
 

  

Abstract—The fine-grained emotion recognition model, 

which delineates human emotions into multiple distinct 

categories, excels in capturing the subtleties of emotional 

expression. The large number of emotion categories, coupled 

with the intricate relationships between them, presents 

challenges for the advancement of fine-grained emotion 

recognition models. A promising approach to enhancing the 

performance of existing models is the integration of VAD 

(Valence-Arousal-Dominance) psychological theory, which 

encapsulates emotions through three continuous dimensions. 

This approach offers a more granular depiction of emotional 

nuances compared to traditional discrete emotion models. 

However, most existing fine-grained emotion recognition 

models directly integrate the three-dimensional VAD scores of 

affective words without adequately considering the 

interrelations between emotions in the VAD space. To address 

this issue, this paper proposes the VAD Emotion Distribution 

Augmented BERT for fine-grained emotion recognition 

(EDA-BERT). EDA-BERT leverages the emotional correlations 

in the VAD space through emotion distribution and integrates 

these with contextual representations to refine emotion 

classification. The EDA-BERT architecture is composed of 

three modules: a semantic information module, an emotion 

distribution module, and a fusion prediction module. The 

semantic information module utilizes a pre-trained BERT 

model to distill contextual text embeddings. The emotion 

distribution module computes the emotional proximities using 

VAD-based distance metrics, thereby constructing an emotion 

distribution map for the sentiment annotations of affective 

words. The fusion prediction module, equipped with an 

attention mechanism, synthesizes the contextual embeddings 

with the emotion distribution data to yield accurate emotion 

predictions. Empirical evaluations conducted on the 

GoEmotions and EmpatheticDialogues datasets confirm the 

superior performance of the EDA-BERT model over existing 

baseline methods in the realm of fine-grained emotion 

recognition. 

 
Index Terms—emotion recognition, emotion distribution, 

VAD emotion model, fine-grained emotion, BERT 

 

I. INTRODUCTION 

ITH the advent of the social media era, characterized by 

unprecedented connectivity and the rapid proliferation 

of user-generated content, the recognition of textual emotions 
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has emerged as a rapidly evolving and crucial research 

direction within the expansive field of Natural Language 

Processing (NLP) [1]. Text emotion recognition has seen 

extensive application across various sectors, including the 

healthcare sector, online public sentiment monitoring, and 

consumer behavior analysis [1]-[4]. Initial scholarly efforts 

predominantly concentrated on discerning the sentiment 

valence of textual content, aiming to classify it as either 

positive or negative. However, in recent times, the pursuit of 

fine-grained emotion analysis has gained prominence, 

characterized by an expansion in the number of emotional 

categories and the intricate interconnections among them. 

This development has considerably heightened the inherent 

complexity associated with the task of emotion recognition in 

textual data, posing new challenges and opportunities for 

researchers in the field. 

Traditional emotion recognition models generally rely on 

basic emotion models for emotion classification. 

Psychologists Ekman [5] and Plutchik [6] categorized human 

emotions into six or eight basic emotions. For instance, 

Zhang et al. [7] employed word2vec to train word 

embeddings and constructed a CNN model to identify seven 

emotions in a Weibo corpus; Khanpour et al. [3] used CNN 

and LSTM models to detect six basic emotions in 

health-related texts; Lei et al. [8] utilized graph convolutional 

networks and Bi-LSTM to extract semantic features and 

recognize seven emotions from Chinese corpora. Basic 

emotion models, which encompass only six or eight emotions, 

are inadequate for fully capturing the broad spectrum of 

emotions that humans experience and express. Consequently, 

researchers have refined and expanded the scope of basic 

emotion models, adopting sophisticated fine-grained emotion 

models to enhance the precision and depth of their study into 

human emotional complexities. For instance, Keltner et al. [9] 

proposed an emotion model comprising 34 emotions, while 

Cowen et al. introduced 24 emotions expressed in human 

speech prosody [10] and 28 emotions conveyed through 

facial expressions [11]. Demszky et al. [12] proposed the 

fine-grained text emotion dataset GoEmotions, comprising 

54,000 Reddit comments, which includes 27 emotion labels 

and a "neutral" label. 

Fine-grained emotion models utilize a large number of 

emotion categories to represent individuals' emotional states, 

offering enhanced ability to express emotions compared to 

traditional emotion models. However, the expanded number 

of emotion categories, coupled with the interrelations and 

ambiguities between fine-grained emotions, renders 

fine-grained emotion recognition more challenging. To 

address these challenges, some studies have enhanced 

emotion prediction models by incorporating external 

knowledge, such as psychological models. For instance, Dhar 
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et al. [13] employed sentiment lexicons to classify emotions 

in corporate tweets; Zhong et al. [14] introduced the VAD 

(Valence-Arousal-Dominance) psychological emotion model 

[15] and proposed a dynamic attention model based on 

affective words VAD scores; Suresh et al. [16] proposed a 

knowledge-embedded attention mechanism that combines 

the VAD scores of affective words with the contextual 

representations provided by pre-trained models. By 

incorporating external knowledge, these methods have 

achieved some success in fine-grained emotion recognition 

tasks. However, current fine-grained emotion recognition 

models that incorporate VAD knowledge typically use the 

three-dimensional VAD scores of affective words directly, 

neglecting the interrelationships between emotions in the 

VAD space. In fact, the distances between fine-grained 

emotions in the psychological emotion model reflect the 

degree of correlation among emotions. Constructing emotion 

distributions based on emotional distances can quantitatively 

capture the degree to which affective words express distinct 

emotions, providing a significant advantage in emotion 

recognition tasks involving emotional ambiguity [17]. 

