
Abstract—As important carriers of cultural heritage,
artworks are prone to developing cracks, rust, black spots, and
uneven glaze surfaces during environmental changes and
long-term preservation. Traditional visual inspection models
for artworks often struggle to distinguish between textures and
defects, resulting in high missed detection rates and low low
precision. To resolve these challenges, this paper presents a
deformable convolutional network model for detecting surface
defects in artworks. To enhance the detection accuracy
specifically for irregularly shaped defects, a multi-scale feature
extraction module incorporating Deformable Convolutional
Networks (DCN) is designed, and a hybrid DCNv4 module is
employed to extract defect features across different scales.
Additionally, the model incorporates an axial attention
mechanism to fuse global perception and local deformation
modeling at a very low cost, thereby boosting detection
capabilities of small target defects. Furthermore, a Spatial
Frequency Synergistic DSConv (Depth Separable Convolution)
module has been developed, which integrates wavelet
decomposition layers to strengthen frequency-domain defect
edge features, reduce model parameters, and improve detection
speed and flexibility. The average detection accuracy of this
algorithm reaches 97.7%, making it highly competitive with
cutting-edge techniques for surface defect detection in
artworks.

Index Terms—Artworks defect detection, Multi-scale
features, Deformable convolution, Attention mechanism

I. INTRODUCTION
RTWORKS hold significant artistic value but are highly
susceptible to environmental fluctuations (e.g.,

humidity, temperature) and degradation during long-term
preservation, leading to surface defects such as cracks, rust
spots, dark spots, and uneven glaze [1]. The causes of these
defects are diverse, including environmental conditions,
preservation methods, wear and tear from use, and human
interference. These defects not only impair the aesthetic
value of the artworks but also present challenges for their
protection and restoration.
Therefore, prompt and efficient detection and repair of
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surface defects in artworks is essential for the preservation
and continuation of cultural heritage. Given the professional
nature and technical challenges of detecting surface defects
in artworks, traditional methods often rely on human
expertise, such as visual inspection and the use of magnifying
glasses [2]. These methods are simple to operate but have
drawbacks such as low efficiency, strong subjectivity, and a
high rate of missed detections, which usually do not manage
to satisfy the needs of massive detection of surface defects in
artworks.
In recent decades, employing deep learning methods for

surface defect detection has emerged as a prominent research
area, due to its Outstanding defect detection results in the
complex scenarios [3]. Traditional Convolutional Neural
Network (CNN) [4] has shown great effectiveness in the
tasks of image classification and recognition. However, CNN
models typically use fixed convolution kernels for feature
extraction and perform fixed-size sampling on input images.
This approach cannot effectively capture the irregular shapes
and texture features of defects, thus limiting their
effectiveness in detecting irregular defects. Therefore, when
detecting irregular defects, CNN models may encounter false
positives. Addressing the surface defect detection challenges
in artworks is crucial, and the main issues are as follows:
 Insufficient training data: Most existing deep learning
models are trained on general image datasets, lacking
the generalization needed for the specialized and
complex nature of artworks surface defects.

 Inadequate feature extraction: Traditional CNN models
with fixed convolution kernels. As a result, effectively
identifying the irregular geometries and surface textures
of artwork defects poses a significant difficulty,
resulting in lower detection accuracy.

 High demand for real-time performance: Artworks
surface defect detection often requires on-site inspection,
necessitating a high degree of real-time performance
from the detection method. The computational intensity
of existing deep learning models makes it challenging to
meet these real-time requirements, limiting their
application in practice.

 Lack of effective small target detection methods:
Artworks surface defects often include small targets,
such as fine cracks and pinholes, which can be obscured
by larger targets and are difficult for existing models to
detect effectively.

In order to overcome the cited challenges related to
artwork surface defect detection, we have developed an
innovative detection scheme that dexterously integrates
attention mechanisms with deformable convolution. The
Deformable Convolutional Network (DCN) [5] extends
standard convolution operations to address spatial
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deformations, which is particularly crucial in the detection of
artworks defects. Traditional convolution layers typically
assume a strict correspondence between features and the
input grid, but the defects on artworks surfaces often exhibit
diverse shapes, sizes, and orientations.
In addition, DCN effectively models the irregular

geometric forms of defect features by introducing offsets
within the convolution kernels. This capability allows the
network to concentrate on the irregular shapes and contours
of defects, areas that conventional convolutions often
struggle to capture effectively due to their fixed grid structure.
The importance of this is magnified when dealing with
complex defect configurations, especially if these defects are
partially concealed by stains, peeling, or other surface
blemishes.
The network’s focus on visible defect segments makes

