

Abstract—Feature selection is a useful technique for

increasing classification accuracy. The primary objective

is to remove irrelevant features in the feature space and

identify relevant features. Binary particle swarm

optimization (BPSO) has been applied successfully in

solving feature selection problem. In this paper, chaotic

binary particle swarm optimization (CBPSO) with

logistic map for determining the inertia weight is used.

The K-nearest neighbor (K-NN) method with

leave-one-out cross-validation (LOOCV) serves as a

classifier for evaluating classification accuracies.

Experimental results indicate that the proposed method

not only reduces the number of features, but also achieves

higher classification accuracy than other methods.

Index Terms—Feature selection, binary particle swarm

optimization, logistic map, K-nearest neighbor, leave-one-out

cross-validation.

I. INTRODUCTION

Feature selection is the process of choosing a subset of

features from the original feature set and thus can be viewed

as a principal pre-processing tool prior to solving

classification problems [1]. Feature selection is a NP-hard

problem. The goal is to select a subset of d features from a set

of D features (d < D) in a given data set [2]. D is comprised of

all features in a given data set; it may include noisy, redundant,

and misleading features. Therefore, an exhaustive search

performed in the solution space, which usually takes a long

time, often does not work in practice [3]. To resolve these

feature selection problems, we aimed at retaining only d

relevant features. Irrelevant features are not only useless for

classification, but could also potentially reduce the

classification performance. By deleting irrelevant features

computational efficiency can be improved and classification

accuracy increased.

Three different categories of evaluation criteria can be

employed when deciding which features are relevant and

which ones should be removed: filters, wrapper and hybrid

models [4]. The filter model relies on general characteristics

Manuscript received January 4, 2008. (Li-Yeh Chuang is with the

Department of Chemical Engineering, I-Shou University, Kaohsiung,

Taiwan (email: chuang@isu.edu.tw))

Jung-Chike Li is with the Department of Electronic Engineering,

National Kaohsiung University of Applied Sciences, Taiwan (e-mail:

1095320149@cc.kuas.edu.tw).

Cheng-Hong Yang is with the Department of Electronic Engineering,

National Kaohsiung University of Applied Sciences, Taiwan (e-mail:

chyang@cc.kuas.edu.tw)

of the data to evaluate and select feature subsets without

involving any learning algorithm [4]. Wrapper models apply

an unsupervised learning algorithm to each subset of features

and then evaluate the subset of features by criterion functions

[5]. Wrapper models usually have a higher computational cost

than the filter modes. Hybrid models attempt to take

advantage of the two models by exploiting their different

evaluation criteria at different search stages, and have

recently been proposed to handle large data sets [4].

We adopted a wrapper model to work on the feature

selection problem. In recent years, different evolutionary

algorithms have been proposed to obtain near-optimal subsets

of solutions. These approaches include genetic algorithms

(GA) designed by imitating natural evolution [2], ant colony

optimization (ACO)[6], particle swarm optimization (PSO)

[1]with swarm intelligence and tabu search (TS) [7] with

intermediate memory.

Particle swarm optimization is a search process based on

the idea of swarm intelligence in biological populations. In

PSO, an information sharing algorithm randomly generates an

initial population for the search process. The position and

velocity of each particle is adjusted based on its individual

experience and the experience of its neighbors. The

information is updated due to social interactions between

particles.

In this paper, chaotic binary particle swarm optimization

(CBPSO) with logistic map for determining the inertia weight

is used. The K-nearest neighbor (K-NN) method based on

Euclidean distance calculations serves as a classifier for five

data sets taken from the literature [2]. Experimental results

show that CBPSO can not only reduce the number of features,

but also achieves higher classification accuracies.

II. METHOD

A. Binary Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-based

evolutionary computation technique developed by Kennedy

and Eberhart in 1995 [8]. PSO simulates the social behavior

of animals, i.e. birds in a flock or fish in a school. This

behavior can be described by a swarm intelligence system. In

PSO, each solution can be considered an individual particle in

a given search space, which has its own position and velocity.

During movement, each particle adjusts its position by

changing its velocity based on its own experience, as well as

the experience of its neighboring particles, until an optimum

position is reached by itself and its neighbor [9]. All of the

particles have fitness values based on the calculation of a

Chaotic Binary Particle Swarm Optimization

 for Feature Selection using Logistic Map

Li-Yeh Chuang, Jung-Chike Li, and Cheng-Hong Yang, Member, IAENG

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

fitness function. Particles are updated by following two

parameters called pbest and gbest at each iteration. Each

particle is associated with the best solution (fitness) the

particle has achieved so far in the search space. This fitness

value is stored, and represents the position called pbest. The

value gbest is a global optimum value for the entire

population.

