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Abstract— Analyzing microarray data could help discover 

significant cancer genes and their mutual interactions, which 
can be used to generate hypothesis for the identification and 
validation of genetic biomarkers. However, the commonly used 
statistical significance analysis can only provide information of 
individual genes, thus neglecting influence of the mutual 
interactions. Therefore, methods aiming at discovering 
combinational gene signatures are highly valuable. In this 
paper, an integrated approach of support vector machine (SVM) 
and variable neighborhood search (VNS) is introduced in 
searching the gene signatures for predicting histologic response 
of chemotherapy on osteosarcoma patients. Cross validation 
results show that this method outperforms other existing 
algorithms. Further validation with the test dataset shows that 
only one of the fourteen samples is misclassified. The high 
testing accuracy further suggests that the proposed method has 
capability of extracting the stable discriminative signatures 
from microarray data. 
 

Index Terms—support vector machine, variable 
neighborhood search, osteosarcoma, gene signatures.  
 

I. INTRODUCTION 

Microarray chip can simultaneously interrogate thousands of 
genes, which provides an extremely powerful tool for 
genomic studies of cancer. A few key genes (typically 
involving oncogenes and tumor suppressor genes), when 
mutated, will cause dysregulation of the transcription and 
translation of other genes through complicated signaling 
pathways to initiate oncogenesis, and ultimately leading to 
derangement of the cellular phenotype and the clinical 
manifestations of cancer. Analyzing microarray data could 
help discover some significant cancer genes and their mutual 
interactions, which can be used to generate hypothesis for the 
identification and validation of genetic biomarkers for 
diagnostic and therapeutic purposes [4, 9]. This approach has 
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been proven to be an effective way to reveal the biological 
mechanism of gene regulation and pathways. 

Significance based methods (e.g. T-test, Confidence 
intervals, etc.) [5], which aim at finding statistically 
significant genes in differentiating various patient groups, 
have been extensively utilized. However, the philosophy of 
these methods is to evaluate the significance on each 
individual gene, thus neglecting the intrinsic interactions 
among genes. Therefore, methods to assess the function of 
gene combinations in regulating tumor patterns are highly 
desired. Supervised classification is the most effective 
machine learning method to map the input space (with 
multiple predictor genes) to the output space (with labeled 
conditions). Cross-validation accuracy is generally used as a 
fair indicator of the performance of a classifier. The best 
cross-validation accuracy of a well-designed classifier thus, 
can implicate the relevance of the selected genes. Utilizing 
genuine gene markers, which potentially account for specific 
phenotypes, should classify samples accurately into different 
groups in a robust manner. Common learning algorithms 
include neural network [2, 13], k-nearest neighbor [15], 
decision tree, multi-layer perceptron [14], self-organizing 
maps [9], hierarchical clustering [6], graph theoretic 
approaches [11], and support vector machine (SVM) [8, 20, 
25]. Among all of them, SVM has been proven to have the 
best capability in controlling the tradeoff between empirical 
risk and model complexity to achieve good prediction [1, 15, 
22, 23]. Nevertheless, exhaustively evaluating all the 
combinations by supervised classification within the whole 
gene set will lead to a NP-complete problem, which 
eventually becomes computationally impossible.  

In this study, an integrated approach of support vector 
machine (SVM) with a variable neighborhood search (VNS) 
algorithm, namely SVM-VNS, is introduced to discover the 
best gene signatures of drug response monitoring and 
predicting for osteosarcoma patients. The rationale behind 
the use of VNS is its high efficiency in searching a 
tremendous solution space [21]. SVM-VNS incorporates 
gene features and SVM parameters in one common solution 
code. It conducts a local search with a strategic adaptation of 
neighborhood according to SVM estimation that makes this 
innovative approach outperforming other alternatives. 
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II. PROBLEM FORMULATION AND SOLUTION 
REPRESENTATION 

A. Problem Formulation 
Let a gene microarray dataset D be l

iii y 1)},{( �x , where 
m

i ��x  is the gene expression level of the i-th patient, 
}1,1{��iy  is the condition label for binary classification 

problem, and m is number of gene features. The dataset after 
performing gene selection is defined as 