By introducing emotion distribution to model the 

correlations between fine-grained emotions in the VAD 

space, this paper proposes the VAD Emotion Distribution 

Augmented BERT for Fine-grained Emotion Recognition 

(EDA-BERT) model. The EDA-BERT model computes the 

distances between emotions in the continuous emotional 

space based on the VAD model, constructs emotion 

distributions from these distances, and integrates the emotion 

distribution information with contextual representations for 

emotion prediction. The EDA-BERT model consists of three 

modules: the semantic information module, the emotion 

distribution information module, and the fusion prediction 

module. The semantic information module extracts 

contextual representations from the pre-trained BERT 

language model; the emotion distribution information 

module calculates the distances between emotions with the 

VAD psychological model and constructs emotion 

distributions, quantifying the extent to which affective words 

express different emotions across various emotion categories; 

the fusion prediction module combines emotion distribution 

information with contextual representations using attention 

mechanisms [18] and concatenation [19], which are used for 

emotion prediction. Experimental results on the GoEmotions 

fine-grained emotion dataset demonstrate that the 

EDA-BERT model outperforms baseline models in 

fine-grained emotion recognition tasks. 

 

II.  RELATED WORK 

A. Text Based Emotion Recognition 

Emotion recognition is a critical task in text-based 

intelligent systems, finding widespread applications across 

various domains [20]. In recent years, text emotion 

recognition has predominantly relied on neural networks, 

including CNN, LSTM, and RNN [21]-[24]. With the 

advancement of deep learning, the Transformer-based 

pre-trained language model Bidirectional Encoder 

Representations from Transformers (BERT) [25], proposed 

by Google, has led to groundbreaking advancements in the 

field of NLP. Given BERT's outstanding performance across 

various NLP tasks, an increasing number of researchers have 

applied pre-trained models to emotion recognition studies 

[26]. Traditional emotion recognition models often examine 

basic emotion models, such as those proposed by 

psychologists Ekman [5], who identified six basic emotions 

(happiness, anger, fear, surprise, sadness, and disgust), and 

Plutchik [6], who proposed eight basic emotions. For 

instance, Li et al. [27] utilized a Chinese affective words 

database to identify six emotions in Weibo text; Akhtar et al. 

[28] proposed a multi-task learning framework with CNN 

and LSTM, leveraging different feature representations for 

emotion recognition; Khanpour et al. [3] utilized CNN and 

LSTM models to detect six basic emotions in health-related 

texts. 

However, basic emotion models, which encompass only 

six to eight emotions, often fail to capture the full complexity 

of human emotions. Fine-grained emotion models, which 

utilize a larger number of emotion categories, offer a greater 

capacity to represent emotions. Psychologist Keltner et al. [9] 

proposed a fine-grained emotion model comprising 34 

emotions. Building on this, Demszky et al. [12] developed 

the GoEmotions fine-grained text emotion dataset, which 

includes 54,000 Reddit comments and contains 27 emotion 

labels, along with a 'neutral' label. While fine-grained 

emotion models provide richer emotional expression, the 

large number of emotion categories, along with their 

interrelationships and ambiguities, poses significant 

challenges for fine-grained emotion recognition models. To 

address these challenges, existing fine-grained emotion 

recognition research has enhanced model performance by 

incorporating psychological emotion knowledge. For 

instance, Bruyune et al. [19] integrated the contextual 

representations of BERT with dictionary scores and 

performed classification using Bi-LSTM; Dhar et al. [13] 

applied the VADER lexicon for sentiment classification of 

tweets; Zhong et al. [14] leveraged the VAD scores of 

affective words from the NRC-VAD lexicon as external 

knowledge to boost fine-grained emotion recognition 

performance. However, these methods rely on the 

three-dimensional VAD scores of affective words, neglecting 

the correlations between emotions in the VAD space. 

 

B. VAD Emotion Knowledge 

Dimensional models in psychological emotion theory 

suggest that the structure of emotions is based on multiple 

evaluative dimensions, such as valence and arousal, and that 

emotions can be described using quantitative variables, 

forming a high-dimensional continuous emotion space
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Fig. 1.  Expression of 27 emotions in the VAD model space 

 

system [28]. Continuous-space emotion models define 

emotions with continuous values, facilitating the 

identification of latent connections between emotions and 

providing a more accurate description of the relationships 

between different emotions. The VAD model of emotion, 

introduced by Russell [15], posits that valence, arousal, and 

dominance are the fundamental dimensions for defining 

emotions. The VAD model defines 151 emotional states 

across these three dimensions, using mean and standard 

deviation values. As illustrated in Figure 1, the VAD model is 

applied to 27 distinct emotions. 