PSO was originally developed to solve real-value

optimization problems. Many optimization problems occur in

a space featuring discrete, qualitative distinctions between

variables and levels of variables. To extend the real-value

version of PSO to a binary/discrete space, Kennedy and

Eberhart proposed a binary PSO (BPSO) method. In a binary

search space, a particle may move to near corners of a

hypercube by flipping various numbers of bits; thus, the

overall particle velocity may be described by the number of

bits changed per iteration [10].

The position of each particle is represented by Xp = {Xp1,

Xp2, …, Xpd} and the position of each particle is represented

in binary string form and is randomly generated; the bit value

{0} and {1} represent a non-selected and selected feature,

respectively. The velocity of each particle is represented by

Vp = {Vp1, Vp2, …, Vpd} (d is number of particles) and the

initial velocities in particles are probability limited to a range

of {0.0~1.0}. In BPSO, once the adaptive values pbest and

gbest are obtained, the features of the pbest and gbest

particles can be tracked with regard to their position and

velocity. Each particle is updated according to the following

equations [10].

() ()old
pdd

old
pdpd

old
pd

new
pd xgbestrandcxpbestrandcvwv −××+−××+×= 2211

 (1)

if new
pdv ∉(Vmin, Vmax) then

new
pdv = max (min (Vmax,

new
pdv), Vmin) (2)

()
new
pdv

new
pd

e

vS
−

+

=

1

1
 (3)

 (3)

 If ()()new
pdvSrand < then 1=

new
pdx ; else 0=

new
pdx (4)

In Eq.(1), w is the inertia weight,

1c and
2c are

acceleration parameters, and rand, rand1 and rand2 are three

independent random numbers between [0, 1]. Velocities new
pdv

and old
pdv are those of the updated particle and the particle

before being updated, respectively, old
pdx is the original

particle position (solution), and new
pdx is the updated particle

position (solution). In Eq. (2), particle velocities of each

dimension are tried to a maximum velocity
maxV . If the sum of

accelerations causes the velocity of that dimension to

exceed
maxV , then the velocity of that dimension is limited

to
maxV .

maxV and
minV are user-specified parameters (in our

case
maxV = 6,

minV = -6). The updated features are calculated

by the function)(new
pdvS (Eq. (3)), in which new

pdv is the updated

velocity value. If)(new
pdvS is larger than a randomly produced

disorder number that is within {0.0~1.0}, then its position

value mnSn ,,2,1, K= is represented by {1} (meaning

this feature is selected as a required feature for the next

update). If)(new
pdvS is smaller than a randomly produced

disorder number that is within {0.0~1.0}, then its position

value mnFn ,,2,1, K= is represented by {0} (meaning

this feature is not selected as a required feature for the next

update).

Two independent numbers,
1rand and

2rand in Eq. (1), affect

the velocity of each particle. The proper adjustment of the

BPSO parameters w (inertia weight) and the acceleration

factors
1c and

2c is an important task. The inertia weight

w controls the balance between the global exploration and

local search ability.
1c and

2c control the movement of

particles. To avoid premature BPSO convergence, the

adjustment can not be too excessive, since this might cause

extreme particle movements, which it makes impossible to

obtain optimized features. Hence, suitable parameter

adjustment is paramount.

B. Chaotic Sequences for Inertia Weight

The inertia weight w controls the balance between the

global exploration and local search ability. A large inertia

weight facilitates the global search, while a small inertia

weight facilitates the local search. How to adjust the inertia

weight value is important; it will affect the BPSO search

process and through it the classification accuracy.

