

Abstract— DNSSEC provides origin authentication and data

verification. It uses public key cryptography to build an chain
of trust between parent and child name servers. There are two
pairs of keys are used in DNSSEC, but only one of them,
namely, KSK-Public is used to build the chain between name
servers. This could cause a failure threat from a single point.
That is, if an attacker could manage to compromise the
ZSK-Public, it could modify the zone data and hence break the
authenticate chain, making rogue servers and fake DNS
response possible.

In this paper, we propose a solution to enhance the security
of chain of trust. It is to use double authentication process by
making use of all the existing key pairs (KSK and ZSK). Since
our solution is based on existing DNSSEC structures, it does
not need to introduce any new key pair or any new DNS
resource records, making it easy to be integrated into the
existing systems.

Index Terms— DNS, DNSSEC, Naming Systems

I. INTRODUCTION
The Domain Name System (DNS) [1] is one of the

fundamental building blocks of the Internet. It provides a
mechanism for resolving human memorizable domain
names into numeric IP addresses. However, similar to many
Internet protocols, the original design of DNS protocol
specification did not include security, which makes the DNS
vulnerable to various kinds of attacks, such as cache
poisoning and traffic diversion.

Since the proper functionality of the DNS is crucial to the
Internet, the Internet Engineering Task Force (IETC) added
a set of security extensions to the existing DNS protocol.
The set of extensions is collectively known as DNS Security
Extension (DNSSEC) [2],[3].

Although DNSSEC provides origin authentication and
data integrity, the success of it relies on the correct operation
of chain of trust, which is an authentication chain between
name servers. The existing approach to build the chain of
trust is to use the Zone Signing Key (ZSK) pair (one of the
two key pairs used in DNSSEC).

In section 2, we first review some DNSSEC basics, which
set a foundation for section 3 where we point out that the

Manuscript received November 28, 2007. The work described in this
paper is supported by Macao Science and Technology Development Fund
(Project No. 099/2005/A).

K. Y. Wong is with the Computer Studies Program, Macao Polytechnic
Institute (phone: +853-5996440; fax: +853-719227; e-mail:
kywong@ipm.edu.mo).

W. L. Koo is a graduate from City University of Hong Kong (email:
barrykoo@gmail.com).

K. H. Yeung is with the Department of Electronic Engineering, City
University of Hong Kong (email: eeayeung@cityu.edu.hk).

existing approach will cause a single point of threat. We
show that it is possible for an attacker to compromise the
ZSK pair. After that, it could modify and re-sign the zone
data. In this case, the chain of trust would be broken, which
allows the attacker to run its rogue name server and return
fake DNS response to DNS resolvers. In section 4, we
propose a solution to enhance the security of the chain of
trust. This is to use of all the existing key pairs (KSK and
ZSK) in DNSSEC. Advantages and disadvantages of our
proposal are also included.

II. DNSSEC BASIC
We first review some DNSSEC basics, which set a

foundation for the presentation of the DNSSEC security
threat and our proposed solution.

A. Key Signing Key (KSK) and Zone Signing Key (ZSK)
Pairs
DNSSEC provides origin authentication and data

integrity, which is based on public-key cryptography.
DNSSEC uses two key pairs: Key Signing Key (KSK) and
Zone Signing Key (ZSK) pairs. Each key pair has its own
public key and private key, totally four keys in one DNS
server. They are named KSK-Public, KSK-Private,
ZSK-Public, and ZSK-Private.

The ZSK pair is used to sign the zone’s data. A name
server uses its ZSK-Private to sign (encrypt) its zone data,
and makes its ZSK-Public public so that others can use the
key to decrypt the signed zone data (to check data integrity).

On the other hand, the KSK pair is mainly for
authentication purpose. A name server sends its KSK-Public
key to its parent DNS server. This is to build up the
authentication relationship between parent and child name
server. This relationship is called chain of trust, and will be
discussed later. The child name server will also make its
KSK-Public public so that others can check this against the
copy in its parent server.

B. New Resource Records
To provide the security functions, DNSSEC adds four

new resource records (RR), as shown in Table 1. The
DNSKEY, RRSIG, and NSEC resource records are
automatically generated in the zone signing process. More
attention should be placed on the DS resource record. It is
optional in DNSSEC and it will not be automatically
generated. To generate the DS record, the DNS server has to
first obtain its child’s public key first. The DS record is
particularly important for DNS servers, if they want to build
the trust of each other.

Enhancing the Security of Chain of Trust
in DNSSEC

Kin-Yeung Wong, Wei-Leung Koo, and Kai-Hau Yeung

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

Table 1. Resource records added in DNSSEC

DNSKEY Storing public key string
RRSIG Storing digital signature
NSEC Storing next domain name
DS Storing the hash of child’s

KSK-Public

C. Chain of trust
A name server’s public keys (KSK-Public and

ZSK-Public) are shown in the DNSKEY resource records of
its zone file.

