
 

 

 

  

Abstract—Feature selection is a useful technique for 

increasing classification accuracy. The primary objective 

is to remove irrelevant features in the feature space and 

identify relevant features. Binary particle swarm 

optimization (BPSO) has been applied successfully in 

solving feature selection problem. In this paper, chaotic 

binary particle swarm optimization (CBPSO) with 

logistic map for determining the inertia weight is used. 

The K-nearest neighbor (K-NN) method with 

leave-one-out cross-validation (LOOCV) serves as a 

classifier for evaluating classification accuracies. 

Experimental results indicate that the proposed method 

not only reduces the number of features, but also achieves 

higher classification accuracy than other methods. 

 

Index Terms—Feature selection, binary particle swarm 

optimization, logistic map, K-nearest neighbor, leave-one-out 

cross-validation.  

 

I. INTRODUCTION 

Feature selection is the process of choosing a subset of 

features from the original feature set and thus can be viewed 

as a principal pre-processing tool prior to solving 

classification problems [1]. Feature selection is a NP-hard 

problem. The goal is to select a subset of d features from a set 

of D features (d < D) in a given data set [2]. D is comprised of 

all features in a given data set; it may include noisy, redundant, 

and misleading features. Therefore, an exhaustive search 

performed in the solution space, which usually takes a long 

time, often does not work in practice [3]. To resolve these 

feature selection problems, we aimed at retaining only d 

relevant features. Irrelevant features are not only useless for 

classification, but could also potentially reduce the 

classification performance. By deleting irrelevant features 

computational efficiency can be improved and classification 

accuracy increased.  

Three different categories of evaluation criteria can be 

employed when deciding which features are relevant and 

which ones should be removed: filters, wrapper and hybrid 

models [4]. The filter model relies on general characteristics  
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of the data to evaluate and select feature subsets without 

involving any learning algorithm [4]. Wrapper models apply 

an unsupervised learning algorithm to each subset of features 

and then evaluate the subset of features by criterion functions 

[5]. Wrapper models usually have a higher computational cost 

than the filter modes. Hybrid models attempt to take 

advantage of the two models by exploiting their different 

evaluation criteria at different search stages, and have 

recently been proposed to handle large data sets [4]. 

We adopted a wrapper model to work on the feature 

selection problem. In recent years, different evolutionary 

algorithms have been proposed to obtain near-optimal subsets 

of solutions. These approaches include genetic algorithms 

(GA) designed by imitating natural evolution [2], ant colony 

optimization (ACO)[6], particle swarm optimization (PSO) 

[1]with swarm intelligence and tabu search (TS) [7] with 

intermediate memory. 

Particle swarm optimization is a search process based on 

the idea of swarm intelligence in biological populations. In 

PSO, an information sharing algorithm randomly generates an 

initial population for the search process. The position and 

velocity of each particle is adjusted based on its individual 

experience and the experience of its neighbors. The 

information is updated due to social interactions between 

particles.  

In this paper, chaotic binary particle swarm optimization 

(CBPSO) with logistic map for determining the inertia weight 

is used. The K-nearest neighbor (K-NN) method based on 

Euclidean distance calculations serves as a classifier for five 

data sets taken from the literature [2]. Experimental results 

show that CBPSO can not only reduce the number of features, 

but also achieves higher classification accuracies. 

 

II. METHOD 

A.  Binary Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a population-based 

evolutionary computation technique developed by Kennedy 

and Eberhart in 1995 [8]. PSO simulates the social behavior 

of animals, i.e. birds in a flock or fish in a school. This 

behavior can be described by a swarm intelligence system. In 

PSO, each solution can be considered an individual particle in 

a given search space, which has its own position and velocity. 

During movement, each particle adjusts its position by 

changing its velocity based on its own experience, as well as 

the experience of its neighboring particles, until an optimum 

position is reached by itself and its neighbor [9]. All of the 

particles have fitness values based on the calculation of a 
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fitness function. Particles are updated by following two 

parameters called pbest and gbest at each iteration. Each 

particle is associated with the best solution (fitness) the 

particle has achieved so far in the search space. This fitness 

value is stored, and represents the position called pbest. The 

value gbest is a global optimum value for the entire 

population. 

