
 

  

Abstract—Celiac disease is a rare autoimmune condition 

that targets healthy tissue in the small intestine due to gluten 

intolerance. Diagnosis typically involves procedures such as 

intestinal biopsy, small intestine endoscopy, and blood tests. 

Several previous studies have developed an early detection 

system for celiac disease using image data. Past research using 

numerical and categorical data shows indications of data 

imbalance in the classification labels, which impacts the 

accuracy level of the ANN model. This research aims to tackle 

imbalanced data in celiac disease identification by applying 

and comparing various synthetic oversampling and 

undersampling techniques, including Adaptive Synthetic 

Sampling (ADASYN), Synthetic Minority Oversampling 

Technique (SMOTE), SMOTE combined with Edited Nearest 

Neighbors (SMOTE-ENN), and SMOTE combined with 

Tomek Links (SMOTE-Tomek). The objective is to address 

class imbalance and identify the most effective resampling 

method to improve celiac disease classification performance. 

Among the tested methods, the ANN combined with SMOTE-

ENN achieved the best results, with a training accuracy of 

98.0421% and a training loss of 0.074591, along with a 

validation accuracy of 98.4326% and a validation loss of 

0.103261. The testing accuracy stood at 99.38%, with a loss of 

0.0062, and precision, recall, and F1-score of 99%, highlighting 

excellent predictive balance, crucial in medical diagnosis where 

both false positives and false negatives carry significant 

consequences. The model was successfully converted to 

TensorFlow Lite and deployed in an Android application, 

enabling real-time, offline prediction of celiac disease. This 

integration offers a practical, accessible, and scalable approach 

for early screening using on-device machine learning. 
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I. INTRODUCTION 

N autoimmune disorder that affects the small intestine 

in individuals sensitive to gluten is called celiac disease 

or coeliac disease (CD) [1]. Gluten, a protein present in 

grains such as wheat, barley, spelt, kamut, and rye [2], 

triggers an immune response that leads to damage in the 

histological tissue lining of the small intestine and various 

health issues. Diagnosis involves biopsy and intestinal 

endoscopy to assess the condition of the small intestine. 

Biopsy extracts and analyzes tissue samples, while 

endoscopy uses a camera-equipped tube for direct 

visualization and sample collection [3]. However, 

endoscopy has limitations like low resolution and high costs. 

The analysis of endoscopy results in the laboratory poses 

challenges for doctors, and the procedure itself requires 

anesthesia and intestinal preparation [4]. Celiac disease can 

also be diagnosed through a blood test, which examines 

abnormalities in white blood cells and antibodies. In 

individuals with celiac disease, there is a substantial 

increase, ranging from 2 to 6 times, in the production of 

IgA, IgG, and IgM antibodies [5]. This elevated antibody 

production causes white blood cells to behave abnormally, 

resulting in the attack of healthy cells in the body. IgA, 

primarily found in the respiratory, digestive, and ocular 

systems, defends the body surface against bacterial and viral 

threats. IgG, the most abundant antibody in the bloodstream 

and various tissues, fights pathogens in body fluids and 

provides long-lasting immunity with a memory of previous 

infections. IgM serves as the body's initial response to new 

pathogens, offering swift protection during the early stages 

of an attack. 

Early diagnosis of celiac disease is vital for preventing 

complications, improving quality of life, and reducing 

healthcare costs associated with treating advanced 

symptoms or related conditions. Proactive screening in at-

risk populations and timely intervention can substantially 

impact long-term health outcomes [6]. Blood testing is the 

most affordable method for the early detection of celiac 

disease. It is non-invasive, quick, and only requires a simple 

blood draw, making it significantly less invasive than an 

endoscopy with biopsy, which involves inserting a scope 

into the digestive tract under sedation. This approach is 

particularly beneficial for children and individuals who may 

be apprehensive about undergoing invasive procedures. 

Additionally, blood tests are widely available, accessible, 

and practical in most healthcare settings. 
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However, a challenge arises due to the limited dataset 

available for celiac disease in several Asian countries, 

particularly in Indonesia, Korea, and Taiwan, where the 

prevalence of this disease is low, do not consistently report 

cases of celiac disease [7], [8], [9]. Typically, existing celiac 

disease data comprises endoscopy images or intestinal 

biopsy results [4], [10], [11]. In this study, numerical and 

categorical data from the Kaggle Celiac disease (coeliac 

disease) [12] public dataset platform, initially sourced from 

the Wageningen University & Research (WUR) 

Biotechnology Department Lab, are employed. This dataset 

encompasses 2206 rows of data and 15 columns of features. 

However, the dataset exhibits an imbalanced class 

distribution, with significant disparities in the number of 

samples across diagnostic categories, which may affect the 

performance of classification models if not adequately 

addressed. 

A previous study conducted by [13] employed an 

Artificial Neural Network (ANN) approach to develop a 

model for celiac disease identification using a public dataset 

[12]. The model achieved an accuracy of 97% with a 

training loss of 0.1105. Validation results showed a 

validation accuracy of 96.8% and a loss of 0.1475. 

Furthermore, the model was deployed as a web-based 

application to support practical implementation. 

Nevertheless, the study did not sufficiently address the issue 

of class imbalance in the dataset, which exhibited significant 

disparities in the number of samples across classes. The 

model's accuracy could be further improved by balancing 

the class distribution properly. In addition, transitioning the 

deployment to a mobile platform could enhance accessibility 

and broaden user reach, especially in real-world healthcare 

settings. 

Several previous studies have demonstrated that 

imbalanced data can significantly affect the performance of 

machine learning models, often resulting in biased 

predictions that favor the majority class while overlooking 

the minority class. This imbalance often results in reduced 

overall accuracy, particularly in applications where the 

minority class plays a crucial role in decision-making, such 

as medical diagnoses or detecting rare events. The study by 

[14] showed how imbalanced data affects deep learning 

models, especially in multi-class classification settings. 

Even some Regularization techniques such as Dropout, 

Reduction on Plateau, and Early Stopping do not provide 

significant solutions to class imbalances. Another study by 

[15] showed improved performance after implementing the 

dataset-balancing process in detecting skin cancer. 

