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Three-Dimensional Reconstruction Method of
Nanguo Pear Fruit Based on SfM and Improved
Neural Radiance Field
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Abstract—This study presents SfM-NGP, an efficient 3D
reconstruction framework for Nanguo pears that addresses
the limitations of conventional methods in computational ef-
ficiency and equipment cost through the integration of im-
proved Neural Radiance Field (NeRF) and Structure from
Motion (SfM) techniques. By developing an optical flow-based
adaptive frame extraction strategy for optimal keyframe se-
lection and implementing Instant-NGP with multi-resolution
hash encoding to reduce the MLP network to four layers
(64 neurons/layer), the proposed method achieves significant
performance improvements, as demonstrated in experiments
using Liaoning Anshan Nanguo pears captured with a consumer
smartphone (Xiaomi 13, 4K video). SIM-NGP completes single-
fruit reconstruction in just 2.57 minutes on an RTX 3060 GPU,
showing 92%, 99.3%, and 65.7 % faster processing compared to
SfM-MVS, SfM-NeRF, and 3DGS respectively, while delivering
superior reconstruction quality with a peak PSNR of 25.96
dB, 15%, 7.8%, and 3% improvements over benchmarks and
the lowest standard deviation in fruit diameter measurements.
The framework enables high-fidelity morphology and texture
reconstruction under natural lighting conditions, providing a
cost-effective solution for agricultural applications, including
fruit phenotyping, quality inspection, and digital orchard man-
agement.

Index Terms—Three-Dimensional Reconstruction, Neural ra-
diance field, Motion recovery structure, Instant-NGP, Nanguo
Pear

I. INTRODUCTION

HE Nanguo pear is primarily cultivated in the Anshan,

Haicheng, Xiuyan, and Liaoyang districts of Liaoning
Province, China. This variety is renowned for its delectable,
fruity flavor and nutritional value, and it is a notable source
of trace elements such as zinc, iron, potassium, and calcium.
The following nutrients have been shown to be higher in
crude protein, crude fiber, crude fat, lysine, and soluble
sugar content compared to other fruits: antioxidant, blood
pressure, heat, cool, moisten the lung, eliminate phlegm,
clear heat, detoxification, and other effects. This has led
to a high level of popularity among the general public.
This substance has many benefits, including antioxidants,
blood pressure, cooling, moistening the lungs, eliminating
phlegm, clearing heat, and detoxification effects[1]. These
properties have contributed to its popularity among the
public. Presently, the primary grading methods employed
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for Nanguo Pear are manual and mechanical. The efficiency
and precision of artificial grading are comparatively low.
Mechanical grading, a technique employed to surmount the
limitations of artificial grading, has been demonstrated to
enhance grading efficiency and quality. However, mechanical
grading is more susceptible to damage, which can affect the
appearance of Nanguo Pear. The present situation with regard
to the testing and grading of Nanguo pears is as follows: such
activities are, for the most part, carried out in factories and
large-scale collection organizations. As a result, farmers and
enterprises maintaining limited stocks of Nanguo pears face
significant operational challenges.

Presently, three-dimensional reconstruction technology of-
fers significant advantages in various aspects of human pro-
duction and life. In the domain of industrial prediction[2] and
agriculture, the implementation of a three-dimensional model
of the Nanguo pear fruit has garnered significant attention.
This approach facilitates expeditious detection and enables
precise measurement of the fruit’s dimensions, morphology,
hue, and other attributes. Consequently, it fosters scientific
and technological advancements within the Nanguo pear
industry. Moreover, the integration of the three-dimensional
model of Nanguo Pear with information technology enhances
its adaptability to the relevant production process and facil-
itates researchers’ intuitive observation of model data. This
development holds significant potential in fields such as
quality control, packaging design, marketing, and scientific
research.

