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Abstract—This paper proposes a Skew Factor Model to
handle data with skewness and heavy tails. It is assumed that the
errors follow flexible skewed distributions. To enable efficient
estimation in high-dimensional settings, we further develop
a Sparse Online Principal Component method. This method
enforces sparsity and works efficiently with streaming data.
Simulation experiments show that it achieves higher accuracy
and better sparsity than existing methods. The method is robust
and scalable for large asymmetric data sets.

Index Terms—Skew Factor Model; Sparse Online Principal
Component; multivariate skew distributions; simulation exper-
iments

I. INTRODUCTION

SKEW Factor Model (SFM) is a statistical framework. It
is specifically designed to handle data exhibiting skew-

ness or asymmetry. SFM introduces skewness parameters to
account for non-symmetric and heavy-tailed behavior. The
error terms in this model follow multivariate skewed distri-
butions. This structure improves robustness and enhances the
accuracy of inference and prediction.

II. SKEW FACTOR MODEL

A. Multivariate Skew Distributions

In this section, we propose three types of multivariate
skew distributions to model asymmetric and heavy-tailed data
characteristics, which are commonly observed in practical
applications.

1) Multivariate Skew Normal (MSN) Distribution: The
MSN distribution extends the traditional multivariate normal
distribution by incorporating skewness. Its probability den-
sity function (PDF) is

fX(x) = 2ϕp(x;µ,Σ)Φ(α⊤x),

where µ is the location vector, Σ is the scale matrix and α
is the shape parameter.

2) Multivariate Skew-Cauchy (MSC) Distribution: The
MSC distribution extends the skew-cauchy distribution by
incorporating a location parameter and a skewness shape. Its
PDF is

fX(x) = 2tp(x;µ,Σ, 1)Φ(α⊤(x− µ)).
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3) Multivariate Skew-t (MST) Distribution: The MSC
distribution is a skewed extension of the multivariate Cauchy
distribution. It combines extremely heavy tails with skew-
ness, making it suitable for modeling data with strong
asymmetry and extreme values. Its PDF is

fX(x) = 2tp(x;µ,Σ, ν)T1

(
α⊤x√

(ν + d)/(ν + p)
; ν + p

)
.

B. Factor Model

The traditional factor model posits that the observed data
matrix X ∈ Rn×p can be expressed as

X = FA⊤ + ε,

where A = (aij)p×m denotes the factor loading matrix
capturing the linear relationships between observed variables
and latent factors; F = (f1, f2, . . . , fm) ∈ Rn×m represents
the matrix of unobserved latent common factors that drive
the shared variation among the observed variables; and
ε = (ε1, ε2, . . . , εp) ∈ Rn×p is the matrix of idiosyncratic
errors accounting for noise and unique variation specific to
each observed variable.

C. Skew Factor Model

The SFM advances conventional factor models via skewed
error distributions to address data asymmetry. The SFM is
expressed as

X = FA⊤ + ε, ε ∼ S(µ, bIp×p),

where S represents a skew distribution, and µ is the location
parameter, while bIp×p scales the error terms.

III. SPARSE ONLINE PRINCIPAL COMPONENT
ESTIMATION

A. Parameter Estimation

For traditional factor models, parameter estimation begins
by centering the data matrix Y , yielding the centered matrix
Ỹ = Y − Ȳ .

The sample covariance matrix is then computed as

ΣY =
1

n− 1
Ỹ ⊤Ỹ .

An eigenvalue decomposition of ΣY is performed

ΣY = V ΛV ⊤.

The latent factor scores are then estimated by projecting
the centered data matrix onto the loading space

F = Ỹ Vk,

where Ỹ denotes the centered data and Vk is the estimated
loading matrix.
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This procedure efficiently estimates parameters. It can
also be extended to handle skewed or heavy-tailed errors
by incorporating flexible distributional assumptions into the
factor model.

B. Sparse Principal Component

The Sparse Principal Component (SPC) method extracts
principal components from data. It applies sparsity to sim-
plify the components. This helps remove redundant informa-
tion. The optimization problem is expressed as

min
Λ

∥Y − ΛF∥2F + λ∥Λ∥1.

