
 

  

Abstract— This paper introduces an extended SEIR 

(Susceptible-Exposed-Infectious-Recovered) epidemic model 

specifically designed for computer networks, incorporating the 

unique dynamics associated with both symptomatic and 

asymptomatic nodes. These nodes represent the different stages 

of infection within the network, where symptomatic nodes are 

more likely to spread the virus, while asymptomatic nodes may 

still contribute to transmission despite showing no apparent 

signs of infection. A key focus of the study is the determination 

of the basic reproduction number, which quantifies the virus’s 

potential to spread within the network. The stability analysis is 

conducted to investigate the conditions under which the system 

can maintain equilibrium at the disease-free state or transition 

into instability, with implications for the persistence or 

extinction of the virus within the network. Through numerical 

simulations performed in MATLAB, the model’s long-term 

behavior is graphically illustrated, offering valuable insights 

into how different factors, such as the interaction between 

symptomatic and asymptomatic nodes, influence virus 

transmission and recovery rates. Furthermore, this study 

includes a sensitivity analysis on several critical parameters that 

govern the dynamics of the epidemic. By examining how 

variations in key parameters, such as the rates of transmission, 

quarantine, and recovery, affect the stability and performance 

of the model, we can identify which factors most strongly 

influence the spread of the virus. This analysis helps pinpoint  

critical thresholds and optimal control measures for mitigating 

virus outbreaks in computer networks.  

 Keywords: e-epidemic model; Symptomatic nodes; 

Asymptomatic nodes; Basic reproduction number; Sensitive 

analysis. 

I. INTRODUCTION 

The relationship between computer viruses and mathematical 

epidemiology emerges from their similar patterns of spread 

and infection dynamics, despite differences in their host 

systems. Both types of viruses follow a process where an 

initial "host" becomes infected. The infection then spreads to 

other hosts, creating a chain of transmission. A computer 

virus spreads through infected files, emails, or websites. It 

targets computer systems and often causes damage or 

disruption. Similarly, a biological virus spreads from one 
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person to another through various transmission modes, such  

as physical contact, airborne particles, or animal vectors. 

Despite the differences in their environments, both types of 

viruses propagate in strikingly similar ways. This similarity 

makes mathematical epidemiology models, which analyze 

disease transmission in populations, applicable to studying 

the spread of computer viruses.  

Mathematical epidemiology utilizes models, such as the SIR 

(Susceptible-Infected-Recovered) framework, to study 

disease progression in populations over time. This model 

categorizes individuals into three groups: susceptible 

(vulnerable to infection), infected (currently carrying the 

disease), and recovered (immune or no longer infectious). By 

examining transitions between these groups, researchers can 

analyze key factors such as the rate of spread, peak infection 

timing, and the decline of the disease.  

A similar approach can be applied to computer viruses. In this 

context, computers can be categorized as susceptible (not yet 

infected), infected (compromised by malware), and 

recovered (cleansed or protected through antivirus software 

or system updates). These models help researchers 

understand how quickly a virus might spread across a 

network. They also provide insights into virus behavior and 

control strategies.  

Mathematical models play a crucial role in designing 

intervention strategies to minimize or prevent virus spread. In 

epidemiology, strategies such as vaccination, quarantine, and 

social distancing reduce transmission rates and help control 

outbreaks. In cybersecurity, similar measures exist. Antivirus 

software, firewalls, and system updates block potential 

infection sources and prevent viruses from spreading. Both 

fields also use immunization strategies. In public health, 

immunization refers to vaccines that prevent infections. In 

cybersecurity, it refers to system updates that protect against 

known vulnerabilities.  

The study of computer viruses using mathematical 

epidemiology has gained increasing attention in recent years. 

This is due to the growing complexity and scale of digital 

systems. By treating computer viruses as infectious agents in 

network security, researchers can apply epidemiological 

models to simulate and predict virus behavior. These models 

help identify system vulnerabilities before they can be 

exploited. They also allow cybersecurity professionals to 

design proactive measures for virus containment.  

Understanding network structures further enhances virus 

spread predictions. Certain devices in a network may be more 

vulnerable to infection based on their role or connectivity. 

Similarly, in epidemiology, individuals or groups may be 

more susceptible due to factors like location or behavior.  