� � � � DDx 	�� �� l
iii y 1)},{(  with � � 'm

i ��x� , where 
function �  selects 'm  ( m
 ) gene features among all the 
m gene features from the gene expression data set D. For a 
new sample x , the decision function of a SVM classifier 
with radial-basis-function (RBF) kernel can then be defined 
based on the selected gene subset: 

� � )))(,(sgn(),,,,(
vectorssupport 

�� xxDx ��� iii KayCf �                  (1) 

where �  is the width parameter of the RBF kernel and C  is 
the regularization parameter, ia  is solved by optimizing a 
quadratic function 
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0 . The support vectors are only 
corresponding to those items with 0�ia . To develop a 
robust SVM model based on the training set, the 
leave-one-out cross-validation (LOOCV) was applied to 
optimize the model parameters (�  and C). In LOOCV, one 
sample is leaved out as testing sample, and the remained 

1l � samples are used as training data. Let kD  represent the 
training set � �� �, , 1, 1, 1, ,i iy i k k l� � �x � � , then the overall 
accuracy is calculated by: 
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Now the problems of gene feature selection and SVM 
parameter optimization are integrated to optimizing the 
above objective function.  

B. Solution Representation 
Solution of the above function is represented in both 

binary and real codes, which consists of two parts: a) binary 
coded representation [3, 13] for the gene features selection, 
and b) real coded representation for the SVM parameter 
optimization. The representation of the solution is illustrated 
in Figure 1. 

As shown in the left side of Figure 1, binary coded 
representation is composed of a m-bit binary string with each 
bit is corresponding to one gene. In the binary string, there 
are 'm  1-elements and the rest are 0-elements. A bit with 
1-element means that the corresponding gene is selected, 
otherwise that gene is ignored. For instance, a solution 
[0,1,0,1,0,0] with 2'�m  and 6�m  represents the 2nd and 
4th genes are selected. Thus the number of possible gene 
subsets can be calculated as 

'
m

n
m

� �
� � 

� �
                                                                            (4)

As illustrated in the right side of Figure 1, real code is 
adopted for representing the two SVM parameters, the kernel 
width parameter �  and the regularization parameter C.  

In general, the number of the original genes contained in 
microarray data is very large and include lots of noisy genes, 
which not only impair the efficiency but also the 
effectiveness of any searching algorithms. Therefore, a 
pre-screening procedure to filter out those noisy genes is still 
necessary.  

III. ALGORITHM OF SVM-VNS 
Variable neighborhood search (VNS) is a well-known 

local search algorithm [18, 21], and has been successfully 
applied to solve hard combinational optimization problems [7, 
10]. In this paper, an integrated approach of support vector 
machine (SVM) and VNS algorithm, that can effectively 
solve the problem of simultaneously optimizing gene subset 
and the classifier, is introduced, namely SVM-VNS.  

A. Neighborhood Structures (NSs) 
The neighborhood structures NSs in the solution 
representation, which determines neighboring solutions to 
move to, is a key element of VNS in which two NSs are used: 

- ‘MutationBin’ is a function used to explore solutions of 
the binary representation by exchanging the entries of a 0- 
and 1- elements. For instance, suppose that the 2nd bit with 
entry 1-element and 5th bit with entry 0-element of the 
solution [0,1,0,1,0,0] are selected to be exchanged. After 
applying MutationBin, the new solution will be [0,0,0,1,1,0]. 
Obviously, the elements in 2nd and 5th bits were exchanged. 

- ‘MutationReal’ is a fine-tuning function that implies 
small shake on a randomly choice of classifier parameters in 
the real coded representation of the solution. The 
MutationReal function is defined as the following Shake 
Function: 

��� ppshake )(                                                              (5) 
where p  represents the randomly chosen parameter, and �  
is randomly generated within the range � �minmax1.0 pp �� , 
representing 0.1 times scale of the parameter space of the 
classifier. 