When the error term ϵ is assumed to follow a skew-normal
distribution, the likelihood function L is expressed as

L(Λ, F, γ, α, ω) =
n∏

i=1

p∏
j=1

f(yij ;α, ω, γ).

Using the SPC approach on the SFM, the resulting opti-
mization problem is formulated as

min
Λ,F

[
∥Y − ΛF∥2F + λ∥Λ∥1 + penalty(γ)

]
,

where ∥Y −ΛF∥2F represents the reconstruction error, ∥Λ∥1
is the sparsity term that enforces sparsity in the factor loading
matrix Λ, and penalty(γ) is a regularization term associated
with skewness.

C. Sparse Online Principal Component

The Sparse Online Principal Component (SOPC) method
combines online updates with sparsity regularization.This
method combines the strengths of both SPC and Online Prin-
cipal Component (OPC) techniques. This method improves
both efficiency and sparsity.

The OPC method incorporates a sparsity parameter θ
into the online eigen-decomposition process, enabling the
sequential estimation of sparse eigenvectors as new data
arrives. Given the first k < n observations, the data matrix
is

Xk =


X⊤

1

X⊤
2
...

X⊤
k

 .

The sample covariance matrix is given by

Sk = V kΛkV k⊤.

When the (k + 1)-th observation Xk+1 arrives, the updated
sample covariance matrix is expressed as

Sk+1 =
k

k + 1
Sk +

1

k + 1
X⊤

k+1Xk+1.

We perform eigendecomposition on Sk+1 to obtain

Sk+1 = V k+1Λk+1V k+1⊤.

Let V k+1
SO = V k+1 be the initial estimate of the sparse

eigenvector matrix.

We update V k+1
SO by solving the following sparse opti-

mization problem, subject to the orthonormality constraint
WSOW

⊤
SO = Im×m

V k+1
SO = arg min

V k+1
S

{∥∥∥Xk+1 −WSOV
k+1
S

⊤
Xk+1

∥∥∥2
F

+ ρ
m∑
j=1

∥V k+1
S,j ∥22 + θ

m∑
j=1

∥V k+1
S,j ∥1

}
.

The associated loss function to be minimized is

L
(
V k+1
so

)
= trace

(
X⊤

k+1Xk+1

)
+

m∑
j=1

[
V k+1⊤

so,j

(
X⊤

k+1Xk+1 + ρ
)
V k+1
so,j

−2w⊤
so,jX

⊤
k+1Xk+1V

k+1
so,j + θ ∥Vso,j∥1

]
.

Based on the optimized sparse eigenvectors, the loading
matrix Âk+1

SO and the specific variance matrix D̂k+1
SO are

computed as

Âk+1
SO =

(√
λk+1
1 vk+1

SO1
,

√
λk+1
2 vk+1

SO2
, · · · ,

√
λk+1
m vk+1

SOm

)
=
(
âk+1
SOj

)
p×m

,

D̂k+1
SO = diag

(
σ̂2
1 , σ̂

2
2 , · · · , σ̂2

p

)
, σ̂2

i = X⊤
k+1Xk+1

(i = 1, 2, · · · , p).

In summary, SOPC produces an updated sparse loading
matrix and a specific variance matrix. This allows for real-
time updates and enhances model interpretability. Sparsity
plays a key role in this improvement.

IV. SIMULATION EXPERIMENTS

This section presents two numerical studies. We choose
the Mean Squared Error (MSE) of the factor loading matrix
A as an indicator. The MSE is defined as

MSEÂ =
1

p2
∥A− Â∥2F .