In both biological and digital environments, mathematical 

epidemiology provides a valuable framework for 

understanding and controlling virus spread. By analyzing 

infections through models like SIR, public health authorities 
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and cybersecurity experts can make informed decisions about 

prevention and control strategies. This connection highlights 

the importance of cross-disciplinary approaches in 

addressing global challenges, whether in public health or 

digital security. 

The novelty of this study lies in extending the traditional 

SEIR model to capture the complex dynamics of computer 

networks. It incorporates both symptomatic and 

asymptomatic nodes, offering a more realistic representation 

of virus transmission. Different infected nodes play varied 

roles in the spread of infection. Additionally, the study 

integrates sensitivity analysis to identify critical parameters 

affecting network stability and virus control. This approach 

provides deeper insights into optimizing cybersecurity 

measures. By addressing these factors, this study contributes 

to developing more effective and adaptive cybersecurity 

strategies. 

II. Literature Survey 

The study of virus spread on networks has garnered 

significant attention over the years. Draief et al. [1] explored 

thresholds for virus propagation on networks. Their study 

focused on the conditions under which viruses can 

successfully spread. Building on this, Kephart [2] introduced 

a biologically inspired immune system for computers. This 

approach provided a foundation for protecting networks 

against viruses. In the context of computer networks, Kumar 

Nayak et al. [3] developed a dynamic E-Epidemic model. 

Their model captured the behavior of active infectious nodes 

in a network. It also highlighted the impact of node infection 

on network performance. Li & Wang [4] contributed to the 

global stability analysis in SEIR epidemic models. Their 

mathematical framework helped in understanding the 

long-term behavior of infectious diseases. This framework 

has also been applied to model virus transmission in 

computer networks. Similarly, Mishra & Jha [5] proposed a 

SEIQRS model for the transmission of malicious objects. 

Their work extended traditional epidemic models to account 

for the complexities of computer viruses. Mohanty et al. [6] 

developed a comprehensive mathematical model to analyze 

computer virus behavior and its stability within networks. 

Their study introduced new insights into virus dynamics and 

containment strategies. Mohanty et al. [7] also presented the 

SIQTRS E-Epidemic model. This model integrates additional 

compartments for virus propagation and recovery. It offers a 

more complete framework for analyzing and managing 

computer virus outbreaks. Newman et al. [8] investigated the 

role of email networks in the spread of computer viruses. 

Their study demonstrated how communication patterns 

influence virus transmission in digital environments. Piqueira 

& Cesar [9] focused on dynamical models for computer virus 

propagation. Their work provided a deep dive into the 

mathematical foundations of virus spread on networks. Ram 

et al. [10] examined the behavior of infectious nodes in a 

computer network through mathematical modelling. Their 

findings contributed to understanding virus dynamics and 

evaluating containment strategies. Yan & Liu [11] introduced 

a SEIR epidemic model with delay. They explored how 

transmission and recovery delays affect network stability. 

Ahmad et al. [12] studied the dynamic behaviours of a 

modified computer virus model. Their work emphasized the 

role of network parameters and attributes in controlling virus 

spread. Alderremy et al. [13] applied artificial neural 

networks to model the spread of computer viruses on 

complex networks. Their data-driven approach provided 

predictions on virus dynamics. Muthukumar et al. [14] 

focused on the optimal control of computer virus spread 

through partial immunization. Their study highlighted 

strategies to reduce virus transmission in networks. 

Manohara & Kumbinarasaiah [15] developed a numerical 

solution for a modified epidemiological model of computer 

viruses. They used Fibonacci wavelets to achieve accurate 

computational solutions. Verma & Gupta [16] investigated 

the effect of vaccination on the stability of wireless sensor 

networks against malware attacks. Their study applied 

epidemiological principles to cybersecurity. Finally, Ying et 

al. [17] explored the use of graph neural networks for virus 

propagation network intrusion detection. Their research 

introduced innovative methods for detecting and preventing 

virus outbreaks in networked systems. 

III. NOTATIONS 

( )N t = The total number of nodes connected to a network 

of computers and actively communicating with one another.  

( )S t = The quantity of susceptible nodes in computer 

networks and their constant communication with one 

another. 

( )E t = The quantity of exposed nodes in computer 

networks and their constant communication with one 

another. 