However, using only traditional methods, such as image 

data augmentation by rotation, will increase the dataset size, 

which will positively impact performance and help balance 

the dataset used. 

This research aims to enhance the quality of the 

identification model by addressing data imbalance through 

the use of synthetic oversampling and undersampling 

techniques, thereby increasing model training and testing 

accuracy. Additionally, we employ a more advanced 

approach using deep learning techniques. Deep learning is 

chosen over traditional machine learning models due to its 

superior ability to capture complex, non-linear patterns in 

data, its scalability for future model enhancement, and its 

compatibility with real-time mobile deployment frameworks 

such as TensorFlow Lite. To further strengthen the model’s 

reliability, this study also aims to identify the most effective 

data balancing method by comparing several techniques, 

including ADASYN, SMOTE, SMOTE-ENN, and SMOTE-

Tomek. Furthermore, the final model is implemented in an 

Android-based mobile application to provide a more 

personalized, accessible, and user-friendly experience for 

individuals seeking early screening of celiac disease. Based 

on the background, our main contributions are as follows: 

(a) Revising the dataset for celiac identification through 

blood tests to ensure a more balanced class distribution. 

(b) Enhancing the overall accuracy and robustness of the 

celiac disease classification model by identifying the 

optimal resampling method and applying an appropriate 

deep learning architecture. 

(c) Developing a more comprehensive, user-friendly 

system based on an Android platform. 

The structure of this paper is outlined as follows: Section 

2 introduces related works, Section 3 details the deep 

learning method, Section 4 describes synthetic oversampling 

and undersampling techniques, Section 5 outlines the 

methodology, Section 6 presents the results and discussion, 

and Section 7 provides the conclusion and future work. 

 

II. RELATED WORKS 

Several previous related works have focused on different 

aspects of celiac disease detection. For instance, a study by 

[16] proposed a multiple-instance learning-based approach 

for detecting celiac disease. Unlike our research, this study 

utilized a dataset comprising scanned images of biopsy 

results. The study focused on identifying only two classes: 

tissue with detected celiac disease and normal tissue. 

Meanwhile, our study classifies cases into six classes: non-

celiac, potential, latent, silent, atypical, and typical. 

Another study by [17] also focuses on celiac detection 

using machine learning to interpret small intestinal biopsy 

images, aiding pathologists in streamlining diagnoses while 

minimizing bias. This research achieved an accuracy of 

88.89% for classifying two types of villous abnormalities 

based on Hematoxylin and Eosin (H&E)- stained biopsy 

images. Meanwhile, the classification of red-green-blue 

(RGB) biopsy images reached 82.92% accuracy and 72% 

accuracy in multi-class biopsy image classification. 

Similarly, a study conducted by [18] employed the ResNet-

18 Convolutional Neural Network (CNN) algorithm to 

classify Hematoxylin and Eosin (H&E) celiac histological 

images, distinguishing normal small intestine controls and 

duodenal inflammation with an impressive accuracy of 

99.7%. 

Another previous study focused on dataset balancing, 

highlighting its importance in improving model 

performance. Various methods have been employed to 

achieve a balanced dataset, such as oversampling, 

undersampling, and hybrid approaches. Oversampling is a 

process to increase the number of samples in the minority 

class by duplicating existing data or generating synthetic 

samples using techniques such as SMOTE (Synthetic 

Minority Oversampling Technique). Meanwhile, 

undersampling is a process of reducing the number of 
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samples in the majority class to match the number of 

samples in the minority class, thereby ensuring equal 

representation. 

A previous study by [19] analyzed the impact of 

undersampling and oversampling techniques on the 

classification using an imbalanced dataset. The results 

showed that both undersampling with random sampling and 

oversampling with the SMOTE technique yielded higher 

accuracy than models trained on the original imbalanced 

dataset, indicating that addressing class imbalance 

significantly improves classification performance. 

Specifically, the study achieved an accuracy of 80.45% 

using the undersampling technique and 79.36% with the 

oversampling technique, compared to only 70.55% when no 

balancing method was applied, using the Random Forest 

algorithm. Research conducted by [20] using SMOTE to 

randomly overcome the imbalanced data of depression 

among women, utilizing the random forest algorithm, also 

succeeded in increasing accuracy by 3.69% and 

sensitivity/recall by 69.64%. Meanwhile, in a research study 

by [21], it was concluded that comparing two techniques to 

tackle and review the imbalance data problem, the 

oversampling technique had better performance and 

obtained higher evaluation metrics with several 

classification algorithms such as Random Forest, Support 

Vector Machine, Linear Regression, Decision Tree, Naïve 

Bayes, etc. on the Santander Customer Transaction 

Prediction dataset. 

An alternative methodology is the hybrid approach, which 

integrates oversampling and undersampling techniques to 

optimize class distribution in the dataset while minimizing 

redundancy or data loss. A previous study by [22] increased 

the accuracy of the validation set by 8.9% using the SMOTE 

and Edited Nearest Neighbors (SMOTE-ENN) method to 

optimize hyperparameters on an unbalanced heart failure 

dataset. Employing SMOTE for oversampling alongside the 

Edited Nearest Neighbors algorithm as the undersampling 

method can enhance the model's accuracy and overall 

performance. Apart from that, the study carried out by [23], 

also succeeded in achieving an accuracy of 98.925% using 

the SMOTE method and 98.919% using the SMOTE-Tomek 

method to make predictions on a cervical cancer dataset that 

had been balanced with these methods. A research study 

carried out by [24] also utilized the SMOTE-ENN technique 

with an Artificial Neural Network (ANN) to achieve better 

model performance with 95% overall accuracy in classifying 

Marburg Virus (MARV) inhibitors. The proposed SMOTE-

ENN + ANN hybrid model demonstrated superior accuracy 

and effectiveness in identifying potential lead molecules 

against MARV. 

Research conducted by [25] identified difficulties in 

making accurate model predictions due to imbalanced data 

and high dimensionality of the dataset. Using SMOTE and 

Principal Component Analysis (PCA) can help overcome 

these two problems in the bankruptcy binary classification 

prediction dataset. The same oversampling technique is also 

employed in the research by [26], which proposes 

KCSMOTE—a combination of the K-means Center model 

with the SMOTE method—that effectively overcomes 

unbalanced fraud data compared to other sampling methods. 