Presently, the field of domestic research on Nanguo
pear-related three-dimensional reconstruction remains in its
nascent stages. The majority of extant research in this area is
based on the reconstruction of common fruits or plants. HAO
et al. proposed a three-dimensional reconstruction method
that employs deformable convolution and Laplace pyramid
residuals to process multi-view data[3]. TANG et al. em-
ployed a three-dimensional reconstruction method, utilizing
the time-difference technique in conjunction with visible
light imaging, to extract the plant traits of maize seedlings[4].
ZHOU et al. performed a three-dimensional reconstruction
of plants based on ground-based LiDAR for characteriza-
tion measurements[5]. PAN et al. developed an innovative
three-dimensional reconstruction technique integrating Li-
DAR sensors, professional-grade cameras, and agricultural
robots, which achieves high-precision crop reconstruction[6].
However, these methods have problems with high equipment
costs, harsh environmental conditions, and poor reconstruc-
tion efficiency, which makes it difficult to be widely used in
large-scale production.

Structure from motion-multi view stereo (SfM-MVYS) is
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a prevalent solution in 3D reconstruction. The operation of
Structure from Motion (SfM) is predicated on the principle of
extracting feature points from images captured from multiple
viewpoints. These feature points are then used to reconstruct
the 3D trajectory of the camera and the 3D structure of the
scene through the corresponding links between these feature
points in different images[7].

The unique advantage of SfM over traditional stereo vision
methods is that it can build high-precision 3D models from
unstructured, randomly acquired images. Because of this
feature, SfM has been popularized in many fields of practical
application scenarios. Hu et al. used the SFM algorithm
to obtain 3D point cloud data of wolfberry plants for 3D
reconstruction[8].HE et al. carried out a 3D reconstruction
of soybean plants by SfTM-MVS[9].GAO et al. applied SfM-
MYVS to the measurement of tree trunk diameter in the field
forest inventory and achieved a more satisfactory measure-
ment effect[10].

Neural radiance fields (NeRF) is a 3D reconstruction
method based on implicit neural rendering[11]. It can re-
construct a three-bit model with high accuracy by inputting
2D images. In recent years, many scholars have successively
proposed various schemes to optimize NeRF.LI et al. skipped
empty regions and terminated occluded regions early to
reduce the number of sampling points per ray to improve
the training speed[12].SMITT et al. proposed a PAg-NeRF
to achieve panoramic 3D representation of crops using an
RGB-D (red-green-blue-depth) depth camera[13]. SAEED et
al. proposed PeanutNeRF for the 3D reconstruction of peanut
plants and obtained results with high accuracy[14]. Muham-
mad et al. utilized NeRFacto for the 3D reconstruction of
plants in the field[15]. Yang et al. combined NeRF with
the RandLA-Net network to realize semantic segmentation
of fruit 3D point clouds[16]. Although the improved NeRF
model reaps obviously results in reconstruction quality, its re-
construction efficiency is not satisfactory. A large amount of
time needs to be invested in the model training and rendering
phases, which seriously hinders the large-scale application of
this technique. Moreover, current research mainly focuses on
the 3D reconstruction of crops in the laboratory environment.
Once out of the laboratory, the expensive acquisition equip-
ment, complex acquisition process, and long reconstruction
cycle all make the feasibility of this technology in practical
applications questionable. Therefore, there is an urgent need
for a new method to realize the reconstruction of Nanguo
Pear in a general-purpose environment.

MULLER et al. proposed an instant neural graphics prim-
itives (Instant-NGP) method based on multi-resolution hash
coding to improve the efficiency of Nerf reconstruction.
Instant-NGP mainly replaces spatial location coding with
multi-resolution hash coding[17], which reduces network
Instant-ngp mainly replaces spatial location coding with
multi-resolution hash coding, thus reducing the network
training time and computational resources greatly improving
the computational efficiency of neural networks without
sacrificing the reconstruction quality. And it has achieved
better results in practical applications[18, 19] . Therefore,
in this paper, we choose SfM and Instant-NGP as the 3D
reconstruction method for Nanguo Pear fruits, later referred
to as STM-NGP.

II. CONCLUSION
A. Material Preparation and Methods

The Nanguo Pear produced in Haicheng, Anshan, Liaon-
ing province, was purchased in Tmall supermarket, and a
total of 85 pieces of Nanguo Pear were purchased and graded
as large, medium, and small fruits, and 60 pieces of them
were randomly selected as experimental materials.