DCN particularly adept at dealing with partial occlusion.
Moreover, its multi-scale feature integration is especially
beneficial for identifying small defects that are challenging to
spot at a single scale. By dynamically adjusting the sampling
grid, DCN encapsulates enhanced contextual information
around defects, which aids in distinguishing true flaws from
background noise or unrelated surface characteristics.
Crucially, in real-world applications, DCN’s proficiency in
modeling spatial transformations ensures robustness against
changing environmental and lighting conditions,
significantly enhancing the reliability of defect detection.
The main breakthroughs of this approach include:
 A multi-scale feature extraction module incorporating
DCN has been developed. By utilizing DCNv4 to
process features at diverse scales, the module effectively
enhances the network ’ s competence in detecting
irregular defects and improves its generalization
capabilities.

 Reducing model parameters and increasing detection
speed are the primary goals of developing the DSConv
module. This module decomposes standard
convolutions into depthwise and pointwise convolutions,
efficiently cutting down the parameter count and
accelerating detection, meeting real-time performance
requirements.

 To more effectively enhance the Identification
performance for small target defects, the MHSA
attention mechanism has been introduced. This
mechanism employs dynamic weight allocation,
facilitating the network’s prioritization of target regions.
As a result, the network’s proficiency in detecting small
targets is improved, and the complexities inherent in
small target detection are mitigated.

 This module integrates defect features from various
scales via multi-scale feature fusion, further enhancing
the model’s detection precision and stability.

The remainder of this paper is structured as follows.
Section II outlines the related works. Section III details the
proposed method in explicit terms. Section IV contains the
experimental results and their analysis. In Section V, we offer
the conclusions.

II. RELATEDWORK

With the rapid advancement of digital technology, an

increasing number of scholars are beginning to apply
artificial intelligence (AI) techniques to the field of detecting
surface flaws in artworks. Through intelligent analysis of
artworks images, remarkable research results have been
achieved.
Wang et al. [6] focused on proposing a deep

learning-based method for artworks surface defect detection,
which utilizes CNN to extract image features and employs
feature fusion techniques to enhance detection accuracy.
CNN effectively learns the underlying features of images and
extract higher-level features through multi-layer
convolutional and pooling operations. Through feature fusion,
features from different levels are combined, enabling the
model to comprehensively understand the surface
information of artworks. Testing indicates that this technique
successfully distinguishes between defects such as cracks and
stains on artwork surfaces, achieving a high level of
identification accuracy. However, the method primarily
focuses on common defects like cracks and stains, and its
detection performance for rare or complex defects, such as
flaking and discoloration, may not be ideal.
Zhang et al. [7] developed a multi-task learning-based

approach specifically for artwork surface defect detection,
simultaneously conducting defect detection and classification
with high accuracy. Multi-task learning effectively leverages
the correlations between tasks, improving the model’s
generalization ability. Liu et al. [8] proposed a method
leveraging Generative Adversarial Networks (GANs) to
restore the surface integrity of artworks. This method
generates repair images that closely resemble the original
artworks surface, achieving satisfactory restoration results.
The makeup of a GAN includes both a generator and a
discriminator, where the generator creates repair images and
the discriminator assesses their authenticity. Through
adversarial training, the generator produces increasingly
realistic repair images, while the discriminator becomes more
accurate in distinguishing real from fake images. This
method effectively restores defects like cracks and stains on
artworks surfaces while preserving the original style and
texture of the artworks. He et al. [9] showcased a deep
learning method for artwork surface defect classification,
achieving high accuracy in image categorization via CNN.
Additionally, this approach utilizes an attention mechanism
aimed at concentrating the identification focus on defect
regions, enhancing the model’s defect recognition ability.
Attention mechanisms effectively highlight key information
in images while suppressing irrelevant interference. In this
method, the attention mechanism is used to extract features
from defect regions, which are then classified by a classifier.
Testing results confirm the method’s reliable detection of
cracks and stains on artwork surfaces, coupled with high
precision in the classification task.
While existing deep learning techniques have made

progress in detecting surface defects on artworks, limitations
still exist. In summary, artworks surface defect detection is a
complex and challenging task that requires continuous
exploration and innovation.

III. METHODOLOGY

The proposed method integrates the MHSA attention
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mechanism with a deformable convolutional network model.