The BPSO process suffers from getting trapped in a local

optimum which results in premature convergence. In order to

prevent this from happening, we used chaotic binary particle

swarm optimization to overcome the disadvantage. Chaos is a

deterministic dynamic system and is very sensitive to initial

values. A chaotic map is used to determine the inertia weight

value in each iteration. Logistic map is the most frequently

used chaotic behavior and is a bounded unstable dynamic

behavior. In this paper, we used logistic map to determine the

inertia weight value [11]. The inertia weight value is modified

according to

w (t + 1) = 4.0 × w(t) × (1 – w(t)) w(t) ∈ (0,1) (5)

The inertia weight value depends on the chaotic logistic map

for total iterations shown in Figure 1

Figure 1 Chaotic inertia weight using logistic map

C. K-Nearest Neighbor

The K-nearest neighbor (K-NN) method is a supervised

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

learning algorithm introduced by Fix and Hodges in 1951,

and is still one of the most popular nonparametric methods

[12][13]. The K-NN method is easy to implement since only

the parameter K (number of nearest neighbors) needs to be

determined. The parameter K is the most important factor

affecting the performance of the classification process. In a

multidimensional feature space, the data is divided into

testing and training samples. K-NN classifies a new object

based on the minimum distance from the test samples to the

training samples based either their Euclidean or Mahalanobis

distance. We used the Euclidean distance in this paper. If an

object is near to the number of K nearest neighbors, the object

is classified into the K-object category. In order to increase

the classification accuracies, the parameter K has to be

adjusted based on the different data set characteristics.

In K-NN, a large category tends to have a small

classification error, while the classification error for minority

classes is usually rather large, a fact that lowers the

performance of K-NN [14]. Cross-validation is a useful

technique for choosing the parameter K. In this paper, the

leave-one-out cross-validation (LOOCV) method was

implemented. When there are n data to be classified, the data

is divided into one testing sample and n-1 training samples at

each iteration of the evaluation process, and finally a classifier

is constructed by training the n-1 training samples. The testing

sample category can be judged by the classifier. In this paper,

the 1-NN with leave-one-out cross-validation method serves

as a classifier to calculate the classification accuracies.

D. CBPSO -KNN procedure

Initially, the position of each particle is represented by a

binary (0/1) string
DFFFS L21= . D is the dimension of a given

data set where 1 represents a selected feature, while 0

represents a non-selected feature. For example, for D=10, we

obtain a random binary string S=1000100010, which means

that only features F1, F5 and F9 are selected. The initial

velocities in particles are probability limited to a range of

{0.0~1.0}.Figure 2 shows the three stages employed in this

study.

Figure 2 Simple three stages for feature selection

The classification accuracy of a 1-nearest neighbor (1-NN)

determined by the leave-one-out cross-validation method is

used to measure the fitness of each particles. CBPSO

procedure can be described as follows:

Step 1 Randomly generate an initial population for CBPSO.

Step 2 Evaluate fitness values of all particles.

Step 3 Update the pbest and gbest values. Each particle

updates its position and velocity by CBPSO through

updates Eqs. (1) (2) (3) (4) (5).

Step 4 Check the termination criterion. If satisfied, output

final solution. Otherwise go to Step 2.

The CBPSO was configured to contain 20 particles which

the number of particles is equal to the populations of HGAs

from the literature. The termination criterion is 100 iterations.

The acceleration factors c1 and c2 were both set to 2 [15]. The

inertia weight w(0) was 0.48 [11]

III. RESULTS AND DISCUSSION

The data sets in this study were obtained from the UCI

Repository [16]. Table 1 illustrates the format of the five

classification problems. Three different feature selection

problems were classified. If the number of features is between

10 and 19, the sample groups can be considered small; these

data sets included the Wine, Vehicle and Segmentation data

sets. If the number of features is between 20 and 49, the

sample test groups are medium scale problems; these include

the WDBC problems. If the number of features is greater than

50, the test problems are large scale problems; this group

included the Sonar problem. The classifier used was the 1-NN

method with leave-one-out cross-validation for all five data

sets.

Table 1 Format of classification test problems

Data sets
Number

of samples

Number

of classes

Number

of features

Wine 178 3 13

Vehicle 846 4 18

Segmentation 210/2100 7 19

WDBC 569 2 30

Sonar 208 2 60

Legend: x/y indicates the number of testing and training

samples, respectively

Table 2 compares experimental results obtained by other

methods from the literature [2] to the proposed method. The

proposed method obtained the highest classification accuracy

for the Wine, Vehicle, Segmentation and WDBC

classification problems. The classification accuracies of the

Wine, Vehicle, WDBC and Segmentation classification

problems obtained by the proposed method are 99.44%,

74.35%, 97.54% and 97.92%, respectively. The proposed

method obtained a lower classification accuracy for the Sonar

classification problem. The classification accuracy for the

Sonar classification problem obtained by the proposed

method is 93.27%. Figures 3.1-3.5 show the Iterations vs.