In the data acquisition, this study adopts the SfM method
to recover the camera position, which does not need to
rely on expensive equipment, but through the matching and
motion estimation of the feature points in the Nanguo Pear
fruit images, recover the camera position and output the
internal and external parameters of the camera. The SfM
technique identifies the key feature points from the images of
multiple angles, establishes the correspondence between the
feature points of different viewpoints, and finally calculates
the optimization algorithms such as beam by identifying
key feature points from multi-angle images, SfM technology
establishes the correspondence between feature points of
different viewing angles and finally computes the camera’s
shooting position attitude and the 3D coordinates of the scene
through optimization algorithms such as beam leveling. The
output camera position and shooting camera parameters are
inputted into Instant-NGP for training to complete the 3D
reconstruction of the Nanguo Pear multi-view image. The
specific process is shown in Figure 1.
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Fig. 1. 3D Reconstruction Flowchart

B. Data Acquisition

The method proposed in this study is suitable for fruit
farmers or enterprises to collect data at any time. Using
commercially available smartphones (Xiaomi 13 with Hyper
OS 2.0), the system enables high-quality data acquisition
without specialized equipment. All Nanguo pear specimens
were imaged under consistent indoor natural lighting con-
ditions following a standardized protocol. Each fruit was
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placed on a 20-cm diameter black circular platform and
recorded using 4K video resolution while maintaining a
constant angular velocity during 60 seconds of continuous
orbital capture. The smartphone lens was carefully centered
on the specimen throughout the filming process to ensure
data consistency. This approach successfully generated a
representative dataset of 60 individual pears, providing a
reliable foundation for subsequent analytical investigations
in fruit morphology research.

Since it is difficult to control the device to shoot at a
uniform speed all the time in the actual shooting, there
may be changes in the speed of the device movement,
which leads to the easy omission of keyframes in the video
frame extraction, and affects the position recovery and the
final reconstruction effect. Therefore, this study proposes a
dynamic frame extraction method with an adaptive strategy.
The frame extraction is adjusted according to speed during
shooting. The optical flow method is commonly used to
calculate the motion vectors of pixels between consecutive
frames based on the assumptions of constant brightness and
small motion. The frame-drawing frequency is increased in
high-speed motion scenes and decreased in static scenes.

Firstly, Farneback dense optical flow is used to compute
the motion of each pixel in the whole image to obtain
the motion vector field for consecutive frames. The motion
intensity is determined by counting the average value of
the optical flow amplitude.Next, the number of pixels that
differ between neighboring frames is calculated sequentially,
and the standard deviation o of the number of all pixels,
as well as the average value 6, are found. A threshold for
the number of different pixels is set as 20+6, and when the
difference pixels exceed the threshold, the current frame is
marked as a keyframe. In the process of frame extraction,
JPG is selected as the output format, and a four-digit code
is used to name the file (e.g., “0001.jpg”, “0002.jpg”, etc.),
which ensures the consistency of the file sequence and
the convenience of searching for a single image. The file
sequence is coherent, and searching for a single image is
convenient. All extracted images were stored in a specific
folder for subsequent experiments.

The multi-view 2D image sequence obtained by the dy-
namic frame extraction method based on an adaptive strategy
is applied to COLMAP for incremental SfM to reconstruct
the sparse point cloud of the extracted multi-view image.
In this process, feature extraction and matching are carried
out by the PINHOLE (pinhole) camera model, which finally
realizes the accurate calibration of the internal and external
parameters of the camera and the recovery of the camera
position.

First, the feature points in the image are extracted and
matched to determine the position and attitude of the object
in the image. In addition, they are used to recover the position
of the point in 3D space. The scale-invariant feature trans-
form (SIFT)[20] algorithm detects potential pairs of scale-
and rotation-invariant feature points in all images, which are
collections of pixel points with unique characteristics that can
be recognized from different viewpoints. For each identified
feature point, its descriptor is computed. A descriptor is a set
of visual information vectors containing the region around
a feature point. The SIFT algorithm uses a data structure
called an “octree” to represent the descriptors. By comparing