B. Procedures of SVM- VNS 
As illustrated in step 1 of the following pseudo-code, 
SVM-VNS starts with a randomly selected initial solution, 

SxC ��],,[ �� , where S is the whole search space, and 
manipulates the solutions via steps 2(a) and 2(b), where two 
main functions of Shake and Local Search for intensification 
and exploration are employed in neighborhood search. In 
step 2(a), Shake Function generates and modifies the 
solutions regardless of the quality of solution so as to 
initialize a fresh search in a local neighborhood or to switch 
to another neighborhood. Then step 2(b) carries out the major 
intensive search by Local Search Function, which seeks for 
an improved solution within the chosen local neighborhood. 
The outcome of Local Search Function is evaluated 
cross-validation with SVM to determine whether or not to 
accept it as the solution for further search. This process is 
iterated until the termination condition is met. 
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1. Initialization: initialize a solution SxC]�,,[ ���  
2. Repeat the following steps until the stopping condition is met: 
 (a) Perform Shake Function: 'xx �  
 (b) Perform Local Search Function: ''' xx �  
 (c) Improve or not: if ''x  is better than x, do xx �''  
Shake Function and Local Search Function need to be 

chosen so as to achieve an efficient SVM-VNS. The two NSs 
discussed in Section III.A are used for Shake and Local 
Search Functions to obtain neighborhood changes for 
SVM-VNS.  

Shake Function works to switch to another region of the 
search space so as to carry out a new local search, as the 
purpose of Shake Function is to diversify the exploration. 
Here Shake Function does not work in the binary coded 
representation, but is designed to conduct a random move 
within the real coded representation. For example, the given 
solution *x  is operated with the Shake Function to obtain  
x’=MutationReal(x*). 

Local Search Function is developed as a simple 
hill-climbing algorithm based on both aforementioned NSs. 
As indicated in the following pseudo-code, the NSs are used 
complementary to each other that the functioning NS keeps 
iterating as long as better moves are resulted. It switches to 
the other NS once the result produced is not better and the 
algorithm stops if the number of moves, n, meets a predefined 
number, nmax. The change of NS is organized with a binary 
integer variable, �  (0, 1), in which the value of � is changed 
by using an absolute function denoted by |·| norm at the 
second part of step 3(b) of the pseudo-code. The procedures 
of Local Search Function are as follows: 

1. Get initial solution, x’  S 
2. Set 0�n and 1��  
3. While maxnn � do 
(a) if � �1�� then x’ � MutationBin(x’); else if � �0��  then x’ 

� MutationReal(x’) 
(b) Set if � � � �''' xJxJ �  then ''' xx � ; else 1�� l�  
(c) 1�� nn  

where � �xJ  is defined by (3). 

IV. DATA DESCRIPTION 

It was reported that osteosarcoma accounts for 60 percent of 
malignant bone tumors diagnosed in the first two decades of 
life [16]. The DNA microarray data [17] were measured on 
tumor tissues sampled from patients before and after 
chemotherapy treatments. The patients are followed up to 
record clinical outcome such as response, recurrence and 
survival etc. A total of 34 samples (14 initial biopsies and 20 
definitive surgery specimens) were included in this study, 
which were obtained from 28 individual patients with 18 
males and 10 females. Six patients contributed two samples 
each, both initial biopsies and definitive surgery specimens, 
whereas the remaining 22 patients contributed one sample 
each, either initial biopsy or a definitive surgery specimen. 
The initial biopsy samples were obtained at the time of 
diagnosis before the initiation of preoperative chemotherapy. 

The definitive surgery samples were collected after the 
completion of preoperative chemotherapy. The drug 
responses are centrally reviewed by one pathologist after 
definitive surgery. Good response is defined as more than 90 
percent necrosis in tumor, and poor response with less than 
90 percent necrosis.  

Raw quantification output of all array experiments were 
preprocessed and filtered by removing spots with low signal 
intensity and low sample variance (P > 0.01) as well as those 
that were missing in >50% of the experiments. A total of 
1,934 genes remained after pre-processing and filtering. 
Intensities were then normalized by intensity dependent local 
weighted regression method. After normalization, intensity 
ratios were log transformed before further analysis. 