PSO was originally developed to solve real-value 

optimization problems. Many optimization problems occur in 

a space featuring discrete, qualitative distinctions between 

variables and levels of variables. To extend the real-value 

version of PSO to a binary/discrete space, Kennedy and 

Eberhart proposed a binary PSO (BPSO) method. In a binary 

search space, a particle may move to near corners of a 

hypercube by flipping various numbers of bits; thus, the 

overall particle velocity may be described by the number of 

bits changed per iteration [10]. 

The position of each particle is represented by Xp = {Xp1, 

Xp2, …, Xpd} and the position of each particle is represented 

in binary string form and is randomly generated; the bit value 

{0} and {1} represent a non-selected and selected feature, 

respectively. The velocity of each particle is represented by 

Vp = {Vp1, Vp2, …, Vpd} (d is number of particles) and the 

initial velocities in particles are probability limited to a range 

of {0.0~1.0}. In BPSO, once the adaptive values pbest and 

gbest are obtained, the features of the pbest and gbest 

particles can be tracked with regard to their position and 

velocity. Each particle is updated according to the following 

equations [10]. 

 

( ) ( )old
pdd

old
pdpd

old
pd

new
pd xgbestrandcxpbestrandcvwv −××+−××+×= 2211

   (1)                    

if new
pdv ∉(Vmin, Vmax) then                                             

new
pdv  = max (min (Vmax,

new
pdv ), Vmin)                            (2) 

( )
new
pdv

new
pd

e

vS
−

+

=

1

1
                                                          (3) 

 (3)

 If ( )( )new
pdvSrand <  then 1=

new
pdx ; else 0=

new
pdx      (4)

   

                 
In Eq.(1), w  is the inertia weight, 

1c  and 
2c  are 

acceleration parameters, and rand, rand1 and rand2 are three 

independent random numbers between [0, 1]. Velocities new
pdv  

and old
pdv  are those of the updated particle and the particle 

before being updated, respectively, old
pdx  is the original 

particle position (solution), and new
pdx  is the updated particle 

position (solution). In Eq. (2), particle velocities of each 

dimension are tried to a maximum velocity
maxV . If the sum of 

accelerations causes the velocity of that dimension to 

exceed
maxV , then the velocity of that dimension is limited 

to
maxV . 

maxV  and 
minV are user-specified parameters (in our 

case 
maxV = 6, 

minV = -6). The updated features are calculated 

by the function )( new
pdvS  (Eq. (3)), in which new

pdv  is the updated 

velocity value. If )( new
pdvS  is larger than a randomly produced 

disorder number that is within {0.0~1.0}, then its position 

value mnSn ,,2,1, K=  is represented by {1} (meaning 

this feature is selected as a required feature for the next 

update). If )( new
pdvS  is smaller than a randomly produced 

disorder number that is within {0.0~1.0}, then its position 

value mnFn ,,2,1, K=  is represented by {0} (meaning 

this feature is not selected as a required feature for the next 

update). 

Two independent numbers, 
1rand and 

2rand in Eq. (1), affect 

the velocity of each particle. The proper adjustment of the 

BPSO parameters w  (inertia weight) and the acceleration 

factors 
1c  and 

2c  is an important task. The inertia weight 

w controls the balance between the global exploration and 

local search ability. 
1c  and 

2c control the movement of 

particles. To avoid premature BPSO convergence, the 

adjustment can not be too excessive, since this might cause 

extreme particle movements, which it makes impossible to 

obtain optimized features. Hence, suitable parameter 

adjustment is paramount.  

B. Chaotic Sequences for Inertia Weight  

The inertia weight w controls the balance between the 

global exploration and local search ability. A large inertia 

weight facilitates the global search, while a small inertia 

weight facilitates the local search. How to adjust the inertia 

weight value is important; it will affect the BPSO search 

process and through it the classification accuracy. 