the descriptors of features extracted from different images,
we can find the correspondence between them. A pair of
feature points that satisfy a certain condition is recorded as a
matching point. The nearest neighbor matching algorithm of
the KD tree[21] (K-Dimensional Tree) is used to calculate the
Euclidean distance of the matched feature points to realize
fast stereo matching of the key points. Based on the matched
feature point pairs, the essence matrix between the two
images is calculated. This matrix reflects the relative position
and pose information between the two images. Triangulate
feature points based on the essential matrix to generate
3D spatial points. Triangulation involves using two matched
image coordinates, image poses, and the camera’s intrinsic
matrix to determine the 3D coordinates of the matched
points. Then, perform bundle adjustment (BA) optimization
on all generated 3D points and estimated poses. Minimize the
reprojection error to remove points with excessive errors. The
camera parameters of each image are estimated sequentially
to generate a sparse point cloud. Finally, the camera poses
and sparse point clouds of all generated images are output.
The specific process is shown in Figure 2.
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Fig. 2. SfM position acquisition flowchart
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C. Nerf Introduction

NeRF (Neural Radiance Fields) is a deep learning-based
3D scene implicit representation and rendering technology.
The core idea is to implicitly model continuous 5D radiation
fields Fy through a multilayer perceptron (MLP)[22]. A
new perspective synthesis is achieved by differentiable body
rendering, which transforms 2D images into 3D scenes.
Given the 3D coordinates (X, y, z) and the observation
direction (6, ¢) as inputs, it outputs the color c=(r, g, b)
of the point and the bulk density . As shown in Equation
(1).

FQ('Tayazaea(I)) — (Tagvba0-> (1)

The input 3D coordinates and observation direction in-
formation are first mapped to the high-dimensional space
through position encoding to enhance the high-frequency
capture capability and avoid the poor performance of ren-
dering in representing high-frequency variations in color
and geometry due to the bias of the deep network learned
low-frequency functions. The specific encoding is shown in
Equation (2).

_ (sin(2°7p), cos(2%7p), . . .,
v(p) = <sin(2L_17rp),cos(2L_17rp)) 2
In the equation, p represents input information, and L
denotes a high-dimensional space. In the experiment, L =
10 was selected for the three-dimensional coordinates (X,
y, z), the final 60-dimensional vector (x)60 is obtained,
and L = 4 was selected for the observation directions (6,
¢), the final 24-dimensional vector v(d)24 is obtained.v(x)
represents the encoded position information, y(d) represents
the encoded direction information. The encoded information
enters the MLP network, where the MLP network first uses
eight fully connected layers to process the three-dimensional
positions (x, y, z), outputting voxel density o and a 256-
dimensional feature vector; then, the 256-dimensional feature
vector obtained above is combined with the two-dimensional
orientation angle (6, ¢), followed by processing through
one fully connected layer containing 128 neurons, outputting
color ¢ = (1, g, b). NeRF uses volume rendering, performing
discrete sampling through camera rays and calculating pixel
colors through integration to complete three-dimensional
reconstruction. As shown in Equation(3), (4):

r(t) =o0+td 3)
A N
Cuy = Z Tiaic; 4)
i=1

Included among these, «; indication of transparency. 7; is
cumulative transmittance. J; is the neighboring sample spac-
ing.As shown in Equation (5),(6). To improve the rendering
efficiency, a hierarchical body sampling strategy is used: the
first stage uniformly samples points N.=64 to train the coarse
network, and the second stage optimizes the details based on
the weight distribution probability density function to sample
points INy=128.Nerf specific process is shown in Figure 3.

a; = 1 —exp(—0;6;) (5

i—1
T =0 - ) (6)
j—1

—
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Fig. 3. NeRF Flowchart

D. Instant-ngp Optimization for Nerf

Nerf is unsatisfactory in training speed and efficiency
due to its complex coding computation and multilayer MLP
network structure. In order to solve this problem, instant-
ngp proposes a way to achieve an accurate and efficient
representation of the 3D space through multilayer Hash
coding by using Multi-Resolution Hash Encoding instead
of positional coding. The Multi-Resolution Hash Encoding
reconstruction flowchart is shown in Figure 4.
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c.neural network connection

Fig. 4. Instant-NGP flowchart

First, for a certain sample point x in the image, two
different resolution edges are selected, their surrounding
voxels are searched separately around the sample point X,
and hashing is implemented on the vertices of these grids.
Second, a hash table T is maintained for the different
resolution grids respectively, and given that the input data
are all two-dimensional images, the feature dimension F =
2. All the generated grid vertices are indexed and searched
in their corresponding hash tables, respectively, to obtain the
corresponding F-dimensional feature vector. The acquired
feature vectors are linearly interpolated according to the
relative positions of x in the different resolution grids. This
is to achieve accurate matching of the input coordinates.
Subsequently, the individual feature vectors, after linear
interpolation of points x at each resolution, are connected
to other parameters, such as camera parameters. Finally, the
results are fed into a fully connected network to complete
the coding training and output the color values ¢ = (R, G,
B) of the sampled points with the volume density o.