Using the XGBoost and Random Forest algorithms to 

validate the effectiveness of the proposed method has 

resulted in an increase of more than 1% compared to other 

methods. The same thing was also done by research [27] 

which successfully solved the problem on 25 imbalanced 

datasets using the K-means clustering method approach with 

a combination of SMOTE and Random Under-Sampling 

Technique (RUS), followed by Tomek-Link-based 

undersampling and Cluster-based undersampling methods to 

eliminate the majority of samples from overlapping regions, 

obtaining an average total AUC metric of 90.9% for all test 

datasets on the AdaBoost-C4.5 model and 88.5% on the 

AdaBoost-NB model. 

III. DEEP LEARNING 

Deep learning represents an advanced subset of machine 

learning (ML) and artificial intelligence (AI) that utilizes 

multi-layered neural networks to model and process 

complex patterns in data. This approach aims to emulate the 

information-processing mechanisms of the human brain by 

interconnecting numerous layers of neural networks and 

artificial neurons [28]. Through the deployment of multiple 

artificial layers and neurons, deep learning can effectively 

extract valuable features from data, particularly in 

applications within the health sector for disease detection 

[29]. Various machine learning algorithms, including 

Artificial Neural Networks (ANN), Convolutional Neural 

Networks (CNN), and Recurrent Neural Networks (RNN), 

exhibit the capability to autonomously learn features from 

raw data, obviating the need for human domain experts. The 

ability of these algorithms to learn directly from raw data 

increases efficiency by conserving time, energy, and 

resources and also enables accurate classification using the 

extracted features [30]. 

Artificial Neural Networks (ANN) serve as mathematical 

and computational models inspired by the structure and 

functionality of the human brain. Comprising interconnected 

artificial neurons, this model learns from data [28]. The 

architecture of an artificial neural network involves distinct 

layers: the input layer, hidden layers, and the output layer, 

all interconnected with weighted connections for each 

neuron [31]. A perceptron or neuron within an artificial 

neural network is depicted in Fig. 1. The weighted sum 

calculation is expressed by (1). 
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Fig. 1. Model of Neural Network Perceptron. 
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In this expression, xi represents the input neuron, w0 

denotes the bias, wi for the weight, Σ is the weighted sum, g 

is the activation or non-linearity function, and ŷ is the 

output. 

Activation function is a mathematical function that is 

applied to the output of a neuron in an artificial neural 

network. The goal is to introduce an element of non-

linearity into the model, allowing artificial neural networks 

to recognize and model complex data patterns. This non-

linearity of the function indicates that the output does not 

come from a simple linear operation on the neuron's input. 

Some examples of commonly used activation functions 

include the ReLU (Rectified Linear Unit) activation 

function, as shown in formula (2), and the Softmax 

activation function, presented in formula (3). 
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IV. SYNTHETIC OVERSAMPLING AND UNDERSAMPLING 

One common issue in machine learning, particularly in 

health datasets, is the presence of imbalanced data classes or 

labels. This imbalance can lead machine learning models to 

exhibit bias towards the majority class, hindering their 

ability to recognize minority classes accurately. 

Consequently, this imbalance negatively impacts the overall 

performance and evaluation outcomes of machine learning 

models [32]. Various techniques exist to address data 

imbalance, such as undersampling and oversampling, 

illustrated in Fig. 2 [19]. Undersampling involves reducing 

the number of samples from the majority class to achieve a 

more balanced distribution with the minority class. 

Conversely, oversampling increases the number of samples 

from the minority class by duplicating existing data or 

generating synthetic data to balance the class distribution 

[21]. 

However, undersampling may lead to a loss of valuable 

information and the elimination of important data patterns or 

trends crucial for the machine learning model's learning 

process [33]. On the other hand, oversampling can result in 

overfitting, where the model achieves high accuracy on the 

training data but performs poorly on the test data, thereby 

increasing the risk of learning noise or irrelevant 

information [34]. To address these challenges, synthetic 

oversampling techniques, such as SMOTE, have been 

developed to enhance the recognition of minority classes 

and improve overall model performance [35]. SMOTE, 

introduced by [36], utilizes the K-Nearest Neighbor (KNN) 

algorithm to generate synthetic data based on the distances 

to the data's nearest neighbors using Euclidean distance 

[37]. The classification performance of the imbalanced 

dataset is enhanced by increasing the data imbalance ratio 

through the generation of a specific number of synthetic 

minority samples [38]. The detailed procedure of SMOTE is 

as follows [39]. 

 

Step 1: For each minority class sample xi (i = 1, 2, …, n), 

compute its distance from other minority samples using a 

defined rule to determine its k nearest neighbors within the 

minority class. 

Step 2: Based on the desired oversampling rate, randomly 

select m nearest neighbors from the set of k nearest 

neighbors. Denote these selected neighbors as xij (j = 1, 2, 
…, n). Equation (4) is to generate synthetic minority samples 

pij, where rand(0,1) is a random value sampled from a 

uniform distribution within the range [0,1]. This process 

continues until the dataset reaches the desired imbalance 

ratio. 

 

( ) ( )rand 0,1ij i ij ip x x x= +  −  (4) 

 

In addition to SMOTE, the SMOTE-Tomek method was 

introduced by [40]. It also incorporates a step to remove 

noisy samples after applying SMOTE, utilizing the Tomek 

links concept to refine the oversampling process [32]. 

 

V. METHODOLOGY 

This research encompasses various stages, beginning with 

data understanding, data pre-processing involving 

oversampling and undersampling techniques, development 

of a deep learning model, model training, model evaluation 

to assess its performance, model testing, and finally, on-

device machine learning implementation in the Android-

based application. The study's methodology is illustrated in 

Fig. 3. 

 

 
Fig. 2. Illustration of Undersampling and Oversampling Technique. 