The VAD model employs Euclidean distance to quantify 

the similarity between emotions. A smaller distance indicates 

greater similarity between emotions, with stronger 

correlations, while a larger distance signifies greater 

emotional differences and weaker correlations. Because the 

distance between emotions is represented as continuous 

values, the VAD model captures the subtle differences 

between emotions more effectively than discrete emotion 

models. Figure 2 presents the emotional distance matrix for 

27 distinct emotions based on VAD emotional knowledge. 

For instance, in emotionally similar categories, such as 

excitement and pride, Figure 1 shows their distribution in the 

VAD space, suggesting that the two emotions are closely 

related. In Figure 2, the VAD distance between excitement 

and pride is 0.4, smaller than the distance between excitement 

and other emotion categories. This information enables the 

model to differentiate between semantically similar but 

emotionally distinct categories. Although excitement and 

pride are semantically close, the VAD model, by 

incorporating dimensions such as arousal and dominance, 

enhances the model’s ability to differentiate between 

emotions prone to confusion. 

C. Knowledge-Enhanced Text Representations 

External knowledge offers invaluable emotional insights 

for fine-grained emotion recognition tasks, which can 

significantly enhance the representations learned by deep 

learning models, thereby effectively complementing their 

emotion recognition capabilities [29]. Conventional methods 

typically fuse external knowledge with the contextual 

embeddings of pre-trained models through techniques like 

attention mechanisms [18] and concatenation [19]. For 

example, Wang et al. [30] used an adapter model to pre-train 

knowledge data separately and then integrated it with 

contextual representations; Bruyune et al. [19] fused the 

contextual representations of BERT with external knowledge 

from sentiment lexicons via a Bi-LSTM; and Suresh et al. [16] 

designed a knowledge-embedded attention mechanism, 

combining affective words scores from emotion lexicons 

with the contextual representations of the pre-trained BERT 

model. These methods have achieved notable success by 

incorporating additional knowledge sources [31]-[32]. 

Nevertheless, the straightforward application of emotion 

scores derived from sentiment lexicons as external 

knowledge neglects the inherent nature of the VAD 

psychological emotion model, which exists within a 

three-dimensional, continuous space. Within this VAD space, 

the proximity between emotions signifies their 

interconnections and nuances. Consequently, the direct 

utilization of VAD scores does not adequately harness the 

intricate associations among fine-grained emotions, and it 

does not provide a thorough external knowledge base for the 

enhancement of fine-grained emotion recognition models. 

 

III. METHODOLOGY 

A. Model Description 

To address these challenges, this paper proposes the VAD 

Emotion Distribution Augmented BERT for Fine-grained 

Emotion Recognition (EDA-BERT), which improves
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Fig. 2.  Emotional distance matrix of 27 emotions in the VAD model space knowledge 

 

fine-grained emotion recognition by quantifying the 

expression strength of each affective word across different 

emotion categories in the VAD space through emotion 

distribution. Algorithm 1 outlines the operational procedure 

of the EDA-BERT model for clarity. 

The architecture of the EDA-BERT model is illustrated in 

Figure 4, comprising three modules: the semantic 

information module, the emotion distribution information 

module, and the fusion prediction module. The 

corresponding pseudo-code is given in Algorithm 1. 

 

B. The Semantic Information Module 

The semantic information module extracts semantic 

features from text using the pre-trained BERT model. The 

pre-trained model effectively leverages the contextual 

information of each word by encoding its relationships with 

surrounding context, thus improving the model's 

understanding of textual content [25]. 

The process of semantic information extraction is as 

follows: Let the training set be denoted as X , where 

( ){1,2,3, , }ix i m   represents the i-th sentence, and 

m denotes the total number of sentences in the training set. 

First, the sentence ix is fed into the model; then, the 

pre-trained BERT model converts the input text into a word 

vector; finally, this word vector is input into BERT to obtain 

the semantic information of the sentence 0 1{ , , , }ncH h h h=  , 

where n  is the number of words in the sentence, 
n lc

cH R


 , 

and lc is the output dimension of the hidden state layer 

(lc=768 in the BERT-base version). 

 

Algorithm 1：EDA-BERT Model 

Input: X =｛ ix , iy ｝ // training set 

Output: 1 2
ˆ ˆ ˆ ˆ{ , ,..., }

i
y y y y=  // the set of predictive labels 

1: for {1,2,..., }i m= do 

2:   if ix  then 

3:    0 1{ , , , }ncH h h h=  ← BERT( ix ); 

4:     Calculate first token ‘[CLS]’ representations 0h ; 

5:   end if 

6:   if ix  then 

7:      Extracting affective words , 1{ }
ni

i k kW w ==  from ix ; 

8:      Obtain all emotion labels ,

t

i kq  of ,i kw ; 

9:      Generate emotion label distribution 
,

t
i kqf for each 

,

t

i kq ; 

10:      Obtain emotion distribution sequence 0{ , , }e kD d d=   

11:   end if 

12:   =FCe eH D（ ） 

13:   ( )0Softmax T

es h H=  //calculate attention scores 

14:   T

a eh s H=   

15:   concat( , )ce c aH H h=  

16:   Use ceH  to predict result of classification ŷ  

17: end for 

18: Back propagation and update parameters in EDA-BERT Model; 

19: return 1 2
ˆ ˆ ˆ ˆ{ , ,..., }

i
y y y y= ; 

 

C. The Emotion Distribution Information Module 

The purpose of the emotion distribution module is to 

transform the emotion labels of affective words within a 

sentence into an emotion distribution. The emotions 

expressed in a sentence are considered as a combination of
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Fig. 3.  Emotional distribution label enhancement example 

 

multiple basic emotions, each with varying intensities. This 

module leverages the VAD emotion model to quantify the 

expression intensities of all emotion categories, collectively 

constructing an emotion distribution. As illustrated in Figure 

3, the construction process comprises three main steps: 1) 

Extracting affective words from the sentence. 2) Generating 

an emotion distribution for each emotion label. 