The improvements to Instant-NGP primarily focus on the
encoding strategy for the positional information of sampling
points X. The positional information of sampling points x
is decomposed into L layers of hash encoding, with each
layer of hash encoding corresponding to image information
representation at different resolution levels. Within each hash
encoding layer, the x coordinate is determined by calculating
the weighted average of the feature values of its surrounding
encoded points, which serves as its feature value within that
layer. Subsequently, the feature values obtained from all lay-
ers are integrated to form an independent L-layer structure.
Each layer contains at most T F-dimensional feature vectors,
where T is the capacity of the corresponding hash table. The
feature vectors are stored at grid vertices. Typical values for
the hyperparameters are shown in Table I.

TABLE I
HASH ENCODING PARAMETER TABLE

Parameter symbol Parameter name typical value

L Storey 16

T Hash table size 214 924

F Feature Dimension 2
Npin Coarsest resolution 16
Nmax Finest resolution 512 ~ 524288

The size of the hash resolution of each layer is N,,;, as
well as N,,qz, while the specific layer resolution of each

layer needs to be calculated by the exponent of the scale
factor b, as shown in Equations (7),(8).

Ni:= [Npin - b1 (1=1.23...L) (7
ln Nm,am - ln Nm,in
- exp{ - } ®)

The choice of should match the best detail in the training
data. Since the number of L levels is large, the growth factor
is typically small. b denotes the ratio of the number of
grid points in one direction between two adjacent resolutions
and typically takes values in the range [1.26, 2] in typical
parameters.

To encode the x of a three-dimensional space into a one-
dimensional hash space, a hash mapping function is required,
using the space hash function form shown in Equation (9).

l

h(m)z ©®
1=1

mod(T) )

T

In the equation, 1 denotes the dimension of the spatial
position = of a voxel point, @ denotes the exclusive OR
operation, denotes a larger prime number, and mod denotes
the modulo operation. This new encoding method enables
Instant-NGP to build a lighter network, reducing the large
network originally used by NeRF (8 layers with 256 neurons
per layer) to a smaller network with only 4 layers and 64
neurons per layer. The number of neurons is significantly
reduced compared to the original NeRF, making training
more efficient and faster.

III. RESULTS AND ANALYSIS OF NANGUO PEAR
RECONSTRUCTION

A. Camera Position Recovery Effect

In this study, video data of 60 Nanguo Pear fruits were
captured using a consumer-grade smartphone and numbered
from 1 to 60. One hundred high-quality multiview Nanguo
Pear fruit images were obtained after each fruit’s video data
was processed by a dynamic frame extraction method with an
adaptive strategy. Among these, taking Fruit 1 as an example,
a total of 104 images were obtained after processing. Using
the SfM algorithm, the camera pose of all images was
successfully restored, achieving a success rate of 100%.The
original pixel resolution of the Fruit 1 video was 2160x3840.
The pixels of the images obtained through frame extraction
were also 2160x3840, with no surface damage. The repro-
jection error was 1.1928, demonstrating the high accuracy
of pose recovery. The average number of feature points
observed in each image is about 4708.2, which indicates that
the image sequence obtained by the dynamic frame extraction
method with adaptive strategy has a balanced distribution of
feature points; the average trajectory length of 3D points
obtained is 5.10, which indicates that more than 5.1 pictures
recover each 3D point; the stability and reliability of the
dynamic frame extraction method with adaptive strategy for
3D reconstruction are ensured.

Figure 5 shows the camera pose and sparse point cloud
results after the sparse reconstruction of Fruit 1 using SfM.
The tetrahedron represents the camera shooting direction,
with the axis of the tetrahedron pointing vertically downward
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from the vertices to the base. The sparse point cloud effect
shown in the figure is satisfactory, indicating that the adaptive
dynamic frame rate reduction method used in this study
effectively addresses the challenge of data collection using
a handheld smartphone in indoor environments, enabling the
acquisition of complete and effective image sequences even
with low-cost data collection devices in indoor settings.