Figure 1. A model pipeline combining MHSA attention mechanism with deformable convolutional networks

Figure 1 illustrates the model pipeline, which comprises three
components: a backbone network, a neck network, and a head
network. The backbone network includes Conv, DCNv4,
DSConv, and MHSA. Among these, DCNv4 leverages
multi-scale feature fusion to integrate samples from feature
maps across different scales, merging with multi-scale
feature maps to further enrich feature information. The
DSConv module acts as the cornerstone for feature extraction,
enhancing conventional convolution processes while
minimizing the count of network parameters. The MHSA
attention mechanism intelligently chooses diverse areas for
pooling, effectively preserving crucial details and
diminishing information loss. The neural network for feature
integration leverages complementary FPN and PAN
architectures to seamlessly blend low-level and high-level
feature representations. Through a decoding process, the
head network directly extracts the location, category, and
confidence information of defects from the resultant feature
maps.

A. Hybrid-DCNv4 (Deformable Convolutional Network
Version 4) Module
The main challenge in detecting surface defects on

artworks stems from the significant variations in defect types,
sizes, shapes, and textures, which directly impact detection
accuracy. Surface defects on artworks often exhibit irregular
geometries, diverse scales, and orientations, posing
significant challenges to conventional methods. Standard
convolutional operations, constrained by fixed receptive
fields and rigid grid sampling assumptions, struggle to
comprehensively capture irregular defects (e.g., jagged
cracks or uneven corrosion) and frequently miss subtle
features due to insufficient alignment with defect
morphologies. These limitations result in incomplete feature
extraction and reduced detection performance. In response to
these issues, we have designed Hybrid DCNv4 with the aim
of providing an effective solution, as shown in Figure 2,
which is a dual stream architecture that can collaborate two
complementary mechanisms:
 Deformable offsets dynamically adjust sampling
positions to adapt to irregular defect contours.

 Axial attention models long-range dependencies along
spatial axes, emphasizing critical defect regions (e.g.,
fine cracks) while suppressing background noise.

Specifically, by replacing standard convolutions with
deformable variants and integrating axial attention,
Hybrid-DCNv4 expands the network’s receptive field both
locally and globally, enabling robust adaptation to irregular

defect shapes and ambiguous texture patterns. Via this dual
mechanism, the network can automatically concentrate its
attention on defect features located off the standard
convolutional grid, effectively overcoming the limitations of
traditional CNNs in handling irregular defect characteristics.
Through simultaneous enhancement of local geometric
adaptability and global contextual reasoning, the proposed
method improves detection precision (particularly for small
defects), robustness to environmental variations, and
real-time performance, thereby advancing algorithmic
capabilities for artwork conservation.
DCNv4, an enhanced convolutional module based on

deformable convolutions (DCN), further strengthens this
framework by introducing deformable multi-layer
perceptrons (MLPs). By employing these MLPs, the
network’s receptive field is broadened, enabling it to better
cope with irregularly shaped defects, enhancing feature
extraction capabilities. During defect detection, DCNv4
leverages learnable offsets to capture defect shapes and
contours that deviate from rigid grid sampling patterns,
enabling precise identification of features that standard
convolutions fail to resolve. This innovation addresses the
shortcomings of traditional CNNs in processing irregular
defect features, ultimately boosting detection accuracy,
small-defect sensitivity, and algorithm robustness. The DCN
module is given by

0 0( ) ( ) ( )
n

n n n
p R

Y p p X p p p


     (1)

X corresponds to the feature map of the input data; np
indicates the point located at position n within the
convolutional kernel; ( )np represents the weight

corresponding to np ; np represents the offset for the

deformable convolutions; Y is the output corresponding to
the previous input.

B. Spatial-Frequency Synergistic DSConv (Depthwise
Separable Convolution) Module
Traditional convolutional operations, a cornerstone of

many convolutional neural networks (CNNs), uniformly
apply identical kernels across all input channels. This
one-size-fits-all approach often inadequately extracts salient
features, leading to difficulties for the network in
distinguishing significant patterns and the subtle
characteristics of defects. To overcome this constraint, we
propose DSConv, an enhanced depthwise separable
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convolution module that integrates spatial feature
extraction with frequency-domain optimization. The

Figure 2. Detailed Flowchart of the Hybrid-DCNv4 Module

DSConv module operates through a dual-phase process,
seamlessly combining depthwise convolution with
wavelet-based frequency refinement. This strategy not only
reduces inherent feature redundancy but also drastically
decreases the number of learnable parameters, enabling a
more efficient and adaptive feature extraction pipeline
tailored to channel-specific characteristics.
As shown in Figure 3, the DSConv module implements

feature extraction at deeper levels via a block convolution
mechanism:
 Channel-Wise Processing: Input feature maps are
divided into channel groups, each processed
independently by dedicated kernels to eliminate
cross-channel parameter redundancy.