Step 1: Using a sentiment lexicon, extract the k-th affective 

word ,i kw  from the input sentence ix  and construct the 

corresponding affective word set , 1{ }
ni

i k kW w == , where 

in represents the number of affective words in the sentence
ix . 

Each affective word corresponds to at least one sentiment 

label, specifically the t-th sentiment label ,

t

i kq of ,i kw . 

Step 2: Based on each emotion label, the corresponding 

emotion distribution 
,

t
i kqf is generated. The emotion 

distribution of each affective word is represented by kd , 

where C  denotes the number of emotion labels for each 

affective word. 

 

 
,

1

1
t
i k

C

qk

t

d f
C =

=   （1） 

The primary emotion   is determined based on the 

emotion label of the affective word, while other emotion 

categories in the VAD emotion space are treated as secondary 

emotions e . The correlation between two emotions is 

measured by the distance between the primary emotion   

and the secondary emotion e  in the VAD space. This 

distance is then transformed into the corresponding emotion 

distribution using a Gaussian kernel. The rules for generating 

the emotion distribution are as follows: 1) To emphasize the 

primary emotion  , it is assigned the maximum score in the 

emotion distribution. 2) The scores of secondary emotions 

are inversely proportional to their VAD distance from the 

primary emotion  . The emotion distribution is calculated 

using the following formula: 

 

 

2

2

2

( )1
exp

2

ee
b

f
Z





 



 − +
= − 

 
 

 (2) 

 

2

2

2

( )
exp

2

e

e

b
Z

 



 − +
= − 

 
 

  (3) 

 

where, , ,e e e
e V A D  =

 
represents the coordinates of 

emotion e  in the three dimensions of the VAD emotion 

model. The term b is a bias parameter, set to 1b = ,  to 

control the locality and weight decay of the emotion 

distribution. The variable Z  is a normalization factor 

ensuring that 1ef = ; 2e  − denotes the Euclidean 

distance between the secondary emotion e  and the primary 

emotion   in the VAD space. Based on the emotion labels of 

each affective word, the final emotion distribution sequence 

of the sentence is obtained, denoted as eD , 

0 1{ , , , }keD d d d=  , where k represents the number of 

affective words in the sentence. 

 

D. The Fusion Prediction Module 

The fusion prediction module combines semantic 

information with emotion distribution data, achieving 

information fusion and prediction through attention 

mechanisms and concatenation operations. As shown in 

Figure 4, the process begins with the extraction of affective 

words from the sentence via the emotion distribution module, 

converting them into an emotion distribution sequence 
eD . 

Next, the emotion distribution sequence 
eD  is transformed 

into emotion knowledge encoding 
eH via a fully connected 

layer, where 
l le c

eH R


 . A self-attention mechanism is then 

applied, with 
eH  serving as the Key(K) and 0h  as the 

Query(Q). Matrix multiplication between K and Q is passed 

through a Softmax function to yield attention scores s . 

Subsequently, eH  is used as the Value(V) and multiplied by 

the attention score s  through matrix multiplication. 

 

 ( )0Softmax T

es h H=    (4) 

 
T

a eh s H=    (5) 

 concat( , )ce c aH H h=   (6) 

 ˆ sigmoid( )cey H=  (7) 

 

Finally, the semantic information cH  is concatenated with 

the output of the attention mechanism ah  to form ceH , which 

is subsequently input into a fully connected layer. The output 

is passed through a Sigmoid activation function to produce 

the emotion prediction probability. The loss for
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Fig. 4.  Architecture diagram of VAD Emotion Distribution Augmented Fine-grained Emotion Recognition. EDA-BERT comprising three modules: the 
semantic information module, the emotion distribution information module, and the fusion prediction module. 

 

multi-label classification is calculated using the binary 

cross-entropy loss. 

 

, , , ,1 1
ˆ ˆ( log( ) (1 )log(1 ))N C

i j i j i j i ji jL y y y y= == − + − −  , (8) 

 

where ,i jy and, ,ˆi jy is the predicted probability, respectively, 

for the j  label of the i  sample. 

 

IV. EXPERIMENT 

A. Experimental Setup 

To demonstrate the effectiveness of the proposed model, 

we rigorously conduct comparative experiments on two 

diverse datasets. These datasets are commonly used and 

encompass a wide array of fine-grained emotion categories, 

ensuring a comprehensive assessment of our models’ 

performance across various text domains. Specifically, one 

dataset comprises forum posts, while the other consists of 

conversations. 