A. Case 1: the impact of sample size n

In Case 1, with fixed dimensions (p,m) = (10, 5), the data
matrix X is generated as follows. Before standardization, the
parameters include a mean vector µ ∼ U [0, 1000], entries
aij ∼ U(−1, 1), factor matrix F ∼ Nm(0, Im×m), and
skewed errors ε ∼ Skew(0, D) where D ∈ (0, 1). The
sample size n varies from 2000 to 6000 in increments
of 1000. The methods SOPC, SPC, Perturbation Princi-
pal Component (PPC), Stochastic Approximation Principal
Component (SAPC), and Incremental Principal Component
(IPC) are then evaluated under three skew distributions.

a) MSN distribution: As shown in Fig.1, the SOPC
method consistently achieves the lowest estimation error,
improving steadily from 0.40 at sample size 2000 to 0.34
at 6000, demonstrating strong robustness. IPC also shows
a decreasing trend, dropping from 0.48 to 0.36, indicating
stable improvement despite a higher initial error. SAPC
declines monotonically from 0.49 to 0.36 but remains slightly
less accurate than SOPC and IPC. PPC reaches its lowest
error of 0.38 at sample size 4000 but fluctuates at other sizes,
reflecting less stability. SPC shows a variable pattern, with a
slight decrease followed by an increase at 4000, suggesting
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weaker performance overall. Overall, SOPC demonstrates the
most favorable error profile across all sample sizes, followed
by IPC and SAPC. PPC and SPC exhibit weaker performance
in terms of both accuracy and stability.

Fig. 1. MSEÂ results with the MSN distribution in Case 1

b) MSC distribution: As shown in Fig.2, the SOPC
method consistently achieves the lowest error, falling from
0.43 at 2000 samples to 0.37 at 6000 samples, indicating
robust and effective estimation. PPC closely follows, with
errors dropping from 0.44 to 0.38, reflecting similar accuracy
and stability. SPC and SAPC exhibit more irregular trends.
SPC’s error decreases from 0.46 to 0.39 but fluctuates
slightly around sample size 4000. SAPC’s error initially
declines from 0.45 to 0.39 but then slightly increases to 0.41
at the largest sample size, suggesting minor instability. In
contrast, IPC maintains relatively higher errors, starting at
0.48 and only slightly decreasing to 0.44, showing limited
improvement as sample size grows. This implies less effec-
tive error reduction compared to the other methods.

In summary, SOPC and PPC demonstrate superior perfor-
mance with clear decreasing error trends. SPC and SAPC
show moderate performance with some fluctuations, while
IPC exhibits the highest and most stable error levels.

Fig. 2. MSEÂ results with the MSC distribution in Case 1

c) MST distribution: As shown in Fig.3, the SOPC
method consistently attains the lowest or near-lowest error
values, starting at 0.41 for sample size 2000 and decreasing
to 0.37 at sample size 6000. This steady, slight decline
suggests stable and effective estimation performance. The
PPC and SAPC methods exhibit very similar patterns, with

MSEÂ values gradually decreasing from around 0.43 and
0.43 respectively at the smallest sample size to 0.37 at
the largest. Their curves closely track each other, indicat-
ing comparable accuracy and robustness. The SPC method
shows a relatively stable trend with minor fluctuations; its
error ranges between 0.42 and 0.38 over the sample sizes.
Although its performance is close to that of PPC and SAPC,
it is generally slightly worse than SOPC. The IPC method
fluctuates somewhat more, starting with an error of 0.44,
briefly decreasing to 0.41, then rising slightly again before
ending at 0.39. This suggests less consistency in estimation
accuracy compared to other methods.

In summary, all methods demonstrate improvements as
sample size grows. SOPC slightly outperforms others in error
reduction and stability, while PPC and SAPC show similar,
strong performance. SPC remains competitive but slightly
behind, and IPC exhibits the least stable trend.

Fig. 3. MSEÂ results with the MST distribution in Case 1

B. Case 2: the impact of sample size p

In Case 2, with fixed parameters (n,m) = (2000, 5), the
data matrix X is generated as follows. The mean vector µ
is uniformly sampled from [0, 1000] before standardization,
entries aij follow U(−1, 1), the factor matrix F is drawn
from Nm(0, Im×m), and skewed errors ε ∼ Skew(0, D)
where D ∈ (0, 1). The dimension p varies from 10 to 14,
evaluated under three skew distributions.