 
Fig. 3. Methodology. 
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A. Data Understanding 

The dataset used in this research was sourced from 

Kaggle's public dataset platform, explicitly focusing on 

Celiac disease (also known as coeliac disease) [12]. It 

comprises 2206 rows and 15 columns, encompassing 

various features such as age, gender, diabetes status, type of 

diabetes, diarrhea, abdominal symptoms, short stature type, 

sticky stool, weight loss, immunoglobulin levels (IgA, IgG, 

IgM), marsh type, celiac disease type, and disease diagnosis. 

The findings from the univariate analysis of numerical 

data reveal a range of values, including age spans from 1 to 

35 years old, with the highest frequency occurring around 8 

to 10 years old. IgA levels range from 0.34 to 9.0, with the 

highest being 1.00 to 2.00. While IgM levels were more 

diverse, ranging from 5.0 to 15.3, with the highest being 

12.0, 9.0, and 8.0, and IgM levels were also quite varied, 

ranging from 0.5 to 2.7, with the highest being 1.00, 1.10, 

and 2.00. Fig. 4 displays the histogram illustrating the 

distribution of these numerical variables. 

Concurrently, the categorical data univariate analysis in 

Fig. 5 shows a balanced gender distribution with 1122 men 

and 1064 women. Most individuals have diabetes, with 1829 

having diabetes and the remaining 377 not, with various 

types, 1663 having Type 1, 125 having Type 2, and the rest 

having no data. The diarrhea types are evenly distributed, 

710 are inflammatory, 773 are fatty, and 723 are watery. 

Most also have abdominal pain, as many as 1781 people, 

while 425 others do not. For the short stature variable, 959 

individuals were categorized as having Proportionate Short 

Stature (PSS), 904 as variants, and 343 as having 

Disproportionate Short Stature (DSS). Regarding the sticky 

stool variable, 1,820 respondents answered ”yes,” while 386 

answered “no.” Similarly, 1,514 individuals reported 

experiencing weight loss in the weight loss variable, 

whereas 692 did not. 

Different from the marsh type variable, which varies 

significantly with 7 categories, 350 are none, 313 marsh 

type 0, 417 marsh type 1, 232 marsh type 2, 232 marsh type 

3a, 445 marsh type 3b, and 217 marsh type 3c. The class 

label has six categories: none, potential, latent, silent, 

atypical, and typical, with 350, 230, 301, 400, 545, and 380, 

respectively. It is clearly seen that the cd type (celiac disease 

type) class label has an unbalanced distribution in each 

class, so it is necessary to handle this problem using the 

method that will be explained below. 

 

B. Data Pre-processing 

Ordinal encoding was applied to convert categorical data 

into numerical values for variables such as gender, diabetes 

status, diabetes type, diarrhea type, abdominal symptoms, 

short stature type, sticky stool, weight loss, and Marsh type. 

 
Fig. 5. Univariate Analysis of Categorical Data. 

 
Fig. 4. Univariate Analysis of Numerical Data. 
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The dataset was split into independent variables (X) and a 

dependent variable (y). Data imbalance was addressed using 

both oversampling and undersampling techniques, including 

ADASYN (Adaptive Synthetic Sampling), SMOTE 

(Synthetic Minority Over-sampling Technique), SMOTE-

ENN (SMOTE with Edited Nearest Neighbors), and 

SMOTE-Tomek (SMOTE with Tomek Links). Table I and 

Fig. 6 show the data distribution before and after 

resampling. 

 
TABLE I 

COMPARISON OF DATA DISTRIBUTION 

Label No 

resampling 

ADASYN SMOTE SMOTE-

ENN 

SMOTE-

Tomek 

Typical 380 545 547 536 543 

Atypical 545 545 545 528 543 

Silent 400 545 546 520 544 

Latent 301 545 542 527 544 

Potential 230 545 544 540 545 

None 350 545 550 535 545 

TOTAL 2206 3270 3274 3186 3264 

 

Subsequently, one-hot encoding was applied to the 

dependent variable, precisely the type of celiac disease, 

which comprises six classes or data labels: none, typical, 

atypical, silent, latent, and potential. The dataset was then 

partitioned into 85% training data, 10% validation data, and 

5% testing data, as shown in Table II for each dataset. 

Following partitioning, normalization scaling was 

performed using the min-max scaling technique on each 

data feature to standardize the range of values between 0 

and 1, as computed by (5) [41]. 

 
TABLE II 

COMPARISON OF DATA SPLITTING FOR EACH DATASET 

Data 

Splitting 

No 

resampling 

ADASYN SMOTE SMOTE-

ENN 

SMOTE-

Tomek 

X_train (1874, 13) (2782, 13) (2779, 13) (2692, 13) (2771, 13) 

X_val (221, 13) (328, 13) (327, 13) (317, 13) (327, 13) 

X_test (111, 13) (164, 13) (164, 13) (159, 13) (164, 13) 

y_train (1874, 6) (2782, 6) (2779, 6) (2692, 6) (2771, 6) 

y_val (221, 6) (328, 6) (327, 6) (317, 6) (327, 6) 

y_test (111, 6) (164, 6) (164, 6) (159, 6) (164, 6) 

 

min

max min

scaled

x x
x

x x

−
=

−
 (5) 

 

C. Development of Deep Learning Model 

The architecture of the deep learning model was 

constructed using Python with TensorFlow and Keras 

libraries, employing the Artificial Neural Network (ANN) 

algorithm. It includes an input layer of 13 neurons, 

corresponding to the number of input features on the celiac 

disease dataset. This is followed by three dense layers with 

128, 64, and 32 neurons, respectively, utilizing the ReLU 

activation function to introduce non-linearity and mitigate 

the vanishing gradient problem. The decreasing number of 

neurons across layers helps in hierarchical feature extraction 

while reducing computational complexity. Additionally, to 

prevent overfitting, dropout layers with a rate of 0.25 were 

inserted between each dense layer, ensuring a balance 

between model generalization and performance. The output 

layer consists of six neurons with a Softmax activation 

function, which is appropriate for multi-class classification 

tasks, enabling the model to output probability distributions 

across six classes. These hyperparameters were chosen by 

empirical experimentation and best practices to optimize 

both learning efficiency and model generalization. 