 

⚫ GoEmotions: This dataset released by Google, which 

comprises approximately 54,000 English language 

comments collected from Reddit. The GoEmotions dataset 

includes 28 fine-grained emotion categories, which are 

organized into a three-level hierarchical structure, as 

illustrated in Figure 5. Within the dataset, 83% of the 

samples are annotated with a single emotion, 15% with 

two emotions, and 2% with three or more emotions. 

During data preprocessing, the 54,263 samples in the 

GoEmotions dataset were split into training, validation, 

and test sets in an 8:1:1 ratio. The distribution of samples 

across emotion categories is imbalanced. For instance, the 

"neutral" category contains 14,219 training samples, 

whereas categories such as "grief," "pride," "relief," and 

"nervousness" have fewer than 200 training samples each. 

⚫ EmpatheticDialogues (ED): This dataset is an English 

language dialogue corpus specifically designed for 

emotion-aware dialogue modeling. The dataset contains 

24,850 two-person conversations, with each dialogue 

averaging 4.31 utterances, mirroring the emotional 

nuances typically observed in everyday interpersonal 

communication. Each conversation is annotated with one 

of 32 predefined emotion categories, such as grateful, 

anxious, and lonely, covering a broad emotional spectrum 

from positive to negative sentiments. A notable strength of 

the ED dataset is its balanced distribution of emotion 

classes, which helps reduce the risk of model bias due to 

class imbalance and improves the generalizability of 

emotion recognition systems across a diverse emotional 

range. The dataset is divided into three standard subsets for 

experimentation: 19,533 conversations for training, 2,770 

for validation, and 2,547 for testing. For model input, 

utterances are concatenated using the [SEP] token as a 

separator. 

 

The English sentiment lexicon employed in this study was 

constructed by merging the NRC Emotion Lexicon [33] and 

EmoSenticSpace [34]. The intersection of emotion labels 

from both lexicons was preserved. For affective words 

present in both lexicons, their emotion labels were combined 

as the union of the original labels. 

To evaluate the performance of the model, we use the 

Macro-F1 score as the evaluation metric. The Macro-F1
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Fig. 5.  GoEmotions Dataset Emotion Taxonomy Hierarchy. 

 

score is calculated based on true positives (TP), true 

negatives (TN), false positives (FP), and false negatives (FN). 

Precision (P) is the ratio of correctly predicted positive 

samples to the total predicted positive samples, 

P=TP/(TP+FP). Recall (R) is the ratio of correctly identified 

positive samples to the total actual positive samples, 

R=TP/(TP+FN) . The F1 score is the harmonic mean of 

precision and recall, F1=2 P R/(P+R)  , The Macro-F1 

score is the average F1 score across all categories, calculated 

as: 
1Macro-F1= F1/

K

i K= , where K is the number of 

categories. 

To evaluate the performance of the EDA-BERT model on 

fine-grained emotion recognition tasks, the following models 

are used as baseline models for comparison: 

 

⚫ TextRCNN Model: The TextRCNN model combines 

convolutional neural network (CNN) and recurrent neural 

network (RNN) for text classification, followed by a 

max-pooling layer for feature selection and a fully 

connected layer for classification. 

⚫ BERT Model: BERT is a pre-trained language model that 

captures deep bidirectional representations of language 

through large-scale textual pre-training. It is fine-tuned for 

various natural language processing tasks. In this study, a 

fully connected layer is added to BERT for emotion 

recognition. 

⚫ KEA-BERT [16] Model: The KEA-BERT model is 

designed for emotion recognition by incorporating 

sentiment lexicon knowledge. It employs BERT to extract 

contextual representation from text and integrates 

emotional information from sentiment lexicons. A 

knowledge-embedded attention mechanism combines 

emotional information with contextual representations for 

fine-grained emotion recognition. KEA-BERT has two 

variants based on the integration approach: sentence-level 

fusion (KEA-BERTsentence) and word-level fusion 

(KEA-BERTword). 

⚫ HGCN-EC [35] Model: The HGCN-EC model is an 

emotion recognition framework based on hierarchical 

graph convolutional networks. It consists of a text encoder 

and a hierarchical structure encoder. The model employs a 

graph convolutional network to integrate textual feature 

representations with label hierarchy knowledge, which are 

subsequently fed into a fully connected layer for 

classification. 

 

The experiments were conducted on hardware consisting 

of an Intel Core i9-11900K CPU, 16GB RAM, and an 

NVIDIA GeForce RTX 3070 GPU, utilizing PyTorch 1.7 and 

Python 3.7. For the TextRCNN model, 300-dimensional 

GloVe vectors were employed to initialize the word 

embeddings. The RNN layer utilized a bidirectional GRU 

(Bi-GRU) with a hidden layer size of 100. The training batch 

size and learning rate were set to 64 and 1e-4, respectively, 

with the Adam optimizer employed. 

For the BERT, KEA-BERT, HGCN-EC, and EDA-BERT 

models, the training batch size and learning rate were set to 

10 and 3e-5, respectively, also using the Adam optimizer. 

Additionally, a dropout parameter with a value of 0.2 was 

applied during training to randomly deactivate certain 

neurons, thereby enhancing the models' generalization ability. 

The detailed comparative experimental results are presented 

in Table 1, with the highest score for each emotion category 

highlighted in bold. 