a) MSN distribution: As shown in Fig.4, the SOPC
method consistently achieves the lowest estimation error
across all dimensions. Its MSEÂ declines from 0.49 at
dimension 10 to 0.40 at dimension 14, reflecting strong
robustness and improved accuracy in higher dimensions. The
IPC method also performs well, with relatively stable MSEÂ

values between 0.48 and 0.44, though consistently higher
than those of the SOPC method. The SAPC method shows
a clear downward trend, with its error decreasing from 0.57
to 0.47, suggesting improved estimation as dimensionality
increases. The SPC method exhibits moderate fluctuation,
with MSEÂ values ranging from 0.53 to 0.46 and a local peak
at dimension 13, indicating some instability. In contrast, the
PPC method consistently shows the highest error, decreasing
only from 0.64 to 0.54, and thus demonstrates the weakest
performance among all methods.

In summary, the SOPC method demonstrates the most
effective and stable estimation performance across all di-
mensions, followed by the IPC and SAPC methods. The SPC
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method shows moderate variability, whereas the PPC method
performs the worst in terms of both accuracy and stability.

Fig. 4. MSEÂ results with the MSN distribution in Case 2

b) MSC distribution: As shown in Fig.5, the SOPC
method consistently achieves the lowest estimation error
across all dimensions. Its MSEÂ decreases from 0.46 at
dimension 10 to 0.42 at dimension 13, followed by a slight
increase to 0.43 at dimension 14. Despite this minor fluctu-
ation, the overall trend remains favorable, indicating robust
and accurate performance under increasing dimensionality.
The IPC method exhibits a similar improvement, with its
MSEÂ decreasing steadily from 0.54 to 0.44, matching the
SOPC method at the highest dimension. The PPC method
also shows a downward trend, with MSEÂ dropping from
0.54 to 0.44, although it fluctuates slightly around dimensions
12 and 13. The SAPC method starts with the highest error
of 0.57 at dimension 10 and declines to 0.47 at dimension
14, demonstrating consistent but comparatively less accurate
performance. The SPC method follows a similar trajectory,
with MSEÂ decreasing from 0.53 to 0.44, though it remains
less stable than SOPC or IPC.

In summary, the SOPC method outperforms the others
overall, particularly in lower dimensions. The IPC and PPC
methods also perform well, while the SAPC and SPC meth-
ods show improvement but remain less competitive in terms
of accuracy and stability.

Fig. 5. MSEÂ results with the MSC distribution in Case 2

c) MST distribution: As shown in Fig.6, the SOPC
method achieves the lowest overall estimation error across
increasing dimensions. Its MSEÂ decreases steadily from

0.52 at dimension 10 to 0.42 at dimension 14, demonstrating
strong robustness and stable accuracy in high-dimensional
settings. The IPC method performs similarly well, with its
MSEÂ dropping from 0.48 to 0.40. This consistent downward
trend highlights its reliable performance as dimensionality
increases. The PPC method shows a non-monotonic pattern:
its MSEÂ first decreases from 0.48 to 0.43, then slightly
increases to 0.46, indicating moderate accuracy but some
fluctuation. The SAPC method starts with the highest error
of 0.56 and declines to 0.45 at dimension 14, suggesting
improved but relatively less accurate estimation. The SPC
method follows a similar pattern, with MSEÂ decreasing
from 0.54 to 0.46 but peaking at dimension 13, which implies
some instability in response to dimensional changes.

In summary, the SOPC and IPC methods exhibit the most
favorable trends in error reduction, with the SOPC method
slightly outperforming the others. The PPC method shows
moderate competitiveness, while the SAPC and SPC methods
demonstrate comparatively higher and less stable errors.

Fig. 6. MSEÂresults with the MST distribution in Case 2

V. CONCLUSION

We have developed a SFM that incorporates flexible
skewed distributions to better capture asymmetry and heavy
tails in the data. Building on this model, the proposed
SOPC method enables efficient and scalable estimation in
high-dimensional settings. Simulation results across multiple
skewed distributions demonstrate that SOPC demonstrates
superior performance over existing methods regarding both
accuracy and sparsity. These findings confirm the robustness
and practical value of SOPC for analyzing large, asymmetric
data sets in practical applications.
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