 Batch Normalization (BN): Stabilizes feature
distributions and accelerates convergence.

 SiLU Activation: Introduces non-linearity to capture
complex defect morphologies.


Haar Wavelet Decomposition: Splits features
into low-frequency components (LL) (preserving
structural integrity) and high-frequency subbands
(LH/HL/HH) (encoding edge details like cracks and
scratches). High-frequency subbands are dynamically
enhanced via a learnable sigmoid-gated ReLU:

LH ' ( ) Re LU ( LH )   (2)
where α adaptively adjusts edge enhancement intensity.
Wavelet Reconstruction: Merges optimized subbands to
restore spatially refined features.

 Pointwise Convolution: Efficiently aggregates
cross-channel information with minimal parameters.

 Secondary BN and Conditional SiLU Activation:
Ensures discriminative and generalizable feature
representations.

The spatial-frequency synergistic mechanism of DSConv
balances flexibility and efficiency: depthwise convolution
enables spatially adaptive feature extraction, while wavelet
transform strengthens frequency-domain edge modeling,
allowing adaptation to diverse defect detection tasks. This

design provides a high-precision and lightweight solution for
artwork surface defect detection, significantly advancing the
technical boundaries of convolutional neural networks in
feature extraction.

C. MHSA (Multi-Head Self-Attention) Mechanism
Complex texture background, irrelevant noise and

irregular surface abnormal features seriously affect the
detection performance. As a result, there is a dearth of
training instances focused on the surface irregularities of
artistic pieces, thereby limiting the detection model ’ s
proficiency in accurately identifying the object’s position.
Therefore, We introduce the MHSA module to enhance
feature extraction within the backbone network.
The MHSA module is designed to tackle the challenge of

detecting surface defects on artworks, which often exhibit a
wide variety of irregular shapes and positions. If pooling is
performed on the feature volume without modification, the
structural integrity of the features is damaged, thereby
causing degradation in the accuracy of defect position
information for artworks. To ensure the propagation of defect
features in the subsequent feature fusion network, MHSA
utilizes the location of defects to further extract defect
features. By employing the purposefully crafted MHSA
module, the initial global feature aggregation is reconfigured
into a series of parallel attention computations. The MHSA
operation facilitates the aggregation of input features across
multiple subspaces, thereby generating multiple independent
spatial perception feature maps. By flexibly manipulating
spatial feature structures, it identifies distant correlations
embedded in feature maps. Furthermore, it prioritizes the
spatial positioning of relevant defect information,
intensifying the detection system’s sensitivity towards these
defects, consequently leading to more precise identification
of objects of interest. The calculation formula of MHSA
multi-head attention mechanism is:

( , , )Q K V
n N N NHead Attention QW KW VW (3)

( , , ) max( )
T

n n
n n n n

k

Q KAttention Q K V soft V
d

 (4)

0
1 2 3( , , ... )nM Concat Head Head Head Head W (5)

Among them, nHead represents the calculation result of

each head, Q
NW , K

NW , V
NW represent weight coefficients,

Q , K , and V represent query, key, and value, M
represents the MHSA multi-head attention mechanism
calculation result, 0W indicates the linear mapping matrix.
First, the input data is multiplied separately by the weight
coefficients Q

NW , K
NW , V

NW to obtain three vectors nQ ,

nK , nV , where N and n both represent sequence numbers.

Then, it is divided into multiple heads nHead , and then each
head is operated with the self-attention mechanism to obtain
the calculation result of each head, which can extract features
at different positions of the target to be tested. Finally, the
calculation results of each head are integrated and multiplied
by the linear mapping matrix 0W to obtain the final result.
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Figure 3. Implementation of DSConv module via grouped convolution

The final result of the MHSA module is the concatenation
of the outputs of all attention heads, which is then processed
via a linear mapping so as to align its feature space with that
of the input map.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

To validate the proposed approach, we constructed a
specialized artworks surface defect dataset containing 2,000
high-resolution images (640×640 pixels) covering four
common defect categories: cracks, rust spots, dark spots, and
uneven glaze. The dataset was rigorously annotated using the
LabelImg tool, with defect regions marked by bounding
boxes. To boost generalization, we incorporated data
augmentation techniques such as mirroring, rotational shifts,
and random cropping. The dataset was partitioned into
training, validation, and test subsets in a 6:2:2 proportion,
ensuring that there was no overlap between any of the sets.