 

D. Model Training 

To establish a strong comparative baseline and identify 

the most effective classification approach for predicting 

types of celiac disease, various classical machine learning 

models were initially developed and evaluated. These 

models included Logistic Regression (with max iteration set 

to 1000 to ensure convergence), Decision Tree, Naïve 

Bayes, Random Forest, Support Vector Machine (SVM), K-

Nearest Neighbors (KNN), and Adaptive Boosting 

(AdaBoost). The selection of these models reflects a diverse 

set of learning paradigms, ranging from linear (Logistic 

Regression), probabilistic (Naïve Bayes), and margin-based 

(SVM) to tree-based (Decision Tree, Random Forest, 

AdaBoost) and instance-based approaches (KNN), to ensure 

a comprehensive and representative benchmark. 

All models, except for Logistic Regression, were 

initialized with the default parameters provided by the 

scikit-learn library to ensure reproducibility and fair 

 
Fig. 6. Comparison of Data Distribution. 
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comparison. Each model was trained using pre-processed 

and resampled datasets obtained through ADASYN, 

SMOTE, SMOTE-ENN, and SMOTE-Tomek techniques to 

address class imbalance. The results of these traditional 

models served as a comparative baseline to evaluate the 

performance gains offered by the proposed Artificial Neural 

Network (ANN) architecture. 

For the deep learning approach, the model was compiled 

with the Adam optimizer, chosen for its adaptive learning 

rate capabilities and efficiency with sparse gradients. The 

initial learning rate was set at 0.001, a commonly used value 

that balances convergence speed and stability. The 

categorical cross-entropy loss function was used for multi-

class classification, measuring the difference between 

predicted probabilities and actual class labels. The accuracy 

metric was used to evaluate the model’s performance. To 

prevent overfitting and improve generalization, the training 

process incorporated an early stopping callback function, 

reducing the risk of excessive training iterations. 

Additionally, the model leveraged the 

ReduceLROnPlateau callback, an adaptive learning rate 

scheduling technique that dynamically reduces the learning 

rate when training stagnates. This function monitored the 

validation loss with a patience of 20 epochs. This step helps 

the model escape local minima and continue optimizing at a 

slower pace to fine-tune its performance. 

 

E. Model Evaluation and Testing 

The model evaluation aims to assess its ability to 

comprehend data patterns with traditional machine learning 

algorithms and the proposed ANN model. During testing, it 

is evaluated on previously validated data to determine 

classification accuracy on the data. Evaluation metrics 

include accuracy and loss function. Additionally, the testing 

data undergoes analysis using the precision, recall, and F1-

score metrics for each data label. 

This multi-model evaluation provided a valuable 

benchmark for identifying models with promising 

performance characteristics, allowing for a smooth transition 

to more complex architectures. Based on empirical results 

and the observed limitations of traditional models in 

capturing non-linear relationships and complex patterns, an 

Artificial Neural Network (ANN) model was subsequently 

developed to enhance predictive performance further. 

 

F. Implementation 

In this phase, the model architecture is integrated into an 

Android-based application developed using the Kotlin 

programming language. To optimize performance on mobile 

and embedded devices, the model is converted into a 

specialized format that supports low-latency inference and 

low-power consumption. This will enable efficient and 

seamless execution of prediction tasks within the Android 

 
Fig. 7. Artificial Neural Network Model Accuracy and Loss Plot. 
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production environment. 

VI. RESULTS 

Based on the model training results, the plots of accuracy 

and loss for the ANN model with various re-sampling 

methods, displayed per epoch in Fig. 7, are presented. The 

performance evaluation, measured using accuracy and loss 

function metrics, is also detailed in Table III. Several 

machine learning models, including Logistic Regression, 

Naïve Bayes, Support Vector Machine, and Adaptive 

Boosting, achieved relatively low accuracy and validation 

accuracy, even after the application of re-sampling 

techniques. On the other hand, Decision Tree and Random 

Forest obtained relatively high accuracy and validation 

accuracy, surpassing other Machine Learning algorithms. 

Moreover, the Decision Tree algorithm with the SMOTE-

ENN method yields perfect results, achieving 100% 

accuracy in both training and validation, as well as a loss 

function of 0 in both training and validation. 

For the Deep Learning model using an ANN architecture, 

the last epoch of 126 achieved an accuracy of 96.42% in 

training and 97.28% in validation, as well as a loss function 

of 0.1027 in training and 0.1109 in validation. Meanwhile, 

ANN + ADASYN stopped at epoch 179 and achieved the 

highest accuracy of 98.27% in training and 98.78% in 

validation, along with a loss function of 0.0583 in training 

and 0.0775 in validation. Meanwhile, the results of training 

the ANN + SMOTE model, which stopped at epoch 115, 

yielded an accuracy of 97.77% in training and 97.25% in 

validation, along with a loss function of 0.0696 in training 

TABLE III 
COMPARISON OF MODEL TRAINING AND VALIDATION ACCURACY AND LOSS 

Model Re-sampling Last Epoch Accuracy Validation Accuracy Loss Validation Loss Learning Rate 

Logistic 

Regression 

(LR) 

- - 73.1590% 69.2308% 0.779712 0.807603 - 

ADASYN - 71.4953% 71.9512% 0.751692 0.768067 - 

SMOTE - 73.7316% 74.6177% 0.716195 0.678704 - 

SMOTE-ENN - 73.8456% 73.9812% 0.705439 0.710769 - 

SMOTE-Tomek - 76.1441% 74.0061% 0.710507 0.750583 - 

Decision Tree 

(DT) 

- - 100% 99.0950% 0 0.326187 - 

ADASYN - 100% 98.7805% 0 0.439557 - 

SMOTE - 100% 99.0826% 0 0.330676 - 

SMOTE-ENN - 100% 100% 0 0 - 

SMOTE-Tomek - 100% 98.4709% 0 0.551126 - 

Naïve Bayes 

(NB) 

- - 57.6307% 49.3213% 1.986547 2.200764  - 

ADASYN - 51.2221% 52.7439% 2.312288 2.375088  - 

SMOTE - 51.6013% 56.5749% 2.029027 1.742625  - 

SMOTE-ENN - 55.0055% 52.9781% 1.989398 1.986201  - 

SMOTE-Tomek - 53.9099% 53.5168% 2.056124 2.305578 - 

Random 

Forest (RF) 