There were some missing data after filtering. In this study, 
we simply imputed those missing values by the mean value 
over the training set in each cycle of cross-validation test. 
This approach ensures that the testing data are entirely 
independent to the training process to exclude any possibility 
of overestimation. 

V. RESULTS AND DISCUSSION 

With SVM-VNS, the model was firstly trained and optimized 
on the 20 definitive surgery samples to classify good 
responders and poor responders. The best gene combination 
can be determined according to the cross-validation accuracy. 
The gene features and SVM model will then be validated 
with the 14 initial biopsy samples. The results can reveal the 
relevance of the proposed method. 
Classification on definitive surgery samples. Two-sample 
t-test was performed on the 20 definitive surgery samples to 
pre-screen those noisy genes. 200 of most significant genes 
were kept, and others are ignored. SVM-VNS trials of using 
gene numbers of 2, 3, 4, 5, 10 and 20, were then performed. 
For each trial, the training process was repeated with 50 runs. 
Mean values of cross-validation accuracies were listed in 
Table 1. 

As shown in Table 1, the accuracy initially increased when 
more genes were involved in the feature subset. This 
observation accords the logic that multiple genes cooperate 
together to regulate chemo-response. Larger gene set should 
provide more comprehensive information for classification. 
An interesting finding is that the accuracy declines as number 
of genes increased to 10 and 20. This result seems to conflict 
with previous reasoning. However, the fact is, when a gene is 
selected as feature, its expression data contributes not only 
information but also noise [9]. The information of a newly 
added gene feature could be redundant to previously selected 
genes, while its noise could deteriorate the classification 
accuracy. From this table, it is clear that 5 gene signatures can 
stably support the whole feature space to describe the 
mapping relationship between genetic expression and 
chemo-response. 

Results of various supervised classification algorithms 
(compound covariate predictor CCP, linear discriminant 
analysis LDA, 1-neraest neighbor 1-NN, 3-nearest neighbor 
3-NN, nearest centroid NC and SVM) obtained from [17] 
were compared with SVM-VNS. For all algorithms, LOOCV 
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was used to evaluate the performance of classification. The 
SVM-VNS achieved outstanding performance (92% 
classification accuracy) comparing to the other six algorithms 
that can only achieve 60-70% classification accuracies. This 
result indicate that SVM-VNS is a powerful technique in 
achieving accurate classification through optimizing feature 
subset and the parameters of the SVM classifier. 

Combinational gene signatures. Among the total 50 runs 
in the trial of 5 gene features, four subsets of gene features 
with 100 percent cross-validation accuracy were selected as 
signatures, as listed in Table 2. In this table, the gene 
Enah/Vasp-like (EVL, also known as RNB6) appears in all 
the subsets. It was reported that RNB6 has been identified as 
a commonly down-regulated gene biomarker in various types 
of cancers [12, 19]. Another gene Cell division cycle 23, 
yeast, homolog (known as CDC23), is a large multisubunit 
ubiquitin-protein ligase required for the ubiquitination and 
degradation of G1 and mitotic checkpoint regulators. When 
overexpressed, CDC23 could lead to abnormal levels of 
anaphase-promoting complex (APC/C) targets. [24]. Some 
other genes, such as Early growth response 1 and C1q and 
tumor necrosis factor related protein 2, etc., also have 
relationship with oncogenesis or tumor development, but the 
details would not be discussed here. 

There is no available knowledge to explain the cooperative 
relationship among the genes in each subset. Therefore we 
cannot verify the validity of the selected genes as biomarkers. 
Nevertheless, the results can be used as a hypothesis for 
further investigations. Performing real-time RT-PCR can 
validate these genes markers. More molecular studies should 
be pursued to investigate the biological mechanism of these 
genes’ involvement in determining drug response and 
chemoresistance. 