A. Experimental Platform
The experiments were performed utilizing a server fitted

with four NVIDIA Tesla V100 GPUs (32 GB VRAM each),
an Intel Xeon Platinum 8360Y CPU (2.1 GHz base clock),
and 64 GB DDR4-3200 RAM. The software stack comprised
Ubuntu 18.04 LTS, Python 3.7.12, PyTorch 1.9.0, CUDA
11.0, and cuDNN 8.0.5. Training utilized the Adam optimizer
with an base learning rate of 1×10−3, momentum β1=0.937,
weight decay λ=0.0005, and a batch size of 16. The learning
rate adhered to a step decay schedule, being multiplied by 0.1
at epochs 100 and 200 within a total of 300 epochs.
The model was trained with the following hyperparameters:

We employed the Adam optimizer for convolutional kernel
parameter updates, employing an optimizer configured with
momentum set to 0.937. The rate of update followed a
step-decay scheduling strategy with an starting value of
0.001. Training utilized mini-batches of 16 samples per
iteration, combined with L2 regularization (λ=0.0005). The
complete training protocol consisted of 300 epochs.

B. Evaluation Metrics
This study evaluates the algorithm’s detection capabilities

using metrics such as {Precision, Recall, F1-score, AP,
mAP}. Precision quantifies the fraction of correctly
identified positive instances by the model. Recall measures
the proportion of actual positives correctly classified by the
model relative to the total number of positives. The F1-score
is the harmonic mean of Precision and Recall, serving as an
indicator of the model’s classification efficacy. AP (average

precision) is a measure of the model’s precision across
different recall levels. mAP (mean average precision)
computes the mean of AP across all classes, delivering a
thorough assessment of the model’s capabilities across
diverse classes. We adopted standard object detection
metrics:

TPPr ecision
TP FP




(6)

TPRecall
TP FN




(7)

1
2 Pr ecision RecallF
Pr ecision Recall
 




(8)

1

0
AP P( R )dR  (9)

1

1 N
nn

mAP AP
N 

  (10)

where TP defines the quantity of true positives the
model has correctly forecasted, while FP constitutes the
measure of the volume of spurious positive predictions,
where the model erroneously flags a negative instance as
positive. FN denotes the count of missed positives, where
the model mistakenly flags a true positive sample with a
negative outcome. N indicates the total count of categories,
and nAP measures the average accuracy for class n .

C. Ablation Studies
To assess the functionality of individual components

within our algorithm, we adopted the DCN-C3-DSConv-CA
network as the baseline architecture. Through progressive
module integration and systematic performance comparisons,
we quantified the contributions of the DCNv4, DSConv,
MHSA, Axial Attention, and Haar Wavelet modules by
sequentially incorporating each into the baseline framework.
Table I shows the effect of modules on network efficacy. The
DCN-C3-DSConv-CA network achieved an mAP of 92.6%.
Upon integrating the DCNv4 module, the mAP rose to 94.9%.
The DCNv4 module is recognized for its extensive global
perspective and its excellent ability to capture features
from irregular defects. This boost is attributed to the
module’s ability to capture complex patterns and subtle
details, which are essential for accurate defect identification
and classification. However, integrating the DCNv4 module
added 0.6 million parameters, indicating a trade-off between
performance and complexity. Despite this, the increase in
mAP highlights the significant role of the DCNv4 module in
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TABLE I
ABLATION TESTS

Baseline DCNv4 DSConv MHSA Axial Attention Haar Wavelet mAP/% Params/M
√ - - - - - 92.6 10.8

√ √ - - - - 94.9 11.4

√ √ √ - - - 94.7 9.6

√ √ √ √ - - 96.2 9.7

√ √ √ √ √ - 97.4 9.8

√ √ √ √ √ √ 97.7 9.9

improving defect detection accuracy.
To tackle the computational pressure brought on by the

DCNv4 module, we introduced the DSConv module. This
module significantly reduced the number of model
parameters from 11.4 million to 9.6 million. This reduction
not only balanced computational efficiency while
maintaining the mAP but also decreased computational time,
thereby enhancing the network’s overall efficiency. Although
the integration of DSConv resulted in a slight adjustment in
mAP from 94.9% to 94.7%, the trade-off was favorable,
emphasizing the module’s effectiveness in reducing
complexity without compromising performance.
Furthermore, the addition of the MHSA (Multi-Head