Fig. 5. Camera Position and Sparse Point Cloud

B. Nanguo Pear reconstruction results

The camera position data obtained by SfM reconstruc-
tion were used to reconstruct the Nanguo Pear fruit in
three dimensions using Instant-NGP. The hardware configu-
ration of the equipment used is AMD Ryzen 7 5800H CPU,
NVIDIA GeForce RTX 3060 GPU, 16GB RAM, and 12GB
video memory. The peak signal-to-noise ratio parameter of
the real scene is mainly used in evaluating the modeling
performance of Instant-ngp, and the formula for calculating
the PSNR is shown in Equations (10),(11).

B (2n _ 1)2
1 H W
MSE = m;Z(X(Z}j)—Y(iJ))Q (1D

1

Il
-

7

In the equation, MSE is the mean square error between
the original image and the processed image; H and W are
the height and width of the image, respectively; n is the
number of bits per pixel; PSNR is measured in dB, with
higher values indicating less distortion.Figure 6 illustrates
the Loss and PSNR curves with training time.

During the reconstruction process, the PSNR metric was
used as the primary evaluation criterion for reconstruction
quality. The PSNR value reached 23 dB within 20 seconds
of training, exceeded 24 dB in the subsequent 1 minute, and
peaked at 25.96 dB. This meets the high-quality compression
requirements for general images, demonstrating the high-
quality performance of Instant-NGP in terms of reconstruc-
tion quality.

In terms of reconstruction efficiency, the real-time perfor-
mance of the Instant-NGP reconstruction process is as fol-
lows: within the first 20 seconds of training, the Instant-NGP
model gradually eliminates unknown elements in the scene

— Loss

EAL —— PSNR
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Fig. 6. Curve of Loss and PSNR with training time

by utilizing multi-view image information and camera pose
data to obtain modeling results. After 2 minutes of training,
the model completes the entire reconstruction, as shown in
Figure 7. This demonstrates the high-quality performance of
Instant-NGP in terms of reconstruction efficiency.

a.Training 1s

b.Training 20s

As shown in Figure 8 to compare it with the original
image, through the fruit shape, surface texture, and fruit
stalks for comparative analysis, the overall morphology of
Instant-NGP reconstructed fruits has a very small gap with
the real image, and maintains a complete and accurate
morphology; the reconstructed surface of the fruits does not
have any distortion or missing phenomena and demonstrates
a high degree of accuracy.

C. Analysis of Nanguo Pear fruit reconstruction results

To verify the generality and accuracy of the STM-NGP
method proposed in this paper for the 3D reconstruction of
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c.Training 2min
Fig. 7. Fruit reconstruction results

]

a.Original image

b.Reconstruction results

Fig. 8. Comparison of fruit reconstruction results with real images

Nanguo Pear, 60 fruits were reconstructed under the same
hardware conditions using STM-NGP, StM-MVS, SfM-Nerf,
and 3DGS methods, and the modeling model was taken
as a screenshot by the pixel method of estimation of the
fruit diameter, the calculation of the average error and the
comparative analysis of the reconstruction accuracy, and
the standard deviation was used as a mathematical tool for

accuracy evaluation. The standard deviation was used as a
mathematical tool to evaluate accuracy. This method can
effectively quantify the performance differences in model
accuracy and efficiency between different reconstruction
methods, as shown in Equation(12).

12)

In the equation, NV is the number of measurements, z; is
the length of each measurement, p is the fruit diameter, and
« is the standard deviation.

Fruit diameter reconstruction time, peak signal-to-noise
ratio PSNR, fruit diameter standard deviation, and video
memory consumption were used as the basis for determi-
nation. Table II demonstrates the comparison results.