( )A t =  A significant number of nodes develop symptoms, 

and also they are capable of transmitting the virus. 

 ( )B t = A significant number of nodes never develop 

symptoms, but they are capable of transmitting the virus. 

( )I t = The quantity of infectious nodes in computer 

networks that are constantly communicating with one 

another. 

( )Q t = The quantity of computer network’s 

quarantined nodes that are constantly communicating with 

one another. 

 ( )R t = The quantity of recoverable nodes in computer 

networks that are always in communication with one another. 

 =  New nodes joining the computer network.  
  = Computer nodes not functioning because of a technical 

issue (not by malicious codes). 

d = Computer nodes not functioning because of a technical 

issue ( by malicious codes). 

 =  Enough interaction between the susceptible nodes and 

the infected nodes for the susceptible node to get infected. 

 =  The rate at which a non-active Exposed class becomes 

an infectious class.  

 =  The rate at which an active exposed class becomes an 

infectious class. 

P = Percentage of the exposed class that is active infectious.  

 =  Percentage of exposed class which are infectious. 

 =The rate at which an infectious class becomes a 

quarantined class is thought to be constant. 

 = Percentage of the infected class that is quarantined. 
  =  Proportion of the quarantined class that is recovered 

following the usage of antivirus software. 

IV. Formulation of the Model and Assumptions 

In the SEABIQR model, the total population is divided into 

seven groups: susceptible ( )S t , exposed ( )E t , symptomatic 
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( )A t , asymptomatic ( )B t , infected ( )I t , quarantined 

( )Q t  and recovered ( )R t . Susceptible individuals are those 

who can become infected. The infected group represents 

individuals infected by the computer virus and capable of 

spreading it. The total population at the time 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )N t S t E t A t B t I t Q t R t= + + + + + +

where ( )N t the total population. Figure 1 depicts the 

transmission dynamics of the computer virus in this model, 

and the mathematical expressions for transmission are given 

by equations (1) to (7). 

 

Fig.1 Schematic Diagram 

   
dS

SI S
dt

 =  − −                                                   (1)       

( )
dE

SI d E
dt

  = − + +                                           (2) 

( )
dA

P E d A
dt

  = − + +                                          (3)             

(1 ) ( )  
dB

P E d B
dt

  = − − + +
                             

(4) 

dI
A B I

dt
  = + −                                                    (5)  

 

 
dQ

I Q
dt

 = −                                                       (6) 

(1 )   
dR

I Q R
dt

   = − + −                                           (7)  

All the model parameters are +ve constants. Adding (1)-(7), 

we have,    ( ) ( )
dN

N I Q d A E B
dt

=  − − − − + +  

Form the above equation, it can be seen that in the absence of 

the worms 0, .E A B I Q as N



= = = = = →   

Thus 
1 ( , , , , , ) :

0, 0, 0, 0, 0, 0,

D S E A B I Q

S E A B I Q

S A B I Q


=

     


+ + + + 

                        

                                      

V. Basic Reproduction Number

 

The basic reproduction number, often denoted as
0R , is a key 

parameter in epidemiological modeling, including computer 

epidemic models. It is the average number of secondary 

infections that one ill individual produces in a totally 

susceptible community.  If 
0 1R  , the infection is likely to 

spread, while
0 1,R   indicates that the infection will 

decline. In computer models, 
0R

 

helps assess the potential 

impact of interventions and guide public health responses. It 

is crucial for understanding the dynamics of disease spread 

and the effectiveness of control measures.                               

Now we have to find the Basic Reproduction Number, From 

the equations (2), (3), (5) & (6) we get:

 

( )

0 ( )
 and V=

0

0

SI d E

P E d A
F

A B I

I Q

  

  

  

 

− + +   
   

− + +
   =
   + −
   

−      
   t= SI  u=0 v=0 w=0Let     

0 0 0

0 0 0 0
Then       F=

0 0 0 0

0 0 0 0

t t t t

E A I Q

Su u u u

E A I Q

v v v v

E A I Q

w w w w

E A I Q



    
    
 

     
     
   =
     
        

    
       

 

t t t t

E A I Q

u u u u

E A I Q
V

v v v v

E A I Q

w w w w

E A I Q

    
    
 

    
    
 =

    
    
 
    