The BPSO process suffers from getting trapped in a local 

optimum which results in premature convergence. In order to 

prevent this from happening, we used chaotic binary particle 

swarm optimization to overcome the disadvantage.  Chaos is a 

deterministic dynamic system and is very sensitive to initial 

values. A chaotic map is used to determine the inertia weight 

value in each iteration. Logistic map is the most frequently 

used chaotic behavior and is a bounded unstable dynamic 

behavior. In this paper, we used logistic map to determine the 

inertia weight value [11]. The inertia weight value is modified 

according to 

 

w (t + 1) = 4.0 × w(t) × (1 – w(t))   w(t) ∈ (0,1)                            (5) 

 

The inertia weight value depends on the chaotic logistic map 

for total iterations shown in Figure 1 

 

 
Figure 1 Chaotic inertia weight using logistic map 

 

C. K-Nearest Neighbor 

The K-nearest neighbor (K-NN) method is a supervised 
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learning algorithm introduced by Fix and Hodges in 1951, 

and is still one of the most popular nonparametric methods 

[12][13]. The K-NN method is easy to implement since only 

the parameter K (number of nearest neighbors) needs to be 

determined. The parameter K is the most important factor 

affecting the performance of the classification process. In a 

multidimensional feature space, the data is divided into 

testing and training samples. K-NN classifies a new object 

based on the minimum distance from the test samples to the 

training samples based either their Euclidean or Mahalanobis 

distance. We used the Euclidean distance in this paper. If an 

object is near to the number of K nearest neighbors, the object 

is classified into the K-object category. In order to increase 

the classification accuracies, the parameter K has to be 

adjusted based on the different data set characteristics. 

In K-NN, a large category tends to have a small 

classification error, while the classification error for minority 

classes is usually rather large, a fact that lowers the 

performance of K-NN [14]. Cross-validation is a useful 

technique for choosing the parameter K. In this paper, the 

leave-one-out cross-validation (LOOCV) method was 

implemented. When there are n data to be classified, the data 

is divided into one testing sample and n-1 training samples at 

each iteration of the evaluation process, and finally a classifier 

is constructed by training the n-1 training samples. The testing 

sample category can be judged by the classifier. In this paper, 

the 1-NN with leave-one-out cross-validation method serves 

as a classifier to calculate the classification accuracies. 

 

D. CBPSO -KNN procedure 

Initially, the position of each particle is represented by a 

binary (0/1) string
DFFFS L21= . D is the dimension of a given 

data set where 1 represents a selected feature, while 0 

represents a non-selected feature. For example, for D=10, we 

obtain a random binary string S=1000100010, which means 

that only features F1, F5 and F9 are selected. The initial 

velocities in particles are probability limited to a range of 

{0.0~1.0}.Figure 2 shows the three stages employed in this 

study. 

 

 
 

Figure 2 Simple three stages for feature selection 

 

The classification accuracy of a 1-nearest neighbor (1-NN) 

determined by the leave-one-out cross-validation method is 

used to measure the fitness of each particles. CBPSO 

procedure can be described as follows: 

Step  1  Randomly generate an initial population for CBPSO.    

Step  2  Evaluate fitness values of all particles.  

Step 3 Update the pbest and gbest values. Each particle 

updates its position and velocity by CBPSO through 

updates Eqs. (1) (2) (3) (4) (5). 

Step 4 Check the termination criterion. If satisfied, output 

final solution. Otherwise go to Step 2. 

The CBPSO was configured to contain 20 particles which 

the number of particles is equal to the populations of HGAs 

from the literature. The termination criterion is 100 iterations. 

The acceleration factors c1 and c2 were both set to 2 [15]. The 

inertia weight w(0) was 0.48 [11] 

III. RESULTS AND DISCUSSION 

The data sets in this study were obtained from the UCI 

Repository [16]. Table 1 illustrates the format of the five 

classification problems. Three different feature selection 

problems were classified. If the number of features is between 

10 and 19, the sample groups can be considered small; these 

data sets included the Wine, Vehicle and Segmentation data 

sets. If the number of features is between 20 and 49, the 

sample test groups are medium scale problems; these include 

the WDBC problems. If the number of features is greater than 

50, the test problems are large scale problems; this group 

included the Sonar problem. The classifier used was the 1-NN 

method with leave-one-out cross-validation  for all five data 

sets. 