 

B. Main Experimental Results 

As demonstrated by the experimental results in Table I, no 

single model exhibits superior performance across all 

categories. Overall, the proposed EDA-BERT model 

achieves optimal performance, with its Macro-F1 score 

surpassing those of the other baseline models. Specifically, 

the EDA-BERT model outperforms the TextRCNN, BERT, 

KEA-BERTsentence, KEA-BERTword, and HGCN-EC 

models by 8.32%, 2.62%, 0.86%, 3.62%, and 0.6%, 

respectively. 

In comparison to the TextRCNN and BERT models, which 

do not incorporate external knowledge, the performance of 

the EDA-BERT, HGCN-EC, and KEA-BERTsentence 

models, which integrate external knowledge, shows a marked 

improvement. This finding aligns with the results of many 

studies, suggesting that the introduction of external 

knowledge enriches text representation and effectively 

enhances the model's fine-grained emotion recognition 

performance.

IAENG International Journal of Computer Science

Volume 52, Issue 9, September 2025, Pages 3448-3458

 
______________________________________________________________________________________ 



 

 
Among the models incorporating external knowledge 

EDA-BERT, HGCN-EC, KEA-BERTsentence, and 

KEA-BERTword the proposed EDA-BERT model performs 

better on the GoEmotions dataset. Specifically, the 

EDA-BERT model achieves a Macro-F1 score that is 0.86% 

and 3.62% higher than KEA-BERTsentence and 

KEA-BERTword, respectively. This indirectly demonstrates 

that the EDA-BERT model excels at extracting emotional 

features from text. Thus, for fine-grained emotion 

recognition tasks, using emotion distribution to quantitatively 

measure the interrelations between emotions effectively 

enhances emotion distinguishability, proving to be more 

beneficial than traditional sentiment lexicon knowledge in 

improving model performance. Compared to the HGCN-EC 

model, the EDA-BERT model achieves a Macro-F1 score 

0.6% higher and outperforms HGCN-EC in several emotion 

categories, including admiration, approval, and relief. We 

attribute the advantage of EDA-BERT to its use of emotion 

distribution, constructed from emotional distances in the 

VAD model, as external knowledge input. In contrast to 

HGCN-EC, which relies on hierarchical knowledge between 

emotion categories, EDA-BERT excels at capturing the 

subtle differences between categories, thereby enhancing its 

ability to recognize fine-grained emotions. 

Additionally, all models perform poorly on the four 

emotion categories: pride, relief, grief, and nervousness. We 

attribute this primarily to the limited number of samples in 

these categories in the training dataset (all fewer than 200 

samples), coupled with significant differences between the 

training and testing sets. A small number of samples in 

emotion recognition tasks leads to limited information, 

hindering the models' ability to effectively recognize rare 

emotions. Specifically, for the grief category, with only 39 

samples, the extremely low sample count results in a 

classification score of 0 for all models in this category. 

External knowledge can enrich the information available for 

rare emotion categories. The proposed EDA-BERT model

TABLE I 
COMPARISON OF F1 SCORES OF MULTIPLE EMOTION RECOGNITION MODELS ON THE GOEMOTIONS DATASET (%) 

Emotion TextRCNN BERT KEA-BETRsentence KEA-BERTword HGCN-EC EDA-BERT 

neutral 67.02 67.37 68.00 65.33 68.33 66.02 

admiration 66.15 69.14 68.18 67.40 69.25 70.28 

amusement 80.80 81.80 82.59 82.93 83.39 80.75 

anger 48.45 46.80 50.45 51.01 51.38 49.18 

annoyance 32.54 34.79 34.49 33.90 35.26 36.30 

approval 37.75 38.86 38.59 38.82 38.98 40.81 

caring 25.71 41.87 41.15 39.04 40.16 42.48 

confusion 34.34 47.05 43.20 44.71 47.27 45.21 

curiosity 52.75 56.05 57.49 55.23 58.13 59.26 

desire 45.20 49.66 52.41 51.53 49.62 51.66 

disappointment 15.95 29.39 33.60 30.82 32.64 34.84 

disapproval 35.91 40.81 41.54 38.61 40.76 42.51 

disgust 48.62 47.24 48.32 46.02 47.56 48.67 

embarrassment 40.00 45.61 46.37 46.67 48.48 49.18 

excitement 45.97 46.07 44.10 39.59 47.89 44.21 

fear 64.47 66.30 66.66 66.29 66.74 67.80 

gratitude 90.96 90.47 92.48 92.13 91.67 92.50 

grief 0.0 0.0 0.0 0.0 0 0.0 

joy 61.04 62.58 63.12 57.75 62.34 61.54 

love 79.92 80.80 81.08 80.31 80.23 81.10 

nervousness 0.0 31.58 37.20 34.44 35.33 40.00 

optimism 57.72 54.68 55.93 53.40 55.22 54.45 

pride 0.0 43.47 45.45 38.10 44.78 45.45 

realization 19.21 23.14 25.70 21.30 24.11 23.11 

relief 0.0 0.0 30.76 0.0 35.49 42.86 

remorse 66.66 64.82 67.10 64.52 64.39 67.18 

sadness 49.66 58.30 54.54 54.54 55.11 56.19 

surprise 49.26 57.23 54.29 53.15 57.08 55.33 

Macro-F1 43.43 49.13 50.89 48.13 51.15 51.75 
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integrates emotion distribution, which models the 