Prediction of chemo-response on initial biopsy samples. 
All of the four gene subsets were then respectively applied to 
predict the chemo-response of the 14 initial biopsy samples 
for further validation purpose. For all the gene subsets, the 
corresponding SVM classifier misclassified only one sample 
among the 14 samples, with a correct classification rate of 
92.9%. As shown in Table 3, they all misclassified Tumor ID 
410 as a poor responder but clinically the patient was 
considered to be a good responder. This finding is consistent 
with the results of the original study in [17], where it was 
pointed out that this patient initially presented with localized 
disease but eventually developed recurrence in the lungs 25 
months after completion of therapy, suggesting that there 
were resistant cells present in the initial biopsy, which might 
have metastasized to the lungs before definitive surgery and 
subsequently gave rise to the recurrent tumor. These results 
further indicate that the gene expression signature of the 
resistant cells in the definitive surgery samples was already 
present in the initial biopsy samples at the time of diagnosis. 

VI. CONCLUSIONS 
In this paper, we have proposed an algorithm SVM-VNS, 

which is an integrated approach of variable neighborhood 
search and support vector machine aiming at selecting a 
compact gene subset and simultaneously optimizing model 
parameters. Applying this algorithm on osteosarcoma 

microarray data resulted in 92 percent of cross-validation 
accuracy on the training dataset outperforming other 
commonly used algorithms. Meanwhile, four subsets of 
combinational gene signatures were discovered to 
consistently discriminating the good responders and poor 
responders both on training set and testing set. Some of them 
are reported to have close relationship with oncogenesis and 
tumor development. Further validation using independent 
methods of measurement shall be pursued to investigate the 
cooperative mechanism among genes in each subset. 
Prediction on chemo-response using an independent dataset 
of initial biopsy samples achieved 92.9 percent of accuracy, 
reflecting that the proposed SVM-VNS algorithm is 
promising in selecting robust gene signatures. The results of 
SVM-VNS suggest that it is a very useful tool to generate 
hypothesis for the biomarker identification and validation.  
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Figure 1. Solution representation 
Table 1. Mean values of cross-validation accuracies (over 50 runs) 

Number of gene features used Accuracy of LOOCV 
2 85% 
3 85% 
4 87% 
5 92% 
10 91% 
20 90% 

Table 2 Subset of combinational gene signatures 

Subset Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 
One ESTs Highly 

similar to 
hypothetical 
protein  

EVL 
Enah/Vas
p-like 

Acetyl-Coenz
yme A 
transporter 

Extra spindle 
poles like 1 

Major histocompatibility 
complex, class II, DO beta

Two Cell division 
cycle 23, yeast, 
homolog 

EVL 
Enah/Vas
p-like 

Extra spindle 
poles like 1 
(S. cerevisiae)

Early growth 
response 1 

Major histocompati-bility 
complex, class II, DO beta

Three SRY-box 9 (sex 
determining 
region Y)-box 9  
 

EVL 
Enah/Vas
p-like 

ESTs, Highly 
similar to 
hypothetical 
protein  

C1q and tumor 
necrosis factor 
related protein 2

Homo sapiens mRNA from 
chromosome 5q21-22, 
clone:357Ex 

Four Cell division 
cycle 23, yeast, 
homolog 
 

EVL 
Enah/Vas
p-like 

Protein 
associated 
with PRK1 
 

Hypothetical 
protein 
MGC19556 

Ubiquitin specific protease 
9, Y chromosome (fat 
facets-like Drosophila) 

Table 3 Prediction of chemo-response on initial biopsy samples 

Tumor ID Histologic response Concordance with 
histological response 

410 GR No 
197 PR Yes 
207 PR Yes 
278 GR Yes 
289 PR Yes 
345 GR Yes 
204 PR Yes 
274 PR Yes 
299 GR Yes 
464 PR Yes 
479 PR Yes 
481 PR Yes 
545 GR Yes 
654 GR Yes 

Binary coded representation (m bits) Real coded representation 

� C 

Solution representation 

……1 0 0 1 0 1 1 0 1 0 

Kernel width parameter � and the regularization 
parameter C 

Selection of 'm  gene features 
among the m genes 
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