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Stability and Stabilizability of Linear Parameter
Dependent System with Time Delay

K. Mukdasai *

Abstract—This paper presents sufficient condition
for exponential stability with a given convergence rate
and asymptotically stability of linear parameter de-
pendent (LPD) delay system and gives sufficient con-
dition for stabilizability of LPD delay control system.
We use appropriate Lyapunov functions and derive
stability condition in term of linear matrix inequality
(LMI).
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1 Introduction

The stability problem of linear parameter dependent
(LPD) system has been investigated in many works [1]-
[2] and [4]-[8]. There are different conditions given to
deal with the stability problem for LPD system [1]-[2]
and [6]-[7]. Now, this problem is an increasing interest
because it can apply to many engineering systems. The
LPD system is defined from uncertain linear time varying
system[3]. When the system matrices of uncertain system
are formulated by a polytope of matrices. The Lyapunov
function method is a important tool for studying LPD
system stability.

In this paper, we will employ Lyaponov function for es-
tablishing exponential stability condition with a given
convergence rate and asymptotically stable of linear pa-
rameter dependent (LPD) delay system. Our condition
will been expressed in terms of linear matrix inequality
(LMI). Then we will extend LPD delay system to LPD
delay control system for to find stabilizability condition
also numerical example. We let some important nota-
tions

R™*— the set of all non-negative real number;

R"— the n-dimensional space;

(z,y) or xTy— the scalar product of two vector z, and y
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||z||- the Euclidean vector norm of x;

M™*™— the space of all (n x m) matrices;

AT — the transpose of the matrix A;

A is symmetric if A= AT;

C([—h,0], R™)— the Banach space of all piecewise contin-
uous vector function mapping [-h,0] into R"™;

A(A)— the set of all eigienvalues of A;

Amaz(A)— max {ReX : A € A(A)},

Amin(A)— min {ReX : XA € AM(A)};

I— the identity matrix.

We consider the linear parameter dependent delay sys-
tems

A(o)z(t) + B(a)x(t — h),
(b(t )

where z(t) € R™ is the state, , h € R is the delay, and
¢(t) is a continuous vector-valued initial function. A(«)
and B(a) are matrices belonging to the polytope {21 using
for theorem 2.1

vVt > 0;
vt € [—h, 0]

(1)

N N
Q= [A(0), Bo)] = {3 cids, ) _eiBil,

N
d ai=1la;>0i=1,.,N}
=1

A(a) and B(«) are uncertain time varying matrices be-
longing to the polytope s using for theorem 2.2

N
Qg = [A(a), B(a)] = {[Z a;(t)Ai,

N N
> ai()Bi],Y ai(t) =1L a;(t) > 0,i=1,..,N}.
i=1 i=1

We also assume the following bounds of the parameter
values:

;>0 [la®)] < B, VE>0.
Definition 1.1 The system (1) is said to be S— stable,
if there is a function £(.) : RT™ — R* such that for each
¢(t) € C([—h,0], R™), the solution z(t,¢) of the system
satisfies

lz(t, 9)I < &(ll¢lhe™™, vt e R*.
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Lemma 1.2 Assume that S € R™ "™ is a symmetric
positive definite matriz. Then for every @Q € R™*™ :

2(Qy,z) — (Sy,y) < (QS™'Q"z,z), Va,y€eR"

Definition 1.3 The equilibrium point z., € R™ of (1)
is asymptotically stable if it is Lyapunov stable and for
every solution that exists on [0, 00) such that z(t) — ¢,
as t — oo.

2 STABILITY CONDITION

From the system (1), we can change the form of the state
variable

y(t) = etx(t), teRT,

then the system (1) is transformed to the following delay
system

§(t) = Ag(a)y(t) + Ba(a)y(t —h), te€R", (2)

where
Ag(a) = A(a) + BI, Bg(a) = " B(a), P. = P + €.

Theorem 2.1 The system (1) is 3— stable if there exists
P and Q be positive definite matrices and h, 3,6 > 0 such
that the following condition holds.

1. AJP.+28P.+ P.A;+Q+ ¢*"P.B,Q "B/ P.
<-I, i=1,...N.
+e*"P.B;Q ' B P. + *""P.B;Q" "B/ P.
oI

< —, t=1,..
_N_la ? )

,N—1,j=i+1,..,N.

Proof. We define the following Lyapunov function for
system (2) :

V(ty(t) =y (t)Py(t) + elly@®)]* + /t_h y' (s)Qy(s)ds.