       
Where  t = - ( +d + ) E   

             u = P - ( +d + ) AE    

             v = A +B - I    

            w = I - Q 
 

( )

( )

 X=(E,A,I,Q)

,

0 0 0

0 0
                 

0 0

0 0

Let

dX
F V

dt

Therefore

P

µ d

µ d
V



 

 







 = −

 
 

− =
 −
 

− 

+ +

+ +

 

( )( )

1

            0

  V  exist

,

         |V|=

N

µ d µ d

S

w

o

o

  

−

+ + + +



 
,

( )

0 ( ) ( ) ( )

( ) ( )
. 0 0

( ) ( )

( )
0 0 0

( )

T

Now

d P P P

d d d

d d
Adj V

d d

d

d

     

        

   

     

 

  

+ + 
 

+ + + + + +
 
 + + + +

=  
+ + + + 

 + +
 
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( ) 0 0 0

( ) 0 0

( )
. ( ) 0

( )

( ) ( )
( )

( ) ( )

d

P d

d
AdjV P d

d

d d
P d

d d

  

   

 
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  

   
   

     

+ + 
 

+ +
 
 + +

 = + + 
+ + 

 + + + +
+ + 

+ + + + 

 

1

,

( ) 0 0 0

( ) 0 0

( )1
( ) 0

( )( )

( ) ( )( )
( )

( ) ( )

Therefore

d

P d

d
V P d

dd

d dd
P d

d d

   

     

 
   

   

     
    

      

−

+ + 
 

+ +
 
 + +

= + + 
+ ++ +  

 + + + ++ +
+ + 

+ + + +   
The next generation matrix is, 

 
1. 

( ) 0 0 0

0 0 0 ( ) 0 0

0 0 0 0 ( )1
   ( ) 0

0 0 0 0 ( )( )

0 0 0 0 ( ) ( )( )
( )

( ) ( )

K F V

d

S P d

d
P d

dd

d dd
P d

d d

  

    

 
   

   

     
   

     

−=

+ + 
 

+ +   
   + +
 = + + 
  + ++ +  
   + + + ++ +  

+ + 
+ + + +   

 

0
( )( ) ( )

0 0 0 0

0 0 0 0

0 0 0 0

SP S S

d d d

K

    

        

 
 + + + + + +
 

=  
 
 
    

Now finding the eigenvalues K, 

*| | 0K I − =  

 

*

*

*

*

*

0

0
( )( ) ( )

0 0 0 0

0 0 0

0 0 0

 eigen value of K is:

( )( )

,

R
( )( )

SP S S

d d d

One

SP

d d

Therefore

SP

d d

    


        







 


    

 

    

 
− + + + + + +

 
− = 

 
−

 
 − 

=
+ + + +

=
+ + + +

 

Which is the Basic reproduction number of our developed 

model. 

Equilibrium Points: 

In computer epidemic modelling, an equilibrium point refers 

to a condition where the system's variables remain unchanged 

over time, indicating stability in population dynamics. There 

are two primary types of equilibrium: the disease-free 

equilibrium (DFE) and the endemic equilibrium (EE). The 

DFE represents a scenario in which the infection has been 

eliminated, resulting in a stable, infection-free state. 

Conversely, the EE describes a situation where the infection 

persists at a steady level within the population, with the rate 

of new infections equaling the recovery rate. Analyzing these 

equilibria is crucial for evaluating control measures and 

predicting long-term disease trends. 

(i) Disease-free equilibrium points:  

0 ( , , , , , ) ( ,0,0,0,0,0)E S E A B I Q



= =

 
(ii) Endemic equilibrium points: 

 

* * * * * * *

0 ( , , , , , )

(1 )
, , ,

(1 ) (1 )

(1 )
,

{ (1 ) (1 ) }

,

    a= ( +d+ ),   b =( +d+ ),   c = ( +d+ )

E S E A B I Q

aE cB Bc P

p p b

b I p

b P P c

R R

Where

 

  

 

    

 

 

     

=

  − − +
 

− − 
 −

=  
− + − + 

 
 
 

 
VI. The Existence and Stability of Equilibrium 

Steady states of model are given as 
 =0                            

( ) 0                    

( ) 0                  

(1 ) ( ) 0 

0                              

 =0                           

SI S

SI d E

P E d A

P E d B

A B I

I Q

 

  

  

  

  

 

 − −

− + + =

− + + =

− − + + =

+ − =

−       

(1 ) 0    I Q R   − + − =

 (8)  

Theorem 1: 0E
 
is locally asymptotically stable and unstable 

if 
0 0 1 &  1,R R   respectively. 

