
Detecting Bad Smells in Object Oriented Design Using
Design Change Propagation Probability Matrix

1A. Ananda Rao, 2K Narendar Reddy

 Abstract--- Object oriented software systems are subject to
frequent modifications either during development (iterative,
agile software development) or software evolution. For such
systems which have large number of classes, detection of design
defects is a complex task. Bad smells are used to identify design
defects in object oriented software design. Identification of bad
smells allows us to apply appropriate refactorings to improve
the quality of design. In existing bad smell detection systems,
bad smells are generally detected using human intuition, and
recently, people started developing quantitative methods. As
human intuition is subjective, the quantitative methods to
detect bad smells are effective as they do not include
subjectivity (bias) and allows for automation. This paper
proposes a quantitative method. The proposed quantitative
method makes use of the concept design change propagation
probability matrix (DCPP matrix) to detect two important bad
smells. The first one is shotgun surgery bad smell and the other
one is divergent change bad smell. Two of the advantages of the
proposed quantitative method are: Detecting shotgun surgery
and divergent change bad smells require that the design change
propagation between artifacts that are connected directly and
indirectly should be considered quantitatively. The proposed
method considers this aspect quantitatively. The second
advantage is, the method is amicable for automation.
 Using this proposed method, with typical example designs, the
bad smells shotgun surgery and divergent change are detected.
Appropriate refactorings are suggested for the detected bad
smells. Different advantages of the proposed quantitative
method are presented. A broader framework in which this
quantitative method is applied is given.

Key words: Bad smells, Design change propagation
probability matrix, Framework, Refactoring.

Manuscript submitted for review on December 6, 2007 and accepted on
December 29, 2007.

1A. Ananda Rao is with Department of Computer Science and Engineering,
JNTU College of Engineering, Jawaharlal Nehru Technological University,
Anantapur, AP, India, (akepogu@yahoo.co.in).

2K Narendar Reddy is with Department of Computer Science and
Engineering, CVR College of Engineering, Jawaharlal Nehru
Technological University, Mangalpally, Ibrahimpatnam, Hyderabad, AP,
India, (knreddy_mist@yahoo.com).

I. INTRODUCTION

 Detection of design defects using bad smells during
software development (iterative, agile) and software
maintenance is an important and complex task. In this paper
the software maintenance is in the context of preventive
maintenance. Design defects cause the system to exhibit low
maintainability, low reuse, high complexity and faulty
behavior [1]. One of the ways to detect design defects is by
detecting bad smells. The bad smells which affect
maintenance mostly are shotgun surgery, divergent change,
and parallel inheritance hierarchies. These smells can be
characterized as “maintenance smells” because they
manifest themselves during maintenance of the software [2].
Hence, accurate detection of these bad smells provides a
significant challenge in evolving software. Detection of bad
smells allows us to apply appropriate refactorings to
improve the quality of design.
 In existing bad smell detection systems, bad smells are
detected using human intuition which leads to subjectivity
and is not amicable for automation. Recently, people started
developing quantitative methods. Quantitative methods are
effective as they do not include subjectivity (bias) and
allows for automation. This paper proposes a quantitative
method/approach. The proposed quantitative method makes
use of the concept design change propagation probability
matrix (DCPP matrix) to detect two important bad smells
which are categorised under “maintenance smells”. The first
one is shotgun surgery and the other one is divergent change.
Both of these bad smells are important because the first one
creates a rippling effect and the other one indicates an
artifact which is sensitive to changes in other artifacts. In
both the cases, the change propagation is involved. Change
propagation is based on the strength of coupling between the
artifacts. Therefore, it is always an advantage to have design
change propagation prediction that conveys the number of
related artifacts that are going to be affected if a particular
artifact is changed. This issue is not addressed in the
literature. The paper is aimed at tackling the above issue.
Detection of the bad smell “parallel inheritance hierarchies”
under the category “maintenance smells” will be considered
in the future work.
 This paper explores the use of the concept (DCPP matrix)
developed for version management [3], to detect the
proposed bad smells. The DCPP matrix represents the design
change propagation probabilities between artifacts. The

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

DCPP matrix for a design of N artifacts, is of size N x N. In
this matrix, the entry at row A, column B represents the
probability that a design change in artifact A requires change
in B so as to preserve the overall function of the system. To
construct DCPP matrix, first the design should be
represented as a unified representation of artifacts graph
(URA graph) [4]. The artifacts in URA graph, map to
physical entities in different ways like classes, sets of
classes, subsystems etc. Making use of URA graph, other
concept cdegree (explained in section III-A) and proposed
equations (given in section III-A), the DCPP matrix is
constructed. For three example designs DCPP matrices are
constructed. By making use of these DCPP matrices and
formulated conditions (given in section III-A), proposed bad
smells are detected.