Classification accuracy for five test data sets.

Classification accuracies were measured by four values

(D/5, 2D/5, 3D/5, and 4D/5) of the total number of features (D)

from the literature. Optimal classification accuracy was

obtained by exhaustive search for various numbers of features.

In fact, the optimal number of features for each test problem is

unknown and was determined through an extremely

cumbersome and time-consuming process compared to the

method we propose. In most of the case, the methods from the

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Table 3 Classification accuracies for the test data sets

Legend: D: total number of features, d*: selected number of features, SFS: sequential forward search, PTA: plus and take

away, SFFS: sequential forward floating search, SGA: sequential Genetic Algorithm, HGA: hybrid Genetic

Algorithm, d**: optimal selected number of features, CBPSO-KNN: Chaotic BPSO with K-NN, A(%):

classification accuracy in %, Highest values are in bold-type.

literature, obtained lower classification accuracies, a fact

clearly illustrated by the Wine test problem, for which the

classification accuracy obtained by the proposed method was

higher than the results from the literature, while the number of

features selected was the same. From Table 3, GA has been

shown to outperform SFS (sequential forward search), PTA

(plus and take away) and SFFS (sequential forward floating

search) from the literature [2]. In this study, we used three

differently sized categories of test problems, namely small,

medium and large size problems. If the feature dimensionality

is between 10 and 19, the sample groups can be considered

small size problems. If the feature dimensionality is between

20 and 49, the sample group test problems are of medium size

problems. If the feature dimensionality is over 50, the test

problems are large size problems. Results in Table 2 indicate

that, CBPSO works well for small and medium size problems,

although for high-dimension problems, like the Sonar test

problem, CBPSO may become trapped in a local optimal

region. Overall, CBPSO has competitive performance in

feature selection problems.

A chaos system has certain, ergodic and stochastic

properties. Using chaotic behavior in the inertia weight value

with logistic map would cause the inertia weight values to

fluctuate between [0, 1]. The changed inertia weight values

affect the velocities and positions of particles at each iteration.

Introducing a fluctuating inertia weight value, the particles to

move on to new search regions. Extending the search space

region is an important task. Chaotic behavior increases the

local and global search ability. A group of particles may

search new regions of the solution space and congregate

toward a global or near-global optimum. This extended search

in the solution space is equivalent to different subset

combinations of features which lead to superior classification.

IV. CONCLUSION

In recent years, different evolutionary algorithms have

been developed for feature selection. In this paper, a new

feature selection method based on chaotic binary particle

swarm optimization (CBPSO) is proposed. The classification

accuracy is calculated by a 1-NN classifier with LOOCV. The

proposed method saves computing time compared to other

methods from the literature. CBPSO with chaotic sequences

for the inertia weight is applied to feature selection process.

Experimental results indicate that the proposed method not

only effectively reduces the number of features, but also

achieves higher classification accuracy. CBPSO is very

competitive compared to other methods and can serve as an

ideal pre-processing tool to help optimize the feature

selection process.

REFERENCES

[1] X. Wang, J. Yang, X. Teng, W. Xia and R. Jensen, Feature selection

based on rough sets and particle swarm optimization, Pattern

Recognition Letters 28 (2007), no. 4, 459-471.

[2] I.-S. Oh, J.-S. Lee and B.-R. Moon, Hybrid genetic algorithms for

feature selection, IEEE Transactions on Pattern Analysis and Machine

Intelligence 26 (2004), 1424-1437.

[3] T. M. Cover and J. M. Van Campenhout, On the possible orderings in

the measurement selection problem, IEEE Trans. Systems, Man, and

Cybernetics 7 (1977), no. 9, 657-661.