Proof: The linearization of the model about the disease-free 

equilibrium points gives 

 

( )

( )

( )

( ) ( )0

0 0 0 0

0 0 0 0

0 0 0 0
, 0, 0, 0, 0, 0

0 1 0 0 0

0 0

    

0

0 0 0 0

S

µ d S

P µ d
E S

P µ d

 

 

 

 

  

  

− − 
 

− + +
 
 − + +

=  
− − + + 

 −
 

−   
The eigenvalues of the above matrix are 

, ( ), , ( ), ( ),  d d d        − − + + − − + + − + + −  
Negative eigenvalues show that the function is stable. Finally, 

the significance of -ve eigenvalues shows that the equations 

(1)-(7) are locally asymptotically stable at disease 

disease-free equilibrium. 

Theorem 2: If 
0  1R    indicate that the endemic 

equilibrium is locally asymptotically stable.  

Proof: Model linearization regarding the endemic 

equilibrium  

Points gives  

( )

( )

( )

( ) ( )
* * * * * * *

0

0 0 0 0

0 0 0 0

0 0 0 0
, , , , ,

0 1 0 0 0

0 0 0

0 0 0 0

S

µ d S

P µ d
E S E A B I Q

P µ d

 

 

 

 

  

 

− − 
 

− + +
 
 − + +

=  
− − + + 

 −
 

−   
In terms of characteristic equation *

0 0E KI− = , where K 

is the eigenvalue and I is the unit matrix of order 6. The 

matrix *

0E  has eigenvalues are:
1 2K = - , K = -  , and the 

rest of the eigenvalues are solved by *

1E  matrix. 

( )

( )
*

1

0 0

( ) 0 0

1 0 ( ) 0

0

d S

P d
E

P d

  

  

  

  

− + + 
 

− + + =
 − − + +
 

−   

IAENG International Journal of Computer Science

Volume 52, Issue 9, September 2025, Pages 3459-3466

 
______________________________________________________________________________________ 



 

The characteristic equation of 
*

1E  is: 

*

1 0| |KE I− =

 

4 3 2 1

4 3 2 1 0. . . 0B K B K B K B K B + + + + =
 

We have,  

4 1 0B = 
 

3 3 3 0B d    = + + + + + 
 

2 2

2 3 6 2 2 3 3 2 2

3 2 2  + + + + >0

B d d d d

d d

      

        

= + + + + + + +

+ + + + +

 
3 2 2 2 2 2

1

3 2 2 2 2 2

B 3 3 3 2 8 2 2

 2 3 2 2 2 2 + d

2 SP + P- >0

d d d d d

d d d d d d d d

d d d

                    

                   

                        

= + + + + + + + + + +

+ + + + + + + + + + + +

+ + + + + + + + −  
3 2 2 2 2

0

3 2 2 2 2

B 3 3 2 2

        d 2

        + ( ) ( 1)( ) 0

d d d d

d d d d d d

d S P d P d

                    

              

                 
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+ + + + + + + + +

+ − + + + − + +   
Where

4 3 2 1 0, , , ,B B B B B  are positive if 

0 1R  furthermore
3 2 1 0  .  .B B B B  By the Routh-Hurwitz 

stability condition is locally asymptotically stable. 

Theorem 3: The disease-free equilibrium 

0 ( , , , , , ) ( ,0,0,0,0,0)E S E A B I Q



= =

 of (1-7) is 

globally asymptotically stable in D1 if 0  1R  . 

Proof: Consider a Lyapunov function 

* ( )V P E d A  = + + +  

 Therefore 

*

0

*
0

( )

        = { ( ) }

                  ( ){ ( ) }

        (R -1)A( )( )

 R 1 then 0

dV dE dA
P d

dt dt dt

P SI d E

d P E d A

d d

dV
If

dt

  

   

    

   

= + + +

− + + +

+ + − + +

 + + + +

 
 

Therefore is globally asymptotically stable if 0  1R 
 

Theorem 4: The endemic equilibrium point 
* * * * * * *

0 ( , , , , ),E A B I QE S  is globally asymptotically 

stable. 