 The organization of the paper is as follows. Section II
presents the related work on detection of bad smells. Section
III addresses the bad smell detection method which is based
on DCPP matrix. A generic framework for object oriented
software design quality improvement is given in section IV.
The conclusions and future directions have been placed in
section V.

II. RELATED WORK

 In bad smells shotgun surgery and divergent change, the
change propagation is involved. The change propagation
depends on strength of dependency (coupling) between
artifacts. Since the artifacts are related one another directly
(adjacently) or indirectly (through intermediate artifacts) the
strength of dependency (coupling) should be calculated for
the above two cases. This section presents the related works
covering the above aspects.
 Considering one widely accepted suit of metrics [5], the
CBO (Coupling between object classes) is defined as a count
of the number of other classes to which it (a class under
consideration) is coupled. This definition of coupling counts
the classes to which a particular class has some sort of
interaction. It does not measure the amount (strength) of
coupling between any two classes. Considering the number
of discrete messages exchanged between classes, the god
classes are identified using link analysis method [6]. The
god classes in the system imply a poorly designed model.
 The paper [7] describes the ripple effect metric. It
considers its applicability as a software complexity measure
for object oriented software. It is mentioned that this
approach has potential to improve the stability and
efficiency of object oriented software and cut the cost of
software maintenance. A list of metric based detection
strategies for capturing flaws of object oriented design are
defined in paper [8]. Papers [7][8] have not included how the
strength of dependency (coupling) between artifacts (which
are connected through intermediate artifacts in more than
one path) is calculated.
 JRipples, a tool [9] supports impact analysis and change
propagation. This tool does not employ coupling metrics to

suggest which classes are most likely to be involved in
change. A novel metric based heuristic framework to detect
and locate object oriented design flaws from the source code
is proposed in paper [10]. In the future work section, it is
mentioned that it will be useful to include a degree of
possibility or a kind of certainty factor for the heuristics and
the detected design flaws as we can not specify strict
threshold values for “high” or “low” terms in classifiers
rules.
 Paper [11] investigated the construction of probabilistic
decision models based on coupling measurement to support
impact analysis. It provides an ordering of classes where
ripple effects are more likely. A metric for measuring the
class weakness for object oriented software is proposed in
paper [12]. Inter-class weakness is affected by the
interconnection of the class over other classes, and increases
if the dependency of the class is more. The ripple effect also
contributes to the dependency and this effect has also been
considered in this paper.
 Even though the paper [12] considers the ripple effect in
contribution to the dependency between classes, the paper
has not correlated the results with the detection of bad smells
(shotgun surgery, divergent change). To the best of our
knowledge, the present bad smells/design flaws detection
methods have not considered the design change propagation
probabilities and how the DCPP matrix values are used in
detecting these bad smells. Therefore, this paper proposes a
quantitative method in detecting two important bad smells
using design change propagation probability matrix.
Knowing the presence of these bad smells allows us to apply
appropriate refactorings so as to improve the quality of
software design.

III. A DCPP MATRIX BASED BAD SMELLS

DETECTION METHOD

 The proposed bad smells detection method which is based
on DCPP matrix is a quantitative method. The proposed
method is carried out in three steps:
1. Construction of DCCP matrix for a given design.
2. Representing different possible values of DCPP matrix
 as different conditions.

 3. Checking for the conditions satisfied by a given DCPP
 matrix and correlating these conditions with bad smells.

 Sections A and B covers above three steps of the proposed
method. Construction procedure for DCPP matrix and
formulated conditions are given in section A. Detection of
bad smells in three example designs is given in section B.