correlations between emotions in the VAD space as external 

knowledge. This enables the model to learn related 

knowledge about rare emotions from the VAD distances 

between different emotions in the VAD space, thereby 

increasing the amount of available information. By utilizing 

this additional information, the model can better distinguish 

between the subtle differences in fine-grained emotions. Our 

EDA-BERT model significantly outperforms the other 

models in the pride, relief, and nervousness categories. For 

instance, in the relief category, all models except for 

EDA-BERT, HGCN-EC, and KEA-BERTsentence achieved a 

score of 0. Moreover, the EDA-BERT model's Macro-F1 

score is 7.37% and 12.1% higher than those of the HGCN-EC 

and KEA-BERTsentence models, respectively. 

Table Ⅱ provides a comprehensive comparison of the 

performance metrics of various models on the seven-category 

secondary emotion classification tasks using the GoEmotions 

dataset. Among these models, EDA-BERT achieved the best 

overall performance by a notable margin. Its Macro-F1 score 

exceeded those of TextRCNN, BERT, KEA-BERTsentence, 

KEA-BERTword, and HGCN-EC by 11.88%, 2.16%, 1.1%, 

2.45%, and 0.45%, respectively. In particular, EDA-BERT 

demonstrated superior performance in four emotion 

categories—neutral, disgust, fear, and joy—compared to the 

other models. These findings suggest that consolidating the 

original 28 fine-grained emotion categories into 7 broader 

secondary-level classes effectively reduces inter-class 

confusion, thereby significantly improving model 

performance. 

 

C. Conversation Dataset Experiment 

In Table Ⅲ, EDA-BERT demonstrates the strongest 

overall performance on the ED dataset, achieving a Macro-F1 

score of 53.46%, which constitutes a 3.39 percentage point 

improvement over the standard BERT baseline (50.07%). In 

terms of precision, EDA-BERT achieved the highest score 

(59.71%) among all models, outperforming the second-best 

(KEA-BETRsentence) by a margin of 3.46 percentage points. 

This indicates that the model makes more reliable positive 

predictions, minimizing false positives in emotion 

classification. Although its recall score (48.41%) is slightly 

lower than that of HGCN-EC (50.38%), it still ranks among 

the top performers and demonstrates a favorable trade-off 

between precision and recall. The consistent improvements 

across multiple evaluation metrics validate the effectiveness 

of integrating VAD emotion knowledge into the model 

architecture. By embedding fine-grained affective 

information into the representation learning process, 

EDA-BERT enhances its emotional understanding 

capabilities, leading to more contextually appropriate and 

emotionally aware dialogue modeling. These findings 

demonstrate that the proposed enhancements are not only 

theoretically sound but also empirically beneficial in 

advancing the performance of emotion recognition in 

dialogue systems. 

D. Ablation Experiment 

The VAD Emotion Distribution Augmented fine-grained 

emotion recognition, which integrates VAD knowledge 

through emotion distribution and an attention mechanism, 

was evaluated via ablation experiments on the GoEmotions 

dataset. These experiments aimed to verify the specific 

impact of these two techniques on the performance of the 

EDA-BERT model. To validate that emotion distribution 

captures more detailed relationships between emotions than 

directly using VAD scores, we replaced the emotion 

distribution module in EDA-BERT with a method that 

directly utilizes the VAD scores of affective words from the 

sentiment lexicon. To verify that combining the attention 

mechanism with external knowledge leads to more effective 

contextual representations, we averaged the emotion 

distribution knowledge He and directly concatenated the 

semantic information Hc for final emotion prediction. The 

ablation experiment results are shown in Table Ⅳ (where 

"" indicates the method was used).The experimental results 

in Table Ⅳ demonstrate that both emotion distribution and 

the attention mechanism enhance the model's performance. 

When both techniques are applied, the EDA-BERT model 

achieves optimal performance, with a 1.93% improvement in 

the Macro-F1 score. Using only emotion distribution results 

TABLE Ⅱ 
PERFORMANCE COMPARISON ON SECONDARY EMOTION CLASSIFICATION IN THE GOEMOTIONS DATASET (%) 

Emotion TextRCNN BERT KEA-BETRsentence KEA-BERTword HGCN-EC EDA-BERT 

neutral 66.71 68.22 69.49 67.29 69.13 70.58 

anger 47.82 56.41 55.67 54.62 56.38 56.01 

disgust 38.61 45.74 50.61 49.16 50.56 50.89 

fear 32.54 64.22 64.28 64.62 65.24 66.16 

joy 79.19 79.88 81.27 81.66 82.43 83.33 

sadness 48.81 61.70 61.05 56.98 61.11 61.63 

surprise 55.48 61.15 62.21 60.78 64.18 63.68 

Macro-F1 52.73 62.45 63.51 62.16 64.14 64.61 

 

TABLE Ⅲ 
PERFORMANCE COMPARISON ON THE ED DATASET (%) 

Model Precision Recall Macro-F1 

TextRCNN 48.04 40.25 43.65 

BERT 52.11 48.17 50.07 

KEA-BETRsentence 56.25 49.52 52.94 

KEA-BERTword 52.68 49.65 51.30 

HGCN-EC 54.26 50.38 52.06 

EDA-BERT 59.71 48.41 53.46 
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in a 1.4% improvement in the Macro-F1 score, whereas using 

only the attention mechanism leads to a 0.57% improvement. 