Datasets d* SFS PTA SFFS SGA
HGA

(1)

HGA

(2)

HGA

(3)

HGA

(4)

CBPSO-KNN

d** A(%)

Wine

(D=13)

3 93.82 93.82 93.82 93.82 93.82 93.82 93.82 NA

8 99.44
5 94.38 94.38 94.94 95.51 95.51 95.51 95.51 95.51

8 95.51 95.51 95.51 95.51 95.51 95.51 95.51 95.51

10 92.13 92.13 92.70 92.70 92.70 92.70 92.70 92.70

Vehicle

(D=18)

4 62.77 64.78 69.15 69.50 69.74 69.74 69.74 69.74

10 74.35
7 69.15 70.09 73.52 72.97 73.52 73.52 73.52 73.52

11 69.50 71.75 71.87 71.84 72.46 72.46 72.46 72.46

14 68.20 70.80 70.80 70.80 70.80 70.80 70.80 70.80

Segmentation

(D=19)

4 92.81 92.81 92.81 92.81 92.81 92.81 92.81 92.81

10 97.92
8 92.95 92.95 92.95 92.95 92.95 92.95 92.95 92.95

11 92.95 92.95 92.95 92.95 92.95 92.95 92.95 92.95

15 92.57 92.57 92.57 92.57 92.57 92.57 92.57 92.57

WDBC

(D=30)

6 93.15 93.15 94.20 93.67 94.90 94.90 93.99 93.99

8 97.54
12 92.62 92.97 94.20 94.38 94.38 94.38 94.38 94.38

18 94.02 94.20 94.20 93.85 94.20 94.20 94.20 94.20

24 92.44 93.50 93.85 93.85 93.85 93.85 93.85 93.85

Sonar

(D=60)

12 87.02 89.42 92.31 93.75 94.71 95.67 95.19 95.67

27 93.27
24 89.90 90.87 93.75 95.67 96.63 96.63 97.12 97.12

36 88.46 91.83 93.27 95.67 96.15 96.15 96.15 96.15

48 91.82 92.31 91.35 92.79 92.79 93.27 93.27 93.27

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

[4] L. Huan and Y. Lei, Toward integrating feature selection algorithms

for classification and clustering, IEEE Transactions on Knowledge and

Data Engineering 17 (2005), 491-502.

[5] H. Liu, E. R. Dougherty, J. G. Dy, K. Torkkola, E. Tuv, H. Peng, C.

Ding, F. Long, M. Berens and L. Parsons, Evolving feature selection,

IEEE Intelligent Systems 20 (2005), no. 6, 64-76.

[6] R. K. Sivagaminathan and S. Ramakrishnan, A hybrid approach for

feature subset selection using neural networks and ant colony

optimization, Expert Systems with Applications 33 (2007), no. 1,

49-60.

[7] M. A. Tahir, A. Bouridane and F. Kurugollu, Simultaneous feature

selection and feature weighting using hybrid tabu search/k-nearest

neighbor classifier, Pattern Recognition Letters 28 (2007), 438-446.

[8] J. Kennedy and R. Eberhart, Particle swarm optimization, IEEE

International Conference on Neural Networks 4 (1995), 1942-1948.

[9] J. F. Kennedy and R. C. Eberhart, "Swarm intelligence," Morgan

Kaufmann, 2001.

[10] J. Kennedy and R. C. Eberhart, A discrete binary version of the particle

swarm algorithm, IEEE International Conference on Systems, Man,

and Cybernetics, 1997, pp. 4104-4108

Figure 3.1 Iterations vs. Classification accuracy in Wine

Figure 3.2 Iterations vs. Classification accuracy in Vehicle

[11] J. Chuanwen and E. Bompard, A hybrid method of chaotic particle

swarm optimization and linear interior for reactive power optimisation,

Mathematics and Computers in Simulation 68 (2005), no. 1, 57-65.

[12] T. Cover and P. Hart, Nearest neighbor pattern classification, IEEE

Transactions on Information Theory 13 (1967), no. 1, 21-27.

[13] E. Fix and J. L. Hodges Jr, Discriminatory analysis. Nonparametric

discrimination: Consistency properties, International Statistical

Review 57 (1989), 238-247.

[14] S. Tan, An effective refinement strategy for knn text classifier, Expert

Systems with Applications 30 (2006), no. 2, 290-298.

[15] Y. Shi and R. Eberhart, A modified particle swarm optimizer,

Evolutionary Computation Proceedings IEEE World Congress on

Computational Intelligence, 1998, pp. 69-73.

[16] P. M. Murphy and D. W. Aha, "UCI Repository of Machine Learning

Databases. Technical report, Department of Information and Computer

Science, University of California, Irvine, Calif, 1995.

Figure 3.3 Iterations vs. Classification accuracy in

Segmentation

 Figure 3.4 Iterations vs. Classification accuracy in WDBC

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Figure 3.5 Iterations vs. Classification accuracy in Sonar

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