Proof: Let 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

2 2 2
* * *

*

1 2 3

2 2 2
* * *

4 5 6

* * *

1 2

* * * *

*

4

*

3

,
2 2 2

                                                
2 2 2

            

( , ,

               

, , )
S S E E A A

Q M M

B B I I Q Q
M M M

dL dS dE dA
m S S m E E m A A

d t d t d t d

L S

t

dB
m B B m

E A B I

t

M

d

− − −
+ + +

− − −
+ +

 = − + − + − +

=

− + ( ) ( )* *

5 6

dI dQ
I I m Q Q

d t d t
− + −

 (9)  
Now substituting the differential equations (1)-(7) into (09), 

We get 

* *

1 2

* *

3 4

* *

5 6

( )( ) ( )[ ( ) ]

( )[ ( ) ] ( )[(1 )

( ) ] ( )( ) ( )( )

d L
M S S SI S M E E SI d E

d t

M A A P E d A M B B P E

d B M I I A B I M Q Q I Q

    

   

      

= −  − − + − − + +

+ − − + + + − −

− + + + − + − + − −
 

Taking out S, E, A, B, I, Q we get 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

* *

1 2

* *

3 4

* *

5 6

(1 )

d L SI
M S S I M E E d

d t S E

P E P E
M A A d M B B d

A B

A B I
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
   
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   

  
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   
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   
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Consequently, it is evident that 

1 2 3 4 5 6, , , , ,M M M M M M  are positive integers such that 

   0
dL

dt
 and the endemic equilibrium point 

( )* * * * ** *

0 , , ,, ,E S E A B QI    is globally asymptotically 

stable 

Example 4.1. Let β = 0.2, S=100, P=0.3, α=0.01, λ=0.02, 𝜇 = 

0.05, d= 0.02, σ = 0.2. From the concept of  

0R 0.8333  1.
( )( )

SP

d d

 

    
= = 

+ + + +

 

Then the results of Theorems 1 and 3 hold.  

 Example 4.1 suggests the following outcomes, 

(i) If the mean amounts of susceptible (S), exposed (E), 

symptomatic (A), asymptomatic (B), infected (I), 

quarantined (Q) and recovered (R) computers 

( ),  E(t), ( ),  B(t), I(t), Q(t), R(t) > 0S t A t  at the initial 

time ( )0t = conditions, and also close to the virus-free 

equilibrium E0, the computer infection will eventually stop 

spreading.  

(ii) We could change the 

,  P, , , d, , &     parameters so that the 

basic reproduction number ( )0R  is smaller than one, or we 

might use the following suitable computer virus control 

measures.  

1. In order To lower the contact rate β, we should be cautious 

while using portable storage devices like USB sticks and hard 

drives. We should also cut down on unneeded application 

services to lower the risk of virus infection. 

2. We should stop using computers that have been in use for a 

long time in order to increase the elimination rates d.  

3. We should install and use antivirus software, run routine 

system scans, and make sure virus libraries are maintained up 

to date in order to enhance investment in computer virus 

treatment resources and improve the recovery rate σ. 

Furthermore, it is essential to quickly identify and fix system 

flaws in order to proactively stop harmful software from 

infiltrating. 

VII. Analysis of the Results 

Through a variety of graphical representations, the 

simulation findings offer a thorough knowledge of the 

infection dynamics inside the network. Every figure depicts 

an important facet of the epidemic's development, 

emphasizing the impact of several elements on the 

dissemination and containment of dangerous programs 

within the system. The functioning of the system is shown in 

Figure 2 when the basic reproduction number R0 is less than 

1, which signifies that the infection is successfully under 

control. This result implies that the antivirus software's 

isolation and quarantine features are effectively preventing 

the dangerous malware from spreading. In this situation, the 

infection is unable to persist, and the network stabilizes. This 

demonstrates how effective preventative cybersecurity 

techniques are in preserving network health by making sure 

that compromised nodes don't aid in the spread of the 

infection. The network's sick (A) and asymptomatic (B) 

nodes' movements and influences are examined in Figure 3. 