In comparison, the performance improvement is more 

substantial when emotion distribution is used. 

When emotion distribution is used to quantitatively record 

the expression degree of affective words across each emotion 

category, compared to directly using VAD scores, the 

model’s Macro-F1 score improves by 1.36%. This validates 

that, by measuring the similarity between emotions based on 

VAD distance in the VAD emotion space and modeling 

emotion distribution using this as the affective word label, the 

model can more precisely reflect the correlations between 

emotions, offering more effective external knowledge for 

fine-grained emotion recognition tasks. 

Additionally, when the attention mechanism is employed, 

compared to directly concatenating averaged emotion 

distribution knowledge with semantic information, the 

model’s Macro-F1 score improves by 0.53%. This 

demonstrates that the attention mechanism helps integrate 

external knowledge with the contextual representations of 

pre-trained language models, creating a more effective data 

representation for fine-grained emotion recognition, thereby 

enhancing the model’s ability to distinguish fine-grained 

emotions. 

E. Case Study 

In this case study, we delve deeper into model performance 

using texts drawn from the GoEmotions dataset, specifically 

focusing on the nuances within its fine-grained emotion 

hierarchy. A significant challenge arises for models tasked 

with fine-grained emotion recognition when different 

specific emotions are subsumed under the same broader 

secondary emotion category. This inherent similarity, often 

characterized by overlapping linguistic cues and contextual 

triggers, makes it difficult for models to accurately 

discriminate between them. For instance, consider the 

emotion pairs “annoyed” and “angry,” where the distinction 

might lie in the intensity or duration of the sentiment 

expressed; “nervousness” and “fear,” which might both 

manifest through expressions of anxiety but differ in their 

underlying causes or future orientation; or “joy” and 

“excitement,” often sharing exuberant language but 

potentially differing in the stability or expected outcome of 

the positive event. These emotion pairs, despite their subtle 

differences, share the same secondary-level classification 

within the GoEmotions taxonomy, presenting a formidable 

test for model discernment. Specifically, both “nervousness” 

and “fear” are categorized under the secondary emotion of 

“fear,” implying a shared core sentiment that can obscure the 

finer distinctions. To illustrate this challenge concretely, 

Table V presents two illustrative example texts: the first is 

labeled with “nervousness,” likely reflecting anticipatory 

anxiety or worry about an upcoming event, while the second 

is labeled with “fear,” possibly indicating a more immediate, 

intense response to a perceived threat or danger. Analyzing 

how models handle such examples is crucial for 

understanding their limitations and for guiding the 

development of more sophisticated emotion recognition 

techniques capable of capturing these subtle emotional 

gradations. 

Figure 6 illustrates segments of the predicted probability 

distributions produced by two models for two example texts 

from the GoEmotions dataset, which contains 28 emotion 

labels. Our focus is specifically on the classification of 

ambiguous emotions. In the example involving the emotion 

pair “nervousness” and “fear,” it was observed that the BERT 

model tends to predict both texts as “fear.” In contrast, the 

EDA-BERT model demonstrates improved prediction 

performance for the “nervousness” category. This 

improvement may be attributed to the modeling of affective 

distributions, where the VAD (Valence-Arousal-Dominance) 

space indicates a distance of 0.3 between “nervousness” and 

“fear.” This suggests that the additional affective information 

enables the EDA-BERT model to more effectively 

distinguish between fine-grained emotions. 

 

 
Fig. 6. Probability Distribution Comparison of Model Predictions. 

 

V. CONCLUSION 

To address the challenge of fine-grained emotion 

recognition, this paper proposes the EDA-BERT model, 

which integrates VAD psychological model knowledge and 

enhances fine-grained emotion recognition via emotion 

distribution. By quantitatively modeling the expression 

intensity of affective words across various emotions, the 

EDA-BERT model effectively captures the correlations 

between fine-grained emotions in the psychological VAD 

emotion space. Experimental results on the GoEmotions 

dataset demonstrate that the EDA-BERT model outperforms 

other baseline models, confirming that emotion distribution 

contains richer emotion-related information. 

In future research, we will explore methods to extract more 

relevant features from text to enrich the representation of 

emotion models. Additionally, we plan to investigate the use 

of more complex graph network structures or knowledge 

TABLE Ⅳ 
ABLATION STUDY OF THE EDA-BERT MODEL 

Emotion distribution Attention mechanism Macro-F1 

  49.82 

  50.39 

  51.22 

  51.75 

 

TABLE V 
TEXT EXAMPLES FROM THE GOEMOTIONS DATASET 

Text Emotion label 

I have a job interview tomorrow and I can't stop 

thinking about it. 
nervousness 

The thought of losing my job keeps me up at night. fear 
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graphs to model the relationships between fine-grained 

emotions, further enhancing the model’s ability to recognize 

these emotions. 
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