- - 100% 99.0950% 0.016213 0.049468 - 

ADASYN - 100% 99.6951% 0.014299 0.039042 - 

SMOTE - 100% 99.6942% 0.012791 0.037692 - 

SMOTE-ENN - 100% 99.6865% 0.007926 0.025254 - 

SMOTE-Tomek - 100% 99.0826% 0.011800 0.042424 - 

Support Vector 

Machine 

(SVM) 

- - 87.3533% 87.7828% 0.370035 0.386369 - 

ADASYN - 89.1804% 87.8049% 0.304728 0.346465 - 

SMOTE - 89.6006% 86.2385% 0.272264 0.347936 - 

SMOTE-ENN - 90.5430% 88.4013% 0.229951 0.296290 - 

SMOTE-Tomek - 89.9099% 88.0734% 0.268388 0.339691 - 

K-Nearest 

Neighbors 

(KNN) 

- - 91.7823% 90.4977% 0.145812 1.576748 - 

ADASYN - 94.9317% 93.9024% 0.091279 0.751690 - 

SMOTE - 95.0702% 90.5199% 0.089210 1.099186 - 

SMOTE-ENN - 95.7518% 94.0439% 0.076769 0.749633 - 

SMOTE-Tomek - 95.0991% 92.9664% 0.085947 1.072943 - 

Adaptive 

Boosting 

(AdaBoost) 

- - 38.3671% 38.4615% 1.752383 1.752381 - 

ADASYN - 33.3214% 33.2317% 1.752558 1.752560 - 

SMOTE - 50.0180% 49.8471% 1.753136 1.753141 - 

SMOTE-ENN - 50.4987% 50.4702% 1.753114 1.753116 - 

SMOTE-Tomek - 33.3333% 33.0275% 1.752546 1.752546  - 

Artificial 

Neural 

Network 

(ANN) 

- 126 96.4248% 97.2851% 0.102722 0.110863 0.001 

ADASYN 179 98.2746% 98.7805% 0.058273 0.077462 0.001 

SMOTE 115 97.7690% 97.2477% 0.069598 0.121554 0.001 

SMOTE-ENN 90 98.0421% 98.4326% 0.074591 0.103261 0.001 

SMOTE-Tomek 174 97.8708% 97.8593% 0.066034 0.063263 0.001 
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and 0.1216 in validation. 

Among the models, the results of model training with a 

combination of oversampling and undersampling techniques 

with ANN + SMOTE-ENN stopped at the fewest epochs 

among other models, 90 epochs, obtained an accuracy of 

98.04% in training and 98.43% in validation, slightly lower 

than ANN + ADASYN, with a loss function of 0.0746 in 

training and 0.1033 in validation. Meanwhile, ANN + 

SMOTE-Tomek stopped at 174 epochs, obtained an 

accuracy of 97.87% in training and 97.86% in validation, 

and a loss function of 0.0660 in training and 0.0633 in 

validation. 

From Table IV, it is found that the ANN + ADASYN 

method is the best-performing model, with a significant 

increase in accuracy when compared to only using ANN 

without the over/undersampling method, by 1.85% in 

training accuracy and 1.50% in validation accuracy, with a 

difference in loss of 0.0444 and 0.0334 in validation loss. 

ANN + SMOTE-ENN is the second-best-performing model, 

with an accuracy increase of 1.62% and a validation 

accuracy of 1.15%. It achieves a lower loss of 0.0281 and 

0.0076 for the validation loss. The other two methods, 

SMOTE and SMOTE-Tomek, did not have a better effect 

than the previous two methods. 

The Decision Tree and Random Forest algorithms did not 

show significant improvements because, by using only the 

original unbalanced dataset, they achieved perfect training 

accuracy. Furthermore, only slight improvements in 

validation accuracy were observed, with 0.91% using DT + 

SMOTE-ENN, 0.6% using RF + ADASYN and RF + 

SMOTE, and 0.59% using RF + SMOTE-ENN. The same 

improvement also occurs in the loss and validation loss, 

which both show improvements when using the proposed 

re-sampling techniques. 

 
TABLE IV 

DIFFERENCE OF THE MODEL TRAINING AND VALIDATION PERFORMANCE 

RESULTS WITH AND WITHOUT THE PROPOSED METHODS 

Method Accuracy Val. 

Accuracy 

Loss Val. Loss 

DT + ADASYN +0% -0,32% -0.0 +0,11337 

DT + SMOTE +0% -0,01% -0.0 +0,004489 

DT + SMOTE-ENN +0% +0,91% -0.0 -0,326187 

DT + SMOTE-Tomek +0% -0,62% -0.0 +0,224939 

RF + ADASYN +0% +0,60% -0,001914 -0,010426 

RF + SMOTE +0% +0,60% -0,003422 -0,011776 

RF + SMOTE-ENN +0% +0,59% -0,008287 -0,024214 

RF + SMOTE-Tomek +0% -0,01% -0,004413 -0,007044 

ANN + ADASYN +1.85% +1.50% -0.044449 -0.033401 

ANN + SMOTE +1.34% -0.04% -0.033124 +0.010691 

ANN + SMOTE-ENN +1.62% +1.15% -0.028131 -0.007602 

ANN + SMOTE-Tomek +1.45% +0.57% -0.036688 -0.0476 

 

After training, the models are evaluated on both the 

original test dataset and a modified test dataset created using 

oversampling and undersampling techniques. Table V 

presents the detailed results of the comparative evaluation of 

model testing. 

With the Machine Learning model, several algorithms 

such as Decision Tree, Naïve Bayes, Random Forest, 

Support Vector Machine, and Adaptive Boosting achieved 

their best performance when paired with the SMOTE-ENN 

technique. For instance, the Decision Tree with SMOTE-

ENN achieved an accuracy of 98.75%, a loss of 0.4505, and 

precision, recall, and F1-score of 99%. Likewise, Random 

Forest with SMOTE-ENN yielded the highest overall 

performance, with a testing accuracy of 99.37%, loss of 

0.0309, and equally strong precision, recall, and F1-score of 

99%. 