A. Construction of DCPP Matrix

 To construct DCPP matrix, first the design is represented
as a URA graph and then strength of dependency between
artifacts is estimated. In this paper, the strength (amount) of
dependency between artifacts is represented by the term
cdegree [3]. Since the artifacts are related one another

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

directly (adjacently) or indirectly (through intermediate
artifacts) the strength of dependency is calculated for the
above two cases.
 First the cdegree between adjacent artifacts is estimated
and then using proposed equations, combined cdegree
between artifacts by considering intermediate artifacts is
estimated. Using these cdegree values, N x N DCPP matrix
is constructed, where N is number of artifacts in the design.
Definition of cdegree: The degree of coupling (cdegree) of
link is the indicator of the amount of dependency that exists
between two related artifacts represented by the URA. The
value of cdegree has the range [0, 1]. Therefore, a change is
propagated to related artifacts based on the cdegree value.
Since the artifacts are related one another directly
(adjacently) or indirectly (through intermediate artifacts) the
change propagation should be calculated for the above two
cases.
Cdegree estimation: Let A and B are two artifacts that are
related adjacently and attributes of an artifact B access
attributes of an artifact A. In this paper an attribute is
considered as a feature of an artifact. Since various number
of links are possible between two artifacts, each link can be
given a weightage. Based on these weightages the total
strength between these two artifacts can be calculated.
 For example, consider Fig. 1, where a class A has three
attributes (a1, a2, and a3) and B has five (b1, b2, b3, b4, and
b5) attributes and attribute a2 is called four times by
attributes of artifact B. Therefore, the weightage of attribute
a2 is 4/7 where total number of calls exist between A and B
are 7. Similarly, weightage for other attributes can also be
calculated. After calculating the weightages for all the
attributes, cdegree between A and B is defined as follows.
Cdegree = sum of weightages of each link with respect to
attributes of A from B/Total number of possible links from
B to A.

The denominator can be taken as the total number of
attributes exist in A, since this many maximum links can be
made. In the above equation, a link is defined as a call made
by class B with respect to a method. It is irrespective of

number of calls made to each method. That is, all calls of a
method constitute a link even though if it is called more than
once by a method of class B. The number of call references
is taken into consideration while calculating weightage of
each attribute.
 The cdegree considers method invocation outside the class
and variable reference outside the class. Higher the value of
cdegree indicates higher the method invocation outside the
class or higher the variable reference outside the class. It
may be the combination of the both. Hence, it indicates the
strength of dependency (coupling). A design change is
propagated to related artifacts based on the cdegree value.
For example, a design change is propagated to related
artifacts whose cdegree value is more than the threshold (say
0.5) value.
 The above procedure is used to estimate cdegree value
between adjacent artifacts. A more general approach would
be to estimate the ramifications due to a single change.
Therefore, the following method is used to compute
combined cdegree value for the artifacts that are connected
through intermediate artifacts in more than one path. The
combined cdegree value is the probability that the end effect
will arise, regardless of the path. This can be calculated
using probability lemmas. While calculating the combined
cdegree value it is to be noted that the events are not
mutually exclusive. Therefore, the following formulas are
used to estimate the combined cdegree values [3].

 1degdegdegdeg
,,,, rpqprpqp

reecreecreecreec

 2deg1

deg11degdeg

degdegdegdeg

,

,,,

,,,,

rp

qprpqp

rpqprpqp

reec

reecreecreec

reecreecreecreec

 For example, in Fig. 2, values on the top of links represent
cdegree values between various artifacts. The combined
cdegree value at artifact B in the figure is calculated as
follows:

 67.0degdeg1

deg11deg

,,

,,

bcca

baba

reecreec

reecreec

0.55

0.6
0.45

0.35

A

C

B

D

 Fig.2. Example URA graph of
 artifacts

 a1 ()

 a2 ()

 a3 ()

b1 {a1() }

b2 {a2(), a2(), a2() }

b3 {a1() }

b4 { a1() }

b5 { a2() }

Class A Class B

 Fig.1. Example class diagram and their
 interactions

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

 To construct DCPP matrix, first URA graph is constructed
to represent the design of the system. Then cdegree values
between adjacent artifacts are calculated (using the
procedure explained in section A under the heading cdegree
estimation). Example design diagram shown in Fig. 2 is an
URA graph. In this graph, values on the top of links
represent cdegree values between adjacent artifacts. By
making use of cdegree values between adjacent artifacts and
above proposed equations, the combined cdegree values
between artifacts that are connected through intermediate
artifacts are calculated. Making use of the cdegree values, N
x N matrix is constructed, where N is the number of artifacts
in the design. This matrix is termed as DCPP matrix. The
entry at row A1, column A3 represents the probability that a
design change in artifact A1 requires change in A3 so as to
preserve the overall function of the system. The 4 x 4 DCPP
matrix constructed using above described procedure for the
design in Fig. 2, is given in Table I.