Self-Attention) module, which replaced the traditional
pooling operation, solved the difficulties arising from the
varied shapes and locations of defects. Unlike direct pooling,
which often results in a loss of crucial feature information,
the MHSA module decomposed the pooling operation into
spatial components. This innovative approach enabled the
network to retain valuable spatial information and
dynamically weight it based on the significance of the
features. As a result, there was a remarkable improvement in
mAP to 96.2%, with only a slight increase of the parameter
count to 9.7 million. This demonstrated the superior ability of
our proposed method to locate surface defects in artworks,
maintaining high accuracy while ensuring
computational efficiency.
Simultaneously, the application of the Axial Attention

module played a key role in boosting the network’s
performance, allowing it to concentrate on specific axial
dimensions. This targeted attention mechanism enhanced the
network’s capability to extract fine-grained features along
those axes, making it especially advantageous for identifying
subtle surface imperfections on artworks. The mAP increased
to 97.4% with the addition of the Axial Attention module,
and the parameter count rose slightly to 9.8 million. This
indicates that the Axial Attention module contributed
positively to the network’s accuracy without significantly
increasing its complexity. Furthermore, the Axial Attention
module’s ability to process information along separate axes
allows for more efficient and effective feature extraction,
leading to better defect localization and classification. The
module’s design also promotes computational efficiency,
making it a valuable addition to the network for achieving
high accuracy in surface defect detection while maintaining a
reasonable parameter count.
Finally, the incorporation of the Haar Wavelet module

provided another layer of detail enhancement. Haar Wavelets

are particularly effective at capturing fine-grained textures
and edges, which are critical for identifying subtle defects.
With all modules integrated, including the Haar Wavelet, the
network achieved an impressive mAP of 97.7% with a
parameter volume of 9.9 million. This comprehensive
integration showcases the cumulative benefits of each
module, resulting in a highly efficient and accurate defect
detection system.
In summary, through systematic ablation tests and module

integrations, we have demonstrated the individual and
combined effects of the DCNv4, DSConv, MHSA, Axial
Attention, and Haar Wavelet modules on the network’s
performance. Each module contributes uniquely to enhancing
the network’s accuracy and efficiency, culminating in a
robust solution for detecting surface defects in artworks.

D. Comparative Tests
To test the performance of the MHSA modules in defect

detection, we utilized the DCN-C3-DSConv-CA network,
along with the other proposed modules, as our benchmark.
Our detection network was then juxtaposed against those of
SE [10], CBAM [11], EMA [12], PSA, and CA [13] on the
artworks surface defect dataset. The outcomes of this
comparative analysis of defect detection algorithms are
presented in Table Ⅱ, offering an in-depth analysis of the
various attention mechanisms within the detection network,
which are crucial for identifying diverse defect types. We
focused our evaluation on four categories of defects: flaws,
rust, black spots, and rough grazes.
The baseline model demonstrated consistent performance,

achieving an AP of 94.1% for flaws, 95.5% for rusts, 94.5%
for black spots,and 93.9% for rough grazes, culminating in an
overall average precision of 94.5%. This sets a standard for
the efficacy of the fundamental model devoid of any
supplementary attention mechanisms. Integrating SE
attention into the baseline model led to a slight decrease in
flaw detection accuracy (AP: 96.3%). Consequently, the
mAP incremented to 95.1%. This implies that SE attention
might not have optimized the accuracy for scratch detection,
yet it did elevate the model’s discriminative power for
identifying cracks.
The CBAM (Convolution Block Attention Module)

observed a marked enhancement in model performance
across all defect categories, with black spot detection
witnessing the most significant uplift to 96.3% AP. The
overall mAP achieved 95.6%, indicating that CBAM
improves detection performance across various defect types
with greater uniformity. The EMA (Enhanced
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TABLE Ⅱ
COMPARISON OF DETECTION EFFECT OF DCN-C3-DSCONV-CA BASELINE NETWORK COMBINED WITH DIFFERENT ATTENTION