 
TABLE V 

COMPARISON OF MODEL TESTING EVALUATIONS 

Method Accuracy Loss Precis-

ion 

Recall F1-

score 

LR 78.38% 0.7286 79% 78% 78% 

LR + ADASYN 64.02% 0.8224 62% 64% 62% 

LR + SMOTE 78.66% 0.7173 80% 79% 78% 

LR + SMOTE-ENN 76.87% 0.7040 78% 77% 76% 

LR + SMOTE-Tomek 76.22% 0.7213 77% 76% 76% 

DT 98.20% 0.6494 98% 98% 98% 

DT + ADASYN 97.56% 0.8791 98% 98% 98% 

DT + SMOTE 98.17% 0.6593 98% 98% 98% 

DT + SMOTE-ENN 98.75% 0.4505 99% 99% 99% 

DT + SMOTE-Tomek 96.95% 1.0989 97% 97% 97% 

NB 52.25% 2.0400 59% 52% 47% 

NB + ADASYN 50.00% 2.3661 48% 50% 43% 

NB + SMOTE 53.05% 1.7813 65% 53% 49% 

NB + SMOTE-ENN 55.00% 1.7367 73% 55% 51% 

NB + SMOTE-Tomek 53.05% 2.3603 63% 53% 47% 

RF 98.20% 0.0630 98% 98% 98% 

RF + ADASYN 98.17% 0.0688 98% 98% 98% 

RF + SMOTE 97.56% 0.0716 98% 98% 98% 

RF + SMOTE-ENN 99.37% 0.0309 99% 99% 99% 

RF + SMOTE-Tomek 96.34% 0.0845 96% 96% 96% 

SVM 87.39% 0.3717 88% 87% 87% 

SVM + ADASYN 84.15% 0.4570 84% 84% 83% 

SVM + SMOTE 87.19% 0.3617 88% 87% 87% 

SVM + SMOTE-ENN 88.75% 0.2490 90% 89% 88% 

SVM + SMOTE-Tomek 87.81% 0.3683 88% 88% 88% 

KNN 87.39% 1.7675 88% 87% 87% 

KNN + ADASYN 92.68% 0.5696 93% 93% 93% 

KNN + SMOTE 92.68% 1.1894 93% 93% 93% 

KNN + SMOTE-ENN 92.50% 0.5360 93% 93% 92% 

KNN + SMOTE-Tomek 93.29% 1.6153 94% 93% 93% 

AdaBoost 37.84% 1.7524 16% 38% 22% 

AdaBoost + ADASYN 33.54% 1.7525 11% 34% 17% 

AdaBoost + SMOTE 50.00% 1.7531 30% 50% 36% 

AdaBoost + SMOTE-ENN 50.63% 1.7531 31% 51% 36% 

AdaBoost + SMOTE-Tomek 33.54% 1.7525 14% 34% 19% 

ANN 93.69% 0.0631 94% 94% 94% 

ANN + ADASYN 96.34% 0.0366 97% 96% 96% 

ANN + SMOTE 95.73% 0.0427 96% 96% 96% 

ANN + SMOTE-ENN 99.38% 0.0062 99% 99% 99% 

ANN + SMOTE-Tomek 95.12% 0.0488 96% 95% 95% 

 

Other models also demonstrated improved results using 

various resampling methods. Logistic Regression performed 

best with SMOTE, and K-Nearest Neighbor excelled with 

SMOTE-Tomek. However, it is essential to note that 

specific resampling techniques had a negative impact on 
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performance in some cases. For example, Logistic 

Regression with ADASYN, Decision Tree with SMOTE-

Tomek, Naïve Bayes with ADASYN, Random Forest with 

SMOTE-Tomek, SVM with ADASYN, and AdaBoost with 

ADASYN experienced a drop in testing accuracy, precision, 

recall, f1-score, and an increase in loss compared to their 

performance on the original dataset. 

In contrast to traditional machine learning models, the 

Deep Learning model, which utilizes an Artificial Neural 

Network (ANN), consistently demonstrates strong 

performance across all resampling strategies. As shown in 

Table V, each technique — ADASYN, SMOTE, SMOTE-

ENN, and SMOTE-Tomek — contributes to performance 

improvement in the ANN model. This indicates that the 

neural network is highly adaptable to resampled data and 

can learn from modified class distributions more effectively 

than some classical algorithms. 

Among these, the ANN combined with SMOTE-ENN 

emerges as the best-performing deep learning model, 

achieving a testing accuracy of 99.38%, a loss function of 

just 0.0062, and precision, recall, and f1-score of 99% each. 

These results suggest not only a very high correct 

classification rate but also minimal prediction error, 

equivalent to only one misclassified instance in the entire 

test set. The consistent 99% across all evaluation metrics 

reflects a balanced and highly reliable model. These findings 

reinforce the potential of deep learning, particularly when 

combined with advanced resampling methods, in detecting 

complex patterns commonly found in medical datasets. 

Beyond just accuracy, metrics such as precision, recall, 

and F1-score are critical in the context of medical diagnosis. 

In diseases like celiac disease, which are often 

underdiagnosed or misdiagnosed, a high recall is 

particularly vital. This means the model correctly identifies 

most patients who actually have the disease, minimizing 

false negatives. Failing to detect a true positive could lead to 

prolonged patient suffering or complications due to 

untreated gluten intolerance. At the same time, high 

precision ensures that those diagnosed by the model are 

genuinely at risk, reduces unnecessary anxiety, costly 

follow-up tests, and possible dietary restrictions imposed on 

those without the condition. The f1-score provides a 

harmonic mean between these two metrics, offering a single, 

balanced view of a model’s diagnostic capability. 

A clear distinction is made from Table VI, which presents 

the change in testing performance for each model when 

enhanced with various oversampling and undersampling 

techniques. Among the machine learning models, Decision 

Tree and Random Forest, paired with SMOTE-ENN, 

achieved slight improvements in test accuracy, of +0.55% 

and +1.17%, respectively. Despite near-perfect training and 

validation, both models showed only modest improvement 

and limited generalization on test data. This suggests 

overfitting and highlights that high training accuracy does 

not always translate to strong testing performance, 

particularly in sensitive, real-world medical diagnoses. 