TABLE I

DCPP MATRIX FOR THE DESIGN IN FIG. 2

A B C D

A 1 0.67 0.6 0.24

B 1 0.35

C 0.45 1 0.16

D 1

 Different possible values of DCPP matrix can be
represented as different conditions.

Condition 1: Majority of the elements in a row containing
 larger values (greater than threshold value, say 0.5)
Condition 2: Majority of the elements in a column
 containing larger values (greater than threshold value,
 say 0.5)
Condition 3: Both conditions 1 & 2 exist
Condition 4: All the diagonal element values are one
Condition 5: All the matrix element values are one.
Condition 6: With respect to a particular artifact, row or
 column elements contain zero values, except diagonal
 element value (which is one for all the artifacts).

 Satisfying different conditions indicate different things
in the design. Satisfying the condition 4 indicates the
probability that any change in an artifact, affects its design
maximum. The unit DCPP matrix (satisfying condition
5) indicates the violation of basic heuristic of developing
low coupled system. Condition 5 can be used in validating
best practices that are used for software development.
Condition 6 indicates that the artifact is not collaborating
with any of the artifacts and that this artifact is an isolated
one. Isolated artifact is created may be because of accidental
omission of a link, or it may be a redundant artifact. In the

first case, it may create/indicate problem in the overall
functioning of software. In large software systems
identifying such type of artifacts is very important.
Conditions 1, 2, and 3 can be used in detecting the presence
of bad smells (shotgun surgery, divergent change) in the
design. The detection procedure for the shotgun surgery and
divergent change bad smells, and suggested refactorings are
given in the following section.

B. Detecting Bad Smells in Example Design Diagrams

 Three different hypothetical object oriented designs are
taken and corresponding DCPP matrices are constructed.
Using the conditions formulated in section A, bad smells are
detected. The detection of shotgun surgery bad smell in
example design 1 is given in section B-1, whereas the
detection of divergent change bad smell in example design 2
is presented in section B-2. The example design which
contains both the bad smells is given in section B-3.

B.1. Detecting “shotgun surgery” bad smell

 When every time you make a kind of change, you have to
make a lot of little changes to a lot of different classes [13].
This indicates that the change is propagated to many other
artifacts. Change propagation depends on cdegree value
between the artifacts. The cdegree values for artifacts which
are not adjacent but connected through intermediate artifacts
represent combined cdegree which is calculated considering
rippling effect.

 TABLE II

 DCPP MATRIX FOR THE EXAMPLE DESIGN 1

A1 A2 A3 A4 A5 A6

A1 1 0.75 0.41 0.64 0.68 0.51

A2 1 0.55 0.35 0.44

A3 1 0.8

A4 1

A5 0.75 1 0.4

A6 1

0.68

0.55

0.40.35

0.8

0.75
0.75

A1

A3

A5

A4

A6

Fig.3. Diagram of example design 1

A2

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

 If a row contains high values with respect to a particular
artifact (satisfying condition 1), this situation indicates that,
any change to this artifact will require changes in more
number of artifacts (artifacts that are indicated in the
columns corresponding to high values). The DCPP matrix
for the example design 1 (Fig. 3) is given in Table II. The
row 1 satisfies the condition 1. This condition indicates the
presence of shotgun surgery bad smell in the design. When
the artifact A1 is changed, the other artifacts which need to
be changed are A2, A4, A5, and A6. To rectify the design
defect indicated by shotgun surgery bad smell, appropriate
refactorings have to be applied.
Proposed refactorings: Refactoring is basically changing
an object oriented software system in such a way that it does
not alter the external behavior of the code, yet improves
internal structure [14]. The key idea here is to redistribute
classes, variables, and methods across the class hierarchy in
order to facilitate future adaptations and extensions [15]. To
rectify the bad smell shotgun surgery in the design, use
“move method” and “move field” refactorings to pull all the
changes into a single class. If no current class looks like a
good candidate, create one [13].
 Applying refactoring like move method, may lead to
creation of a new version for the refactored artifact. But, if
the shotgun surgery is not rectified by refactoring, for every
change in the artifact (which is causing the bad smell
shotgun surgery) as part of corrective and perfective
maintenance, a new version may be created for every artifact
which is affected by shotgun surgery bad smell. Hence, lot
of new versions may be created and in turn increases
maintenance cost.