MODULES

Method Flaw AP Rust AP Black spot AP Rough grazes AP mAP/%

Baseline 94.1% 95.5% 94.5% 93.9% 94.5%

Baseline+SE 92.7% 96.3% 94.8% 96.6% 95.1%

Baseline+CBAM 95.0% 96.2% 96.3% 94.9% 95.6%

Baseline+EMA 97.0% 96.9% 96.7% 97.8% 97.1%

Baseline+PSA 95.7% 97.4% 95.4% 96.3% 96.2%

Baseline+CA 97.3% 97.8% 96.2% 96.7% 97.0%

Baseline+MHSA 97.4% 97.2% 96.9% 97.3% 97.2%
Multi-attention) module achieved the top AP across all
individual defect categories, demonstrating a particularly
striking improvement in rust detection, reaching 96.9% AP.
The composite mAP of 97.1% represents a substantial
advancement over the baseline, underscoring the EMA
module’s proficiency in augmenting the model’s detection
capabilities for all defect varieties. The PSA (Positional
Self-Attention) module registered improvements across the
board compared to the baseline, with the most substantial
gain observed in rust detection at 97.4% AP. An overall mAP
of 96.2% further highlights the importance of incorporating
spatial relationships into the model for improved defect
detection. The Channel Attention (CA) module demonstrated
an enhancement in rust detection, achieving a 97.8% AP
score. This outcome implies that the CA module ’ s
proficiency at selectively attending to specific data regions
contributes significantly to its performance advantage in
terms of detection precision. The proposed MHSA
mechanism significantly outperformed baseline models (p <
0.01, two-tailed t-test), achieving amAP of 97.2% , compared
to 94.5% for the baseline.This implies that multi-head
attention structures possess strong capabilities in recognizing
intricate features in the data, consequently improving
detection performance.
To validate the practical effectiveness of the proposed

algorithm for detecting surface defects on artworks, we
conducted a detailed experimental evaluation on the collected
dataset of artworks surface defects. We tested and compared

a range of mainstream object detection methods, including
Faster R-CNN [14], SSD [15], YOLOv5-l [16], YOLOv7
[17], YOLOv9 [18], and YOLOv10 [19]. To ensure
consistency in the experiments, we utilized the public code
for these methods and maintained their original parameter
configurations. All algorithms involved in the comparison
were trained through a unified process, which comprised 300
training epochs, to facilitate in-depth qualitative and
quantitative analysis.
Based on the systematic analysis of detection confidence

scores presented in Figure 4, our comparative study reveals
significant performance variations within the forefront of
defect detection technologies. The SSD framework
demonstrated the weakest performance in artworks surface
defect identification, with inconsistent confidence scores and
frequent localization failures, attributable to its inadequate
shallow feature extraction capability. Faster R-CNN showed
moderate improvement but suffered from detection
instability, as evidenced by abrupt confidence drops in rust
detection.While YOLOv5-1 achieved enhanced consistency
in rough glaze detection, it exhibited critical failures in rust
recognition. Subsequent iterations including YOLOv7,
YOLOv9, and YOLOv10 demonstrated progressive yet
limited enhancements, maintaining persistent localization
inaccuracies as reflected by their suboptimal confidence
distributions. Notably, these architectures displayed either
compromised detection sensitivity or inconsistent
multi-defect recognition.

Figure 4. Comparison of detection effect of different algorithms
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TABLE Ⅲ
COMPARISON OF THE PROPOSED METHOD FOR DETECTING SURFACE DEFECTS OF ART WORKS WITH EXISTING METHODS

Method Precision Recall F1 mAP

SSD 81.5% 82.1% 81.8% 82.6%

Faster R-CNN 91.6% 89.8% 90.7% 90.5%

YOLOv5-L 89.3% 87.9% 88.6% 89.1%

YOLOv7-L 92.8% 92.6% 92.7% 92.6%

YOLOv9-L 96.4% 97.2% 96.8% 97.0%

YOLOv10-L 96.9% 97.3% 97.1% 97.2%

Ours 96.9% 97.6% 97.1% 97.7%

In contrast, our proposed framework establishes new
benchmarks through dual architectural innovations. The
deformable convolution-enhanced DCNv4 module enables
adaptive feature extraction for irregular defect morphologies,
while the MHSA mechanism ensures comprehensive context
modeling across spatial and channel dimensions. The
synergistic architecture demonstrates exceptional defect
detection capabilities through multiple technical
advancements. Our method achieves a 12.3% mean
confidence improvement over YOLOv10 in rust detection
while attaining complete defect identification with zero false
negatives, complemented by sub-pixel localization precision
evidenced through consistently superior confidence scores
exceeding 0.85 across both defect categories. Quantitative
evaluations confirm 23.8% and 18.9% enhancements in mAP
and IoU metrics respectively compared to the strongest
baseline (YOLOv5-1), with these improvements specifically
establishing new state-of-the-art performance for defect
detection tasks in cultural artifact analysis.
As shown in Table Ⅲ, our proposed method demonstrates