The overall dynamics of the infection are significantly 

influenced by these nodes. Containment attempts are 

hampered by the existence of asymptomatic nodes, which 

could harbor and disseminate the infection without being 

noticed right away. In the meanwhile, symptomatic nodes are 
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simpler to recognize and isolate due to their more obvious 

infectious behavior. The graphic emphasizes how important 

it is to monitor both kinds of nodes in order to implement a 

successful mitigation approach, since neglecting to treat 

asymptomatic carriers may result in undetected spread. The 

interaction between infected and quarantined nodes is 

depicted in Figure 4. The significance of prompt isolation 

techniques is further supported by the clear correlation 

between a decrease in infected nodes (I) and a rise in 

quarantined nodes (Q). According to the findings, quarantine 

regulations have a crucial role in halting the spread of the 

infection and avoiding additional contamination of 

uninfected nodes. This research shows that a clear quarantine 

protocol greatly improves network reliability and lessens 

malware's capacity to remain on the system. Figure 5 

illustrates the change from infectious (I) to recovery (R) 

nodes. The findings demonstrate a discernible decrease in 

infectious nodes over time, along with a rise in recovered 

nodes. By examining the impact of two crucial parameters on 

the recovery node population, Figures 6 and 7 offer a 

three-dimensional view of the recovery process. The 

association between recovery nodes (R), 

infection-to-quarantine rate (σ), and time (t) is represented by 

the surface plot shown in Figure 6. The parameter σ denotes 

the constant rate at which infected nodes move into the 

quarantined category. The figure illustrates that a higher 

value of σ results in more effective infection control, enabling 

a greater number of nodes to recover over time. This implies 

that implementing a strong quarantine protocol can 

substantially improve recovery outcomes and limit the 

infection's spread throughout the network. Figure 7 explores 

how the number of recovered nodes (R) is influenced by the 

failure rate of computer nodes due to technical issues (μ) over 

time (t). In contrast to infections caused by malicious code, μ 

represents system breakdowns from hardware or software 

malfunctions. The figure shows that an increase in μ leads to 

a decline in recovered nodes, highlighting that a higher 

failure rate hinders the recovery process. 
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Fig. 3 Impact of A and B class nodes on the model 
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Fig. 4 Impact of Q and I class nodes on model 
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Fig. 5 Impact of R and I class nodes on the model 
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VIII. Sensitivity Analysis 

The importance of each parameter to disease transmission 

can be calculated through One-at-a-time (OAT) Variation 

methods. The OAT variation provides valuable insights into 
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the sensitivity of the model to each parameter, allowing 

researchers to identify influential parameters and understand 

their individual effects on the model's behavior. This method 

is easy to implement and provides a basic understanding of 

parameter sensitivity on the basic reproduction number.                                      

0R
( )( )

SP

d d

 

    
=

+ + + +  

We have determined the sensitivity index of 
0R  for each of 

the seven parameters that determine  
0R as shown in table 1.  

Table-1: Index of parameter sensitivity of 
0R  

Parameter Sensitivity Index of 𝑅0 Sign 
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From the table-1, it is clear that the parameters , , , P   are 

all positive. So all have high sensitivity   on the basic 

reproduction number. 

Figures 8 through 11 present a comprehensive sensitivity 

analysis, evaluating how variations in key parameters 

influence infection dynamics and system functionality. By 

analyzing these parameters, we can identify critical factors 

that contribute to the network’s stability and resilience 

against infections. Figure 8 illustrates the sensitivity of 

infection dynamics with respect to the quarantine rate (σ) and 

the speed at which an exposed group transitions into an 

infectious group (λ). The figure highlights that an increase in 

σ leads to a reduction in the infection spread, as more 

infectious nodes are promptly quarantined. Conversely, a 

higher λ accelerates the transition from exposed to infectious 

states, increasing infection levels. The interplay between 

these parameters demonstrates that effective quarantine 

strategies can counterbalance the rapid progression of 

exposure to infection, emphasizing the need for prompt 

intervention. Figure 9 examines the sensitivity of the system 

to the rate of non-functional computer nodes due to technical 

failures (μ). Since μ represents failures not caused by 

malicious codes, a higher value indicates a decline in overall 

system performance, independent of infection spread. The 

figure reveals that excessive system failures can indirectly 

hinder the recovery process and increase network 

vulnerability. This underscores the importance of 

maintaining system reliability through regular updates and 

preventive maintenance to minimize disruptions caused by 

technical malfunctions. Figure 10 analyses the impact of both 

the percentage of exposed nodes that become infectious (α) 