B.2. Detecting “divergent change” bad smell

 Divergent change occurs when one class is commonly
changed in different ways for different reasons [13].

 If a column (in DCPP matrix) contains high values with
respect to a particular artifact (satisfying condition 2), then it
can be inferred that this artifact is likely to undergo frequent
changes during evolution. The DCPP matrix for the example
design 2 (Fig. 4) is shown in Table III. Fourth column
satisfies the condition 2. The artifact which is likely to
undergo frequent changes is A4.

 TABLE III

 DCPP MATRIX FOR THE EXAMPLE DESIGN 2

A1 A2 A3 A4 A5 A6

A1 1 0.42 0.6

A2 0.5 1 0.21 0.3

A3 0.23 0.45 1 0.71 0.14 0.35

A4 1

A5 0.7 1

A6 0.55 1

 This condition indicates the presence of divergent change
bad smell in the design. Presence of divergent change bad
smell in the design may indicate/lead to the following:

1. The class (artifact) is trying to do too much. It may be a
“god class”. God class could be the result of placing
disjoint features into one class. LCOM [5] could be
used for detecting god classes when disjoint features
are placed into one class.

2. The class (artifact) is depending on many other artifacts
3. Frequent changes may deteriorate the design of class

(artifact) undergoing change
4. Lot of versions for the same class (artifact) may be

created.

 To overcome the above disadvantages, the artifact A4
(Fig. 4) should be refactored. Identify everything that
changes for a particular cause and use extract class
refactoring to put them all together [13]. Due to extract class
refactorings a few new classes will be created.

B.3. Detecting “shotgun surgery” and “divergent change”
bad smells in the same design

 It is possible that both the bad smells shotgun surgery and
divergent change can exist in the same design. The design
shown in the Fig. 5 has these two bad smells. These bad
smells can be detected from the DCPP matrix values given
in Table IV (satisfying condition 3).

0.45

0.50

0.60

0.70

0.60
0.55

0.35

A1 A5

A4

A3 A6

A2

 Fig.4. Diagram of example design 2

0.35

0.62

0.45
0.65

0.7

0.6

0.7

A1

A3

A2

A5

A4

A6

 Fig.5. Diagram of example design 3

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

 The row 1 (Table IV) containing larger values with respect
to artifact A1, indicates the presence of shotgun surgery bad
smell in the design, and any change to artifact A1 will
require changes in more number of artifacts (A2, A3, A4,
and A5). Column 5 containing larger values with respect to
artifact A5, indicates the presence of divergent change bad
smell in the design and artifact A5 is likely to undergo
frequent changes during evolution.

 TABLE IV

 DCPP MATRIX FOR THE EXAMPLE DESIGN 3

A1 A2 A3 A4 A5 A6

A1 1 0.7 0.6 0.6 0.66 0.21

A2 1 0.45 0.73

A3 1 0.7 0.46 0.35

A4 1 0.65

A5 1

A6 1

 Both these bad smells indicate design defects. More
number of bad smells in the design indicates high
complexity. As the software is enhanced, modified, and
adapted to new requirements the code becomes more
complex and drifts away from its original design, there by
lowering the quality of software. To cope with this increased
complexity, there is a need for techniques that reduce
software complexity by incrementally improving the internal
software quality. The research domain that addresses this
problem in case of object oriented software development is
referred to as refactoring [14]. If the design defects are not
corrected using either refactoring or proper redesign they are
bound to increase maintenance cost because of high
complexity, faulty behavior and low maintainability.

C. Advantages of DCPP Matrix Based Bad Smells
Detection Method

 Detecting shotgun surgery and divergent change bad smell
requires that the design change propagation between artifacts
that are connected directly and indirectly should be
considered quantitatively. The proposed method considered
this aspect quantitatively. The DCPP matrix values not only
helps in finding out the presence of two bad smells (shotgun
surgery and divergent change) in the design but also helps in
number of ways. Proposed detection method which is based
on DCPP matrix will help in:

1. Knowing the complete picture of ripple effects in the
software, based on which we can assess the software
complexity and maintainability. Comparing different
designs of software system with respect to complexity
and providing optimal maintenance solutions. One of
the solutions could be refactoring. For example, the

example design 3 indicates that it is more complex than
the example designs 1 and 2. In other words, this
comparison will help in predicting the maintainability of
software. Such type of comparisons for large software
systems will be of great use.

