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Abstract 
The purpose of this tutorial is twofold. First, to survey methods and software for least squares data smoothing by using the signs of divided differences of the smoothed values. Second, to present applications of this smoothing approach to several disciplines in various ways. 

Let us consider 
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 data measurements of a univariate function f, which have been altered by random errors. An excellent way of determining whether the measurements are smooth is to form a table of divided differences and to seek sign irregularities in higher order differences. An isolated error tends to cause m sign changes in the divided differences of order m. Although the error propagation in a difference table is not too rapid, it is actually sufficient to change completely the values of this table, because the higher divided differences follow two opposing trends. The differences of the true function values are rapidly decreasing, while the differences of the errors are rapidly increasing. It follows that many sign changes are possible when the measurements are not smooth. If f is a m-times differentiable function, whose m-th derivative has only a few sign changes, then the corresponding divided differences of exact values also have only a few sign changes. Therefore, we make the least sum of squares change to the measurements, by requiring the sequence of divided differences of order m to have at most q sign changes for some prescribed integer q. The positions of the sign changes are integer variables of the optimization calculation, which implies a combinatorial problem whose solution can require about 
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 quadratic programming calculations in n variables and 
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constraints.
Two distinctive properties of the general approach to data smoothing are as follows. The assumption that f has a form that depends on a few parameters, which occurs in many other smoothing techniques, is avoided. Also, the smoothing process is a projection because, if it is applied to the smoothed values, then no changes are made to them. An advantage of this approach to data smoothing is that the user requires the least change to the measurements that gives properties that occur in a wide range of underlying functions f. Indeed, one may try several values of m and q, until a particular choice suggests itself. Suitable choices of q and m make the fit able to follow global data fluctuations and local data trends, like monotonicities, convexities, concavities and cusps.

Very efficient methods have been developed for the following cases. It has been found that a dynamic programming procedure can calculate the global minimum for the important cases of piecewise monotonicity 
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 and piecewise convexity/concavity 
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 of the smoothed values. The complexity in the case of m=1 is 
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 computer operations, while it is reduced to only 
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 when q=0 (monotonicity) and q=1 (increasing/decreasing monotonicity). The case 
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 requires 
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 computer operations and 
[image: image10.wmf]2

n

 quadratic programming calculations, which is reduced to one and 
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 quadratic programming calculations when 
[image: image12.wmf](2,0,

mq

==

i.e. convexity) and 
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i.e. convexity / concavity), respectively. The technique that achieves this efficiency cannot generalize for the highly non-linear case 
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. However, the case 
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 is solved by a special strictly convex quadratic programming calculation and the case 
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 can be solved efficiently by at most 
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applications of the previous algorithm. Also, as m gets larger, large sets of active constraints usually occur at the optimal approximation that makes the calculation for higher values of q less expensive than what it seems to. Of course, the latter technique may be extended to small values of q, for example 
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. Alternatively, by taking account of local monotonicity and convexity trends, the user may decide to split the data range to subranges and treat them separately in order to achieve higher error reductions.  

The following software packages make some of these methods readily accessible to the public. They are very easy to use and hopefully they will be useful to solving real problems: L2CXFT for the case 
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 in the Collected Algorithms of TOMS, CXFTV2 for case 
[image: image20.wmf](2,0)

mq

==

 in the CPC Program Library, L1PMA for the case 
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 with the L1 norm instead of least squares in CPC, L2WPMA for the case 
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 in TOMS, L2CXCV  for the case 
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in CPC and  L2MCX for case 
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By an example of a particular method that provides a sigmoid fit to the data, we may uncover some aspects of the general approach. Applications of sigmoid approximations are quite common in biology (eg. evolution processes), physics (eg. heat curves, reactor stability conditions, gray levels), engineering (eg. machine maintenance), physiology (eg. oxygen dissociation curve), as well as in decision sciences and economics (eg. value curve, utility function, judgmental probability distribution, income pattern, distribution cost, risk profile). Suppose that the measurements show an inflection point and away from this point the underlying function seems to be convex and concave. Then it is suitable to allow one sign change in the second divided differences of the smoothed values. The specific problem originates from processes that show initially increasing and then decreasing rates of change, but this property (cf. one sign change in second differences) has been lost due to errors in the measuring process. Therefore our method provides the best fit to the original data by a nonlinear optimization calculation that is constrained by this missing property. Thus, the smoothed data not only obtain a property that occurs in several underlying functions, but also they describe a variety of processes without resorting to parametric forms, which usually occur in other smoothing techniques. 
Particular methods of our smoothing approach have found important applications. To mention some, we start with the problems of estimating turning and inflection points and identifying cycles when a function is known only by its measurements on a finite mesh of points and the measurements include uncorrelated errors. These problems have for long found applications in biology, engineering, image and signal processing, econometrics, statistics, behavioral sciences, etc. Not only there exist techniques, but also the users are assisted by computer packages to enhance their analyses. Nonetheless the techniques that are used are either of local character or suboptimal. The difficulty with these data is that there is no mathematical function that could show the accuracy of any approximation to the data. However, our method seems to be very suitable for the task addressed. Indeed, our piecewise monotonic or piecewise convex / concave fit provide turning or inflection points by globally optimal procedures. Furthermore, if the user is not satisfied by the fit or certain differentiability properties are required, there is nothing to prevent combining the global features of the best fit provided by our method with suggestions of splines and other local smoothing techniques if some opportunity exists to analyze certain initial data and then plan for additional smoothing. So far there are some serious applications of piecewise monotonicity on fast magnetic resonance image reconstructions and on signal processing that are an improvement over previous ones based on wavelets and splines.
One strong reason for studying methods that make use of divided differences for data smoothing is that, whereas only the data are provided, the achieved accuracy goes much beyond the accuracy of the data at an order determined automatically by the chosen divided differences. The algorithms that have been developed so far are very efficient and some software packages make them easily accessible. Some limitations of the method deserve attention and some options are going to be presented. The divided differences approach provides certain strong theoretical advantages over spline smoothing and wavelets, but research is required in the interplay. To conclude, smoothing by divided differences is an active research topic that has plenty of room for further developments, applications and considerations.  
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