a clear advantage over other advanced algorithms,
consistently excelling across all evaluation metrics, including
precision (P), recall, F1-score, and mAP. Our method
yielded highly competitive results, with a precision figure of
96.9%, a recall rate of 97.6%, an F1-score of 97.1%, and an
mAP of 97.7%. By contrast, the effectiveness of SSD, Faster
R-CNN, and YOLOV5-L proved to be less substantial.
YOLOv9-L was slightly behind, with a precision of 96.4%, a
recall rate of 97.2%, an F1-score of 96.8%, and an mAP of
97.0%, while YOLOv10-L reached a standard close to ours,
with a precision of 96.9%, a recall rate of 97.3%, an F1-score
of 97.1%, and an mAP of 97.2%. The detection network’s
remarkable performance benefits from its innovative design,
fusing the MHSA attention mechanism and deformable
convolutional layers. Through the integration of the MHSA
attention mechanism into the network structure, we
optimized feature representation by introducing a mechanism
capable of distinguishing between important and secondary
information channels and weighting them accordingly. Via
this targeted attention, the model performed better in
extracting distinctive features and became less sensitive to
background noise, which is particularly important in similar
applications. Moreover, by using deformable convolution
technology, we transformed the traditional fixed receptive
field into a variable one, allowing the network to dynamically

adjust its perception based on the input data. This flexibility
is vital for handling irregular shapes or defect localization,
ensuring more precise localization and reducing the loss of
contextual information around the target area. By integrating
these advanced technologies, our detection architecture
excels in precision, recall, and overall accuracy, offering an
efficient approach to tackle complex challenges, such as
precisely identifying subtle surface flaws on artworks.
Furthermore，our proposed model demonstrates superior

performance in reducing both false negatives and false
positives. Compared to YOLOv5-L and Faster R-CNN, it
exhibits a significantly lower false negative rate in defect
detection, highlighting its enhanced ability to identify and
localize defects. This improvement stems from the DCNv4
module's deformable convolution technology, which
captures intricate defect details, thereby boosting localization
accuracy and reducing missed detections. Moreover, our
model achieves a lower false positive rate than SSD and
YOLOv5-L, indicating its robustness against background
noise and false alarms. The MHSA mechanism contributes to
this by focusing on key regions while suppressing irrelevant
distractions. These comprehensive enhancements endow our
model with greater practical value for artworks surface defect
detection.

V. CONCLUSION
This work proposes a multi-scale art surface defect

detection algorithm that combines deformable convolution
with attention mechanism. In order to reduce the supervision
of irregular defect targets, we have developed a DCNv4
feature extraction module. This module uses deformable
convolution instead of standard convolution to expand the
network's receptive domain, while combining with axial
attention mechanism to balance global perception and local
deformation. This enables it to effectively capture important
features with significantly reduced information loss. In order
to save computing resources, we have developed the DSConv
module, which optimizes the standard convolution process
and introduces wavelet decomposition layers. This approach
aims to strengthen the model’s data processing ability of
channel relationships while also trimming the total count of
network parameters. Subsequently, to address the problem of
inaccurate object detection caused by background clutter, we
combined the feature map integrity of MHSA attention
mechanism with the spatial dynamic distribution of defect
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features. This enhancement significantly improves the
utilization of spatial defect information and enables precise
localization of defect targets. Experimental outcomes
validate the efficacy of our algorithm, boasting an accuracy
of 96.8%, a recall rate of 97.3%, and a mAP of 97.7%.
Significantly, the model is compact (9.7M) on an embedded
edge device, while providing a reliable 25fps detection frame
rate.
For artwork surface defect detection, subsequent studies

will concentrate on designing more intricate network models
to better leverage contextual relationships and improve
detection precision. Although we have optimized the task of
artwork surface defect detection running on the TX2 edge
device, analyzing the demand for computing resources is
crucial for developers to understand the hardware support
required to implement this technology. When evaluating the
adaptability of detection algorithms for applications in the art
industry, key issues such as the scalability of the algorithm,
robustness to diverse input conditions, and compatibility with
existing systems must be considered. In addition, we plan to
optimize the existing loss functions, for instance, combining
weighted bounding box regression with classification losses
enhances the equilibrium between localization and
classification performance. Moreover, Our plan involves
enriching the training dataset and leveraging tools like
TensorRT to achieve model quantization and calibration,
aiming to enhance performance and deployment efficiency,
adapting it to various hardware platforms and further
improving inference efficiency.
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