 

Table 1 Format of classification test problems 

Data sets 
Number  

of samples 

Number  

of classes 

Number  

of features 

Wine 178 3 13 

Vehicle 846 4 18 

Segmentation 210/2100 7 19 

WDBC 569 2 30 

Sonar 208 2 60 

Legend:  x/y indicates the number of testing and training 

samples, respectively 

 

Table 2 compares experimental results obtained by other 

methods from the literature [2] to the proposed method. The 

proposed method obtained the highest classification accuracy 

for the Wine, Vehicle, Segmentation and WDBC 

classification problems. The classification accuracies of the 

Wine, Vehicle, WDBC and Segmentation classification 

problems obtained by the proposed method are 99.44%, 

74.35%, 97.54% and 97.92%, respectively. The proposed 

method obtained a lower classification accuracy for the Sonar 

classification problem. The classification accuracy for the 

Sonar classification problem obtained by the proposed 

method is 93.27%. Figures 3.1-3.5 show the Iterations vs. 

Classification accuracy for five test data sets. 

Classification accuracies were measured by four values 

(D/5, 2D/5, 3D/5, and 4D/5) of the total number of features (D) 

from the literature. Optimal classification accuracy was 

obtained by exhaustive search for various numbers of features. 

In fact, the optimal number of features for each test problem is 

unknown and was determined through an extremely 

cumbersome and time-consuming process compared to the 

method we propose. In most of the case, the methods from the  
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Table 3 Classification accuracies for the test data sets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: D: total number of features, d*: selected number of features, SFS: sequential forward search, PTA: plus and take        

away, SFFS: sequential forward floating search, SGA: sequential Genetic Algorithm, HGA: hybrid Genetic 

Algorithm, d**: optimal selected number of features, CBPSO-KNN: Chaotic BPSO with K-NN, A(%): 

classification accuracy in %, Highest values are in bold-type. 

 

literature, obtained lower classification accuracies, a fact 

clearly illustrated by the Wine test problem, for which the 

classification accuracy obtained by the proposed method was 

higher than the results from the literature, while the number of 

features selected was the same. From Table 3, GA has been 

shown to outperform SFS (sequential forward search), PTA 

(plus and take away) and SFFS (sequential forward floating 

search) from the literature [2]. In this study, we used three 

differently sized categories of test problems, namely small, 

medium and large size problems. If the feature dimensionality 

is between 10 and 19, the sample groups can be considered 

small size problems. If the feature dimensionality is between 

20 and 49, the sample group test problems are of medium size 

problems. If the feature dimensionality is over 50, the test 

problems are large size problems. Results in Table 2 indicate 

that, CBPSO works well for small and medium size problems, 

although for high-dimension   problems, like the Sonar test 

problem, CBPSO may become trapped in a local optimal 

region. Overall, CBPSO has competitive performance in 

feature selection problems.   

A chaos system has certain, ergodic and stochastic 

properties. Using chaotic behavior in the inertia weight value 

with logistic map would cause the inertia weight values to 

fluctuate between [0, 1]. The changed inertia weight values 

affect the velocities and positions of particles at each iteration. 

Introducing a fluctuating inertia weight value, the particles to 

move on to new search regions. Extending the search space 

region is an important task. Chaotic behavior increases the 

local and global search ability. A group of particles may 

search new regions of the solution space and congregate 

toward a global or near-global optimum. This extended search 

in the solution space is equivalent to different subset 

combinations of features which lead to superior classification. 

IV. CONCLUSION 

In recent years, different evolutionary algorithms have 

been developed for feature selection. In this paper, a new 

feature selection method based on chaotic binary particle 

swarm optimization (CBPSO) is proposed. The classification 

accuracy is calculated by a 1-NN classifier with LOOCV. The 

proposed method saves computing time compared to other 

methods from the literature. CBPSO with chaotic sequences 

for the inertia weight is applied to feature selection process. 

Experimental results indicate that the proposed method not 

only effectively reduces the number of features, but also 

achieves higher classification accuracy. CBPSO is very 

competitive compared to other methods and can serve as an 

ideal pre-processing tool to help optimize the feature 

selection process. 
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Figure 3.3 Iterations vs. Classification accuracy in 

Segmentation 
 

 

 

 

 

 

   Figure 3.4 Iterations vs. Classification accuracy in WDBC 
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Figure 3.5 Iterations vs. Classification accuracy in Sonar 
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