodes increases from 

50 to 100, overall capacity tends to decline. For instance, at 

50 nodes, NLPS achieves an average throughput of 1.64 

Mbps, while FG alone reaches only 0.39 Mbps. In contrast, 

INLPS achieves 4.51 Mbps, outperforming NLPS by a 

factor of 2.75 and FG by approximately 11.56 times. At 100 

nodes, the capacities recorded are 3.79 Mbps (INLPS), 0.84 

Mbps (NLPS), and 0.36 Mbps (FG). This substantial 

improvement is attributed to the INLPS algorithm's ability to 

refine Q-values using prior results from NLPS and apply 

Signal-to-Interference-plus-Noise Ratio (SINR) as a reward 

metric, allowing it to avoid low-SINR routes. Figure 7(b) 

presents the comparison of computation times, revealing that 

INLPS takes nearly twice the time required by NLPS when 

using Q-values as input, reflecting its more comprehensive 

optimization process. Since both algorithms incorporate FG 

during processing, FG efficiently determines the optimal 

root node, reducing the overhead. Without FG, each node 

would be compelled to independently execute NLPS or 

INLPS, making network topology optimization 

computationally expensive.The integration of FG 

significantly aids the NLPS and INLPS algorithms in 

identifying near-optimal network configurations, thereby 

achieving higher capacity with reduced processing time. 

 

TABLE 1  

COMPARATIVE ANALYSIS OF NETWORK CAPACITY AND COMPUTATION 

TIME FOR DIFFERENT ALGORITHMS 

Algorithm 

Avg. 

Network 

Capacity 

(Mbps) 

Avg. Com-

putation 

Time (s) 

Throughput 

Improvement 

(vs. FG) 

Time 

Efficiency 

(vs. FG) 

FG 0.82 0.006 1× 1× 

NLPS 3.52 0.627 4.29× 0.009× 

INLPS 4.26 1.221 5.20× 0.004× 

 

Table 1 highlights the performance comparison of three 

algorithms (FG, NLPS, INLPS) in terms of average network 

capacity and computation time based on simulation over a 

network of 100 nodes. The throughput improvement and 

time efficiency are calculated relative to the FG method. 

While FG shows superior computation time, both NLPS and 

INLPS significantly outperform in terms of network 

capacity. 

 

IV. CONCLUSION 

To enhance network capacity and minimize overall 

computational overhead, this study introduces a factor 

graph-based deep reinforcement learning (fDRL) framework 

for wireless mesh networks (WMNs). The proposed fDRL 

approach incorporates two Q-learning-based link path 

selection (LPS) algorithms: Named Link Path Selection 

(NLPS) and Improved Named Link Path Selection (INLPS). 

These algorithms utilize a root node, optimally selected 

through a factor graph (FG), to determine the most efficient 

path for each source node to reach the root. Leveraging FG 

significantly reduces training time, thereby improving the 

overall capacity performance of the network. Additionally, 

the fDRL framework employs a Combination of Functions 

(CoF) strategy to enable message transmission using fewer 

time slots and utilizes Network Linear Coding (NLC) for 

encoding and decoding, further boosting network efficiency. 

Compared to the traditional Tree-Based Routing (TBR) 

method, the FG-driven model can reduce computation time 

by up to 99%. When the network comprises 100 nodes, 

INLPS achieves a 4.26-fold improvement in capacity over 

NLPS, and a 5.08-fold increase relative to FG alone. 

Simulation results demonstrate that with 156 and 263 

iterations for NLPS and INLPS respectively, the system 

achieves approximately 98% throughput while maintaining 

low computation time. These outcomes suggest that the 

proposed fDRL system is well-suited for integration with 6G 

wireless LAN extended service sets, particularly in scenarios 

involving multiple indoor devices forming a tree topology to 

transmit data to a central root node. 
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