and the failure rate of computer nodes due to malicious 

code-induced issues (d). A higher α\alphaα increases the 

probability of exposed nodes transitioning into the infectious 

state, accelerating malware propagation. Simultaneously, an 

increase in d signifies that more nodes are rendered 

non-functional due to infections, amplifying network 

degradation. The sensitivity plot shows that managing both 

parameters effectively is crucial—limiting α through robust 

detection measures and controlling d through strong antivirus 

defenses can significantly improve network stability. Figure 

11 investigates the interaction between the technical failure 

rate (μ) and the malicious code-induced failure rate (d). The 

results indicate that while both parameters contribute to 

system instability, their combined effects can be particularly 

detrimental. Networks with high μ and d values experience 

severe functionality loss, making it imperative to mitigate 

technical failures while simultaneously strengthening 

cybersecurity defenses. 





 

 

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1 0.5

0.6

0.7

0.8

0.9

 
Fig. 8 Sensitivity of &   

 



d

 

 

0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

 
Fig. 9 Sensitivity of &d   





 

 

0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1 0.5

0.6

0.7

0.8

0.9

 
Fig. 10 Sensitivity of &   

IAENG International Journal of Computer Science

Volume 52, Issue 9, September 2025, Pages 3459-3466

 
______________________________________________________________________________________ 



 





 

 

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

 
Fig. 11 Sensitivity of &   

IX. CONCLUSION 

Our study of the SEABIQR model, supported by MATLAB 

simulations, has provided valuable insights into the dynamics 

of virus transmission within computer networks. By 

analyzing the system’s behavior under different conditions, 

we have demonstrated the effectiveness of various control 

mechanisms in mitigating the spread of malicious codes. A 

key finding from our research is that the model exhibits 

stability at both the disease-free and endemic equilibrium 

points when the basic reproduction number (R0) is below 1. 

This indicates that, under appropriate antivirus defenses, the 

spread of malware can be successfully contained, ensuring 

the overall security and functionality of the network. 

The major outcomes of the study are as follows: 

•    When effective antivirus defense strategies are in 

place, the network remains free from epidemic 

spread. This reinforces the importance of proactive 

security measures in preventing large-scale 

infections. 

•   Asymptomatic nodes, in particular, pose a 

significant risk as they can continue spreading 

infections unnoticed, emphasizing the need for early 

detection mechanisms. 

•   An increase in quarantine rates leads to a decline in 

the number of actively infectious nodes which 

underscores the critical role of quarantine measures 

in containing outbreaks. 

•   There is a declining in infections rate as recovery 

processes become more effective which highlights 

the necessity of efficient recovery strategies, such as 

automated system patches and antivirus updates, to 

restore compromised nodes. 

These findings emphasize the importance of proactive 

antivirus strategies in mitigating virus outbreaks in digital 

networks. They also demonstrate the utility of mathematical 

modelling and simulation in understanding and managing 

epidemic risks in complex systems, allowing researchers and 

cybersecurity professionals to design more effective 

intervention strategies. In addition to studying infection 

progression, we conducted a sensitivity analysis to identify 

the most influential parameters affecting virus transmission. 

Our analysis revealed that β, the rate at which susceptible 

nodes transition to the infected state, is a key factor in 

controlling the spread of the virus. This indicates that 

reducing β through strategies such as limiting exposure to 

malicious sources, improving early threat detection, and 

strengthening security protocols can significantly mitigate 

infection risks. Furthermore, other parameters, such as 

quarantine rates (σ), exposure-infection transition speed (λ), 

and node failure rates (μ, d), were also found to influence 

network stability. Understanding the interplay between these 

factors enables the development of optimized security 

strategies tailored to different network environments. 

                               X. FUTURE SCOPE  

For the computer e-epidemic model, the time delay 

differential equation can yield more accurate results. 

Expanding the effort to address the highest level of 

complexity in the epidemic model related to the spread of 

dangerous codes is also possible. Additionally, the 

pre-quarantine strategy can be a commendable effort to repair 

the malicious instructions that were communicated. As it 

analyses viral propagation and offers prevention in the 

scale-free network model, the criticality may be convergent. 
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