When a resolver wants to verify its received data, D, from
a name server, it can perform a data integrity check. First, it
gets the ZSK-Public key (as included in the DNSKEY
record) from the server’s response, and then uses the key to
decrypt the signature (as included in the RRSIG record) to
obtain the hash value of the original data, H1. Then, the
resolver passes the received data, D, to the same hash
function as the server use to calculate another hash, H2.
After that, the resolver checks H2 against H1. If they match,
the received data, D, is verified and can be trusted.

However, there is a threat in the above verification
process [4, 5]. That is, the public key in the first step has not
been verified and can be incorrect. Therefore, if an attacker
could manage to compromise a DNS server, it could modify
the zone data, and also generate a new key pair to re-sign the
zone data again, then publish its public key to all DNS
servers or clients. In this case, resolvers would not be aware
of the problem, since they use the attacker’s newly
generated public key to verify its forged data, and hence,
there would be no error during the authentication process.

To solve the problem, chain of trust is used to build up an
authenticated relationship between parent and child DNS

servers. It requires that a parent server to verify the public
key of its child server through the use of DS resource
record.

To build the chain:
• A name server (e.g., example.com server) first places

its KSK-Public in the DNSKEY record of its zone
file. (It also places its ZSK-Public for data verifying
purpose).

• It then sends the KSK-Public to its parent name
server (i.e., .com server) in a secure way. The “way”
is an operational matter (could be done via email)
and not covered in the DNSSEC specification.

• When its parent received the key, it will generate a
DS record to store the hash of the child’s KSK-Public
in its own zone file.

• The parent also needs to sign the DS record using its
own private key (ZSK-Private) and store the result in
a RRSIG record.

The zone file in this example is shown in Fig. 1.

 To authenticate an origin, say, example.com
• All the public keys have to be stored in its zone file,

so there are two DNSKEY records.
• One first uses KSK-Publicexample.com (as shown in the

DNSKEY record) to decrypt the RRSIG DNSKEY
RR (i.e., (…bbb…) in Fig. 1) to obtain the hash value
of the KSK-Publicexample.com, say, H1.

• It then passes the KSK-Publicexample.com to the same
hash function to generate another hash value, say,
H2.

• By comparing H1 against H2, if they match, the
integrity of KSK-Publicexample.com is verified.

• After verifying the key, the resolver then checks H2
against the hash stored in the parent’s DS record.

• If they match, the child name server is authenticated.

Fig. 1. Origin authentication.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

III. SECURITY THREAT TO CHAIN OF TRUST
As can be seen, chain of trust provides authentication

through the use of the parent’s DS record and the child’s
DNSKEY record. However, as the child use its KSK-Private
to sign its DNSKEY record which stores the KSK-Public,
and use its ZSK-Private to sign all other zone data including
the DS record, this may cause a single point of vulnerability.

For example, if an attacker could manage to obtain (later,
we will show some possible ways) a parent server’s ZSK
pair, then it would have the ability to modify and re-sign the
zone data including the DS records. That is, the attacker can
modify the DS record to store a malicious KSK-Public
(which is another child server running by the attacker) and
re-sign it using the compromised ZSK pair. This would
cause a serious impact. It is because this alters the
authentication chain and hence breaks the chain of trust. As
a result, the parent server will refer all the resolvers to the
malicious child server.

Fig. 2 shows an example to illustrate the threat. In normal
case (see Fig. 2(a)), to resolve the address of
host.example.com, the correct resolving path is from ns.root,
ns.com, to ns.example.com name servers. In com zone, the
DS record stores the hash value of example.com’s
KSK-Public. The com name server (ns.com) will tell the
resolver that ns.example.com is the authoritative server, and
send the resolver the hash value of example.com’s
KSK-Public (based on its DS record). The resolver then
generates a new hash value using the KSK-Public from
example.com’s DNSKEY record. If these two hash values
match, the resolver is confident that this is the right server
for example.com zone. However, if the attacker is able to
compromise the ZSK pair of com zone, it can modify the
zone data and the DS record to store the public key of its
own malicious machine, claiming that it is the key of the
real example.com zone. Consequently, the resolving path
would become from ns.root, ns.com, to the attacker’s
machine. See Fig. 2(b).

A. Compromising ZSK Key

In order To efficiently manage the zone data (mappings of

domain name and IP), the DNS allows dynamic update [4,
6] function to add or delete resource records on demand. To
allow dynamic update, ZSK-Private has to be kept in the
name server so as to sign the modified zone data. This
creates a chance for the attacker to “steal” the ZSK-Private.