2. Validating best practices that are used for software
development. The unit DCPP matrix (satisfying
condition 5) indicates the violation of basic heuristic
(design guideline/principle) of developing low coupled
system.

3. Automating the detection process. Mapping the software
into URA graph, estimation of cdegree, construction of
DCPP and checking for the conditions, can be
automated.

4. This matrix can be used to identify artifacts which are
going to be affected by a change during software
development or as part of software maintenance
(corrective, perfective). For large software systems this
identification is an important task. This identification
helps in making appropriate changes to the affected
artifacts. Knowing the affected artifacts due to ripple
effect of a change will help in identifying the bad design
locations as part of preventive maintenance. Identifying
bad design locations enables us to apply appropriate
refactorings to make software maintainable. This matrix
can be used during software development and software
maintenance. This is similar to spiral model, where it can
be applied until software retires.

IV. A FRAMEWORK FOR OBJECT ORIENTED SOFTWARE

DESIGN QUALITY IMPROVEMENT

 In general, a framework is a real or conceptual structure
intended to serve as a support or guide for the building of
something that expands the structure into something useful
[16]. A framework (D3ARTI: design defects detection and
refactoring to improve) is proposed for object oriented
design quality improvement. This framework is being taken
as a support or guide in formulating better design defects
detection methods/approaches, methods and tools for
refactoring. These methods will be based on metrics, bad
smells, design heuristics, and other novel techniques like
DCPP (design change propagation probability) matrix.
There is a need for processes, methods, and tools that
address refactoring in more consistent, generic, scalable,
and flexible way [15]. As part of this bigger aim a method
for detecting design defects (indicated by the presence of
bad smells) is proposed in this paper. The proposed method
is based on DCPP matrix. As shown in Fig. 6, this matrix
should be constructed as part of phase 2 before refactoring
and as part of phase 7 after refactorings. The DCPP matrix
which is reconstructed as part of phase 7 can be used to
ascertain the elimination of design defects and hence the
improvement in design quality. The proposed framework
has an iterative characteristic similar to spiral model. The
detection process and refactoring (improvement) goes on in

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

iterations until the design is free of defects or required
quality is attained.

V. CONCLUSIONS AND FUTURE

DIRECTIONS

 The use of DCPP matrix based bad smells detection
method, for detecting two bad smells (shotgun surgery and
divergent change) is explored. The proposed method is a
quantitative method for detecting bad smells. Presence of
bad smells in the design, indicate design defects. Three
different example designs are considered for analysis in this
paper. These example designs are represented by URA
graphs. Cdegree values for adjacent artifacts (artifacts in the
URA graph) and combined cdegree values for artifacts that
are connected through intermediate artifacts are calculated.
Using these cdegree values, DCPP matrices are constructed.
In one example design, shotgun surgery bad smell and in the
second example design, divergent change bad smell is
detected. In the third example design, two bad smells are
detected. The required refactorings for the two bad smells
are suggested to improve the quality of design. The number
of advantages of proposed DCPP matrix based bad smells
detection method are discussed. The broader framework in
which this detection method is used is given.
 The use of DCPP matrix based bad smells detection
method to detect the two bad smells (shotgun surgery and
divergent change) has to be evaluated empirically using a
case study. Detection of the bad smell “parallel inheritance
hierarchies” under the category “maintenance smells”, will
be considered in our future work. In addition, while applying
refactorings, the inclusion of design patterns into the overall
design should be considered. Design patterns improve the
maintainability of software [17]. The ideas presented in this
paper will be taken further by using and studying as part of
framework (given in section IV), design change propagation
probabilities between artifacts and improvement in design
quality due to refactorings with and without design patterns
for object oriented software.

ACKNOWLEDGMENT

 Authors of this paper would like to acknowledge and express their
thanks to JNTU College of Engineering, Anantapur and CVR college of
Engineering, Ibrahimpatnam, Hyderabad, of Jawaharlal Technological
University, for giving financial support for attending this conference.