TABLE II
COMPARISON OF SFM-NGP AND OTHER METHODS RESULTS

Methods time/min  PSNR/dB  Standard deviation =~ VRAM/GB
SftM-NGP 2.57 24.32 0.5 6.02
SfM-MVS 35.85 21.08 1.3 5.86
SfM-Nerf 370.72 22.56 1.1 11.74
3DGS 4.26 23.67 0.9 8.93

First, the average reconstruction time of SfM-NGP is
significantly shorter than that of traditional SEM-MVS, SfM-
Nerf, and 3DGS, reducing it by 92%, 99.3%, and 65.7%,
respectively, demonstrating its extremely high efficiency in
3D reconstruction tasks. Additionally, in terms of reconstruc-
tion quality, the average peak signal-to-noise ratio (PSNR)
of SfM-NGP is significantly higher than that of the other
three 3D reconstruction methods. After training, the PSNR
stabilizes above 25 dB, representing improvements of 15%,
7.8%, and 3%, respectively. The standard deviation of the
fruit diameter is smaller than that of the remaining three
methods. It proves that SEIM-NGM can present clearer and
more accurate reconstruction results in terms of image qual-
ity and 3D scene characterization. Meanwhile, although SfM-
NGP consumes more computational resources than SfM-
MYVS, it is much smaller than SfM-Nerf and 3DGS, which
indicates that it can realize high-precision reconstruction by
using less computational resources.

Figure 9 shows a comparison of the modeling graphics. In
terms of overall shape, STM-NGP presents a more complete
and clear image, accurately reconstructing the shape of the
fruit. However, the reconstruction results of STM-MVS and
SfM-Nerf contain a large amount of noise, with the fruit
shape being relatively uneven, the contours blurred, and the
surface texture rough. The details of the fruit cannot be
perfectly restored. Although the 3DGS method achieves a
certain level of clarity, it exhibits numerous point cloud holes
on the surface, and its real-world performance and clarity still
fall short of the method proposed in this study.

In summary, the proposed SfM-NGP method demonstrates
significant advantages over traditional STM-MVS, StM-Nerf,
and 3DGS in terms of reconstruction time and reconstruction
quality, making it suitable for the three-dimensional recon-
struction of South Asian pear fruits.
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IV. COMPARISON WITH OTHER LITERATURE METHODS

Previously, three-dimensional reconstruction of fruits often
relied on high-precision equipment or required a significant
amount of time. Guan et al.[23] used three Kinect v2 sensors
to construct a corn data collection system, which achieved
high-precision reconstruction of corn but was too complex
and expensive for widespread application. Pan et al.[6] used
the traditional StM-MVS method with cameras to reconstruct
trees, which had low equipment costs, were time-consuming,
and could not achieve real-time reconstruction. LI et al.[24]
used RGB-D depth cameras to reconstruct greenhouse sweet
pepper plants, achieving a balance between equipment cost,
reconstruction quality, and time, but their overall perfor-
mance still fell short of the method proposed in this paper.

Bk

a.SfM-MVS modeling results

b.SfM-Nerf modeling results

V. CONCLUSION

This study primarily addresses the rapid three-dimensional
reconstruction of Nanguo pear fruits. An adaptive dynamic
frame selection method is proposed and applied to the
SfM-NGP method, which combines SfM and Instant-NGP,
enabling rapid three-dimensional reconstruction of Nanguo
pears under indoor conditions. The adaptive dynamic frame
selection method avoids the loss of important frame rates
caused by changes in device movement speed during ac-
tual shooting. The method performs excellently in sparse
reconstruction in SfM, successfully recovering the camera

¢.3DGS modeling results

d.SfM-NGP modeling results

Fig. 9. Comparison of modeling results

poses of all images. Each image contains 4,708.2 feature
points, with a reprojection error of 1.1928 and an average
trajectory length of 5.10 for the 3D points. This provides
a practical and convenient data acquisition method for the
3D reconstruction of Nanguo pears and other types of
fruits, with broad application prospects. We also propose
an SfM-NGP method, which only requires a smartphone
compared to traditional methods. In the 3D reconstruction
phase, compared to traditional SfM-MVS, SfM-Nerf, and
3DGS methods, the time required was reduced by 92%,
99.3%, and 65.7%, respectively. For the PSNR metric, after
training, it stabilized above 25 dB, improving by 15%, 7.8%,
and 3%, respectively. The standard deviation of fruit diameter
is minimal, validating the high reliability of this method and
laying a solid foundation for future fruit surface parameter
extraction.
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