 Another way to crack the private key is to use key
cryptanalysis if the attacker has enough computing power.
According to cryptanalysis, the larger data set it has, the
higher chance an attacker to crack the private key. It is
unfortunate that ZSK-Private is used to encrypt quite a lot of
zone data, unlike KSK-Private.

Fig. 2. Chain of trust is broken.

IV. PROPOSED SOLUTION TO ENHANCE CHAIN OF TRUST
In the currently DNSSEC specification, only one DS

record is used to build the chain of trust. As mentioned
before, this causes single point of security failure, and
attackers with the ability to compromise the ZSK pair are
able to break the chain of trust. To enhance the security of
the authentication chain, we propose to use two DS records
(instead of one record).

As each server has two key pairs: KSK and ZSK. In our
proposal, the parent server will generate two DS resource
records. One is used to store the hash value of its child’s
ZSK-Public, and its correspond RRSIG DS record is
encrypted by the parent’s KSK-Private. Another DS record
stores the hash value of the child’s KSK-Public and its
RRSIG record is encrypted by the parent’s ZSK-Private.
Fig. 3 shows the comparison of the DS record in com zone
between the original zone file and our proposed modified
version.

Original approach
:
DS: hash(KSK-Publicexample.com)
RRSIG DS: EZSK-Private-com {hash (KSK-Publicexample.com)}

:
Proposed approach
:
DS: hash(KSK-Publicexample.com)]
RRSIG DS: EZSK-Private-com {hash(KSK-Publicexample.com)}
:
DS: hash(ZSK-Publicexample.com)
RRSIG DS: EKSK-Private-com {hash(ZSK-Publicexample.com)}
:
Fig. 3. Sample zone files of example.com comparing the DS
records between the original and our proposed approaches.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

With our proposal, the chain of trust process would take

two authentication checks. That is, both of the following
conditions must meet:

The hash of a child’s KSK-Public shown in the parent’s
DS record must match with the child’s KSK-Public shown
in the child’s DNSKEY record.

The hash of a child’s ZSK-Public shown in the parent’s
DS record must match with the child’s ZSK-Public shown in
the child’s DNSKEY record.

When both cases pass, the public keys are said to be
verified and can be trusted.

A. How the Proposed Solution Solve the Threats
It is noted that our proposed solution uses two different

private keys (KSK-Publiccom and ZSK-Publiccom) to encrypt
the two DS RRs. The purpose of doing this is to add more
security to the chain of trust.

In general, ZSK is less secure than KSK. It is because
ZSK has to be stored in the computer for the dynamic
update purpose, which leaves a security hole for an attacker
to get it. However, since KSK needs not to be stored in the
computer, and will be kept in secret, making it very difficult
for attacker to crack. As a result, even though the attacker
could manage to crack ZSK, if it could not crack KSK, it
could not break the chain of trust. It makes our proposed
chain of trust much more secure than the original one.

 Another reason of why our proposal is secure is that
KSK is very difficult to crack. As mention before, according
to cryptanalysis, the larger data set (encrypted data), the
higher chance an attacker to crack a key. Unlike ZSK which
encrypts much zone data, KSK encrypts only the DNSSEC
and DS RRs, providing only minimal data set for the
attacker to crack KSK.

V. CONCLUSION
We proposed a solution to enhance the security of chain

of trust through the use of two DS records storing both KSK
and ZSK pairs. To deploy the solution, a minor modification
to the existing DNSSEC specification is required (adding
the DS records). It is based on existing key pairs, resource
records, and authentication mechanism. Hence, it is feasible
to be implemented.

However, the proposal will lengthen the authentication
process because there are two key verification checks.
Besides, if you change any one of key pairs, you have to
inform the corresponding parent server for the change. As
can be seen, the solution achieves higher security and
robustness but causes higher processing and administrative
overhead. Nonetheless, the primary concern of this work is
security.”

In the future, we plan to implement our proposal by
writing our own zone-signing program which works with
BIND [1].

REFERENCES
[1] P. Albitz and C. Liu, DNS and BIND, 4th edition, O'Reilly, 2004
[2] R. Chandramouli and S. Rose, Secure Domain Name System (DNS)

Deployment Guide, National Institute of Standards and Technology,
USA, August 2005.

[3] O. Kolkman, DNSSEC HOWTO, Ripe NCC, April 2005.
[4] X. Wang, Y. Huang, Y. Desmedt, and D. Rine, “Enabling secure

on-line DNS dynamic update,” Proc. 16th Annual Conference
Computer Security Applications, 11-15 Dec. 2000, pp.52-58.

[5] “Attacking the DNS Protocol – Security Paper v2,” Security
Associates Institute, 29 October 2003.
http://www.rootsecure.net/content/downloads/pdf/sans_attacking_dns
_protocol.pdf

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008