By comparison, the deep learning model (ANN) exhibited 

more substantial improvements across all evaluation metrics 

when combined with SMOTE-ENN. The ANN + SMOTE-

ENN model recorded the highest increase in testing 

accuracy (5.69%) and the largest decrease in loss (0.0569), 

indicating a significant reduction in false predictions. 

Additionally, it achieved a 5% improvement in precision, 

recall, and F1-score. This consistency across all metrics 

suggests that this model not only classifies correctly more 

often but also makes far fewer critical errors, such as 

missing true celiac cases (false negatives) or incorrectly 

identifying healthy individuals as positive (false positives). 

While the Random Forest + SMOTE-ENN model came 

close in terms of overall performance, achieving 99.37% 

accuracy and a loss of 0.0309, compared to 99.38% 

accuracy and a loss of 0.0062 for ANN + SMOTE-ENN, it 

is important to note that the ANN still performed marginally 

better in both classification correctness and error reduction. 

Both models achieved identical precision, recall, and F1-

score (99%), which indicates excellent class-wise balance. 

However, the ANN + SMOTE-ENN model achieved the 

lowest testing loss among all models evaluated, suggesting 

that its predictions were not only accurate but also made 

with higher confidence and better probability calibration. 

These results affirm that combining oversampling 

(SMOTE) with undersampling (ENN) can enhance model 

generalization better than oversampling alone, particularly 

when applied to a deep learning model like ANN. While the 

machine learning models showed only modest 

improvements, typically around 1% in accuracy and other 

evaluation metrics, the deep learning model demonstrated 

the highest gains across all metrics. This highlights the 

strong potential of deep learning, when supported by 

appropriate resampling techniques, to deliver robust and 

generalizable solutions in medical classification tasks such 

as celiac disease detection. 

 
TABLE VI 

DIFFERENCE OF THE MODEL TESTING EVALUATION RESULTS WITH AND 

WITHOUT THE PROPOSED METHODS 

Method Accuracy Loss Precis-

ion 

Recall F1-

score 

DT + ADASYN -0.64% +0.2297 +0% +0% +0% 

DT + SMOTE -0.03% +0.0099 +0% +0% +0% 

DT + SMOTE-ENN +0.55% -0.1989 +1% +1% +1% 

DT + SMOTE-Tomek -1.25% +0.4495 -1% -1% -1% 

RF + ADASYN -0.03% +0.0058 +0% +0% +0% 

RF + SMOTE -0.64% +0.0086 +0% +0% +0% 

RF + SMOTE-ENN +1.17% -0.0321 +1% +1% +1% 

RF + SMOTE-Tomek -1.86% +0.0215 -2% -2% -2% 

ANN + ADASYN +2.65% -0,0265 +3% +2% +2% 

ANN + SMOTE +2.04% -0,0204 +2% +2% +2% 

ANN + SMOTE-ENN +5.69% -0,0569 +5% +5% +5% 

ANN + SMOTE-Tomek +1.43% -0,0143 +2% +1% +1% 

 

To enable deployment on mobile devices, the trained 

model was optimized by converting it from its original 

HDF5 (Hierarchical Data Format) file size of 5.78 MB to a 

lightweight TensorFlow Lite (TF-Lite) format, resulting in a 

reduced size of 1.91 MB. This conversion significantly 

improves model efficiency and inference speed, making it 

suitable for real-time predictions in resource-constrained 

environments, such as smartphones. The optimized ANN + 

SMOTE-ENN model was successfully integrated into the 

Android-based celiac disease detection application. The 

system enables users to input new patient data and receive 
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immediate predictions regarding the presence or absence of 

celiac disease. 

As illustrated in Fig. 8(a), the Android application 

features a user-friendly interface for inputting medical 

information relevant to the diagnosis. Fig. 8(b) displays the 

prediction result, which not only classifies the condition 

(e.g., positive or negative for celiac disease) but also 

provides a brief explanation of the disease type and 

personalized recommendations. This integration 

demonstrates the practical applicability of the proposed 

model in real-world healthcare settings, supporting early 

screening and personalized assistance for individuals who 

may be at risk of developing celiac disease. 

 

VII. CONCLUSION AND FUTURE WORK 

This research investigated the impact of resampling 

techniques on improving celiac disease detection, focusing 

on methods such as ADASYN, SMOTE, SMOTE-Tomek, 

and SMOTE-ENN. Given the significant class imbalance in 

the dataset, these techniques were applied to enhance 

classification performance. Among various models, the 

Artificial Neural Network (ANN) combined with SMOTE-

ENN delivered the best results, achieving a testing accuracy 

of 99.38% with a minimal loss of 0.0062. It also reached 

precision, recall, and F1-score of 99%, showing excellent 

class-wise prediction balance. This is especially crucial in 

medical diagnosis, where high recall helps minimize false 

negatives, ensuring true cases are not overlooked, and high 

precision reduces false positives, preventing unnecessary 

stress or treatment. The F1-score further confirms the 

model's balanced performance across both classes. 

The superior results of SMOTE-ENN can be attributed to 

its two-step process, oversampling minority instances and 

then removing noisy majority class samples using Edited 

Nearest Neighbors. This not only balances the data but also 

enhances model robustness by reducing class overlap and 

noise. Compared to other resampling methods, SMOTE-

ENN consistently led to better generalization on the test set. 

The final model was optimized into TensorFlow Lite format 

and successfully integrated into an Android application for 

real-time, user-friendly celiac disease screening, 

     
(a) Detect Page (b) Result Page 

Fig. 8. Implementation of Artificial Neural Network + SMOTE-ENN Model in an Android-based Mobile Application. 
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demonstrating its practical applicability in mobile health 

technology. 

For future work, expanding the dataset with more varied 

and clinically validated samples is essential to improve 

model generalization. Real-time monitoring of model 

performance, integration of user feedback, and mechanisms 

to address data drift over time should also be considered. 

These enhancements will support long-term reliability, 

ethical deployment, and broader adoption of AI-driven tools 

for early detection and personalized care in celiac disease 

and beyond. 
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