REFERENCES

[1] Ladan Tahvildari, Kostas Kontogiannis, A metric-Based Approach to
 Enhance Design Quality Through Meta-Pattern Transformations,
 Proceedings of the Seventh IEEE European Conference on
 So f t wa re Ma in te n a n c e a n d Re e ng in ee r i ng (C SMR ’0 3) ,
 2003, pp. 183-192.
[2] Eva van Emden, Leon Moonen, Java Quality Assurance by Detecting

 Code Smells, Proceedings of the 9th IEEE Working Conference on
 Reverse Engineering (WCRE’02), 2002, pp. 97-106.
[3] A Ananda Rao, D. Janaki Ram, Software Design Versioning using

 Propagation Probability Matrix, In Proceedings of Third International
 Conference on Computer Applications (ICCA 2005), Yangon,
 Myanmar, March 2005
[4] S. Srinath, URA: A Paradigm for Context Sensitive Reuse, A
 Thesis of Master of Science & Engineering, Indian Institute of
 Technology, Madras, India, April 1998.

[5] Shyam R. Chidamber, Chris F. Kemerer, A Metrics Suite for
 Object Oriented Design, IEEE Trans. Software Eng., vol.20, no.6, June

1994, pp. 476-493.
[6] Alexander Chatzigeorgiou, Spiros Xanthos, George Stephanides,

 Evaluating Object-Oriented Designs with Link Analysis, Proceedings of
 the 26th IEEE International Conference on Software Engineering (ICSE
 ’04), 2004, pp. 656-665.
[7] Haider Bilal, Sue Black, Computing Ripple Effect for Object Oriented

 Software, Quantitative Approaches in Object Oriented Software
 Engineering (QAOOSE) Workshop, Nantes, France, July 3rd 2006.
[8] R. Marinescu, Detection Strategies: Metrics-Based Rules for Detecting

 Design Flaws, In Proceedings of the 20th IEEE International
 Conference on Software Maintenance (ICSM), September
 2004, pp.350-359.
[9] Jonathan Buckner, Josph Buchta, Maksym Petrenko, Vaclav Rajlich,

 JRipples: A Tool for Program Comprehension during Incremental
 Change, Proceedings of the 13th IEEE International Workshop on
 Program Comprehension (IWPC ’05), 2005, pp. 149-152.
[10] Mazeiar Salehie, Shimin Li, Ladan Tahvildari, A Metric-Based
 Heuristic Framework to Detect Object-Oriented Design Flaws,
 Proceedings of the 14th IEEE International Conference on Program
 Comprehension (ICPC ’06), 2006, pp.159-168.
[11] Lionel C. Brand, Jurgen Wust, Hakim Lounis, Using Coupling
 Measurement for Impact Analysis in Object-Oriented Systems,
 Proceedings of the IEEE International Conference on System
 Maintenance (ICSM‘99), 1999, pp. 475-482.
[12] Jitender Kumar Chhabra, K.K.Aggarwal, Measurement of Intra-Class
 & Inter-Class Weakness for Object-Oriented Software, Proceedings of
 the Third IEEE International Conference on Information Technology:
 New Generations (ITNG’06), 2006, pp. 155-160.
[13] Martin Fowler, K.Beck, J.Brant, W.Opdyke, D.Roberts, Refactoring:
 Improving the Design of Existing Code. Addison- Wesley, New York,
 1999
[14] W .F. Opdyke, Refactoring : A Program Restructuring Aid in
 Designing Object-Oriented Application Frameworks, PhD thesis,
 Univ. of Illinois at Urbana-Champaign, 1992.
[15] Tom Mens, Tom Tourwe, A Survey of Software Refactoring, IEEE
 Trans. Software Eng., vol.30, no. 2, pp.126-139, Feb. 2004.
[16] http://whatis.techtarget.com/definition/0,,sid9_gci1103696,00.html
[17] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design
 Patterns : Elements of Reusable Object- Oriented Software. Pearson
 Edn. Inc., 2006

Design
defects
detection
methods

Artifacts in
design
model

8E

5E

Design model
without faulty
artifacts

 3.
Formulate design defects
detection methods (based
on bad smells, metrics,
DCPP, design heuristics)

 1.
Artifacts
in design
model 4.

Apply detection
methods

 5.
Identify design
flaws and the
reasons

 6.
Refactoring

 8.
Evaluate improvement by
applying detection
methods

 2.
Build DCPP
Matrix

Design model
without faulty
artifacts

Refactoring
principles,
design patterns

Use
DCPPM

 Fig.6. Framework for object oriented software
 design quality improvement (D3ARTI)

 7.
Build DCPP
Matrix

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