The derivative of V' along the trajectories of system (2)
is given by

Vo= 2yT(t)Aj(a)Pey(t) + 2y (t — h)Bj () Pey(t)
+y" (H)Qy(t) —y ' (t — h)Qy(t — h).

Using lemma 1.2, we have

2yT(t — h)Bj () Pey(t) —y " (t — h)Qy(t — h)
<y'(t)P.Bs()Q ' Bj () Pey(t).
ISBN: 978-988-17012-1-3

Thus, we obtain that

vV < yT(t)[Ag(oz)P6 + P.Ag()

+P.Bs()Q™ " Bj (a) P + Qly(t)

= y' (AT (o) + BI}P. + P{A(a) + I}
+PAe™ B()}Q ™ {e"" BT (a)} P. + Qly(t)

N N
=y OUD_ Al +BIVP.+ PAY  aiAi + BI}

=1 =1

N N
+PA™ > " a; Bi}Q e Y " B }P. + Qly(t).

i=1 i=1
Then, we get that

N N
y (Ol ailAl P+ 28P + PA + Q]

i=1 i=1

N N
+{) e P.B,QT HD  aie® B PYy(t)

i=1 i=1

N
= y () of[A] P +28P. + P.A +Q
=1
N—-1

+e*’"p.B;,Q B P] + aiaj[A] P+ 4BP.

+P.A; +2Q + AJTP6 + PEAj] + ;0 [62ﬁhpe

i=1 j=i+1
xB;Q ' B} P. + ¢*""P.B;Q" ' B P]Jy(%).

Since Zfil a; =1 and

N N N N-1 N
Z A, Z o;B; = Z a®A;B;i+ Z Z aia;[A;Bj+A;B;l.
i=1 i=1 i=1

i=1 j=i+1

By the condition 1., 2. and since

N N-1 N N-1 N
VD22 Y way =3 Y o >0
i=1 i=1 j=i+1 i=1 j=i+1
Therefore, we have
V(t,y(t) <0, VvteRT.

Integrating both sides of (4) from 0 to ¢, we find
V(t,y(t)) = V(0,4(0)) <0, VteR",

and hence
yT (O Py() + ellu(t)|? + / yT (5)Qy(s)ds
t—h

0
<yTOPYO) + O+ [ 4T (5)Qu(s)ds
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where P > 0 . Since

t
y' Py >0, / v (5)Qu(t)ds > 0
t—h

and since

0 T
[
—h

0
< Anaa (@16 / =

(s)Qy(s)ds

)\maw (Q)

5 (0~ e Mol

we have

ely®I* < Amaa(P)y(0)I* + €lly(0)®

)\mag(Q) (1 _ e—ﬁh)||¢H

Therefore, the solution y(t,¢) of the system (2) is
bounded. Returning to the solution z(t, ¢) of system (1)
and noting that

+

I5(O)ll = [2(0)] = 6(0) < 4],
we have
et &) < E(lél)e ™, vt e RY,
where
EISD) = (e AmaaPYIGI + 16112
o Amexl@) (g _ ooy o34,

Be
This means that the system (1) is §— stable. The proof

of the theorem is complete. O
Consider the system (1). Let P;,Q,;,j = 1,2,...,N be
symmetric matrices and S be positive definite
Mi(P,,Q;) = Zklﬂkpk+ATP + PjA; +Q; P;B;
J B/ P; -Qj ]’

hA] RA; — B

- hATRB; + &
Nij(R.h) = {hBZTRAj +% hB] RB; — 4

Theorem 2.2 The system (1) is asymptotically stable if
there exist P, Q;,j = 1,2,..., N, let R be symmetric pos-
itive definite matrices and S be symmetric semi-positive
definite matrix and h € R which satisfy the following
matrix inequality holds.

1. M;(P;,Q;)+ N;;(R,h) < =S, i=1,..,N.

2. M;(P;,Q;) + M;(P;, Qi) + Nji(R,h) 4+ N ;(R, h)
25
< o= Les N=Lj=it 1N,

Proof. We define the following Lyapunov-Krasovskii
function for system (1) :

V(x(t))
ISBN: 978-988-17012-1-3

=Vi+Va+ V3

ﬁ:| ,S c R2n><2n.

where Vi := 2T (t)P(a)
and Vi ft hf Rx(@)d@ds with P(a)

Zz 14 ()P, Qa) = ZZ 1 @;i(t)Q;. The derivative of
V along the trajectories of system (1) is given by V =

Vi + Vi + V3. Therefore,

= [, 2T (0)Q(a)x(0)do

Vi = a' ()P(a)x(t) +2i " (8)P(a)a(t)
= a'(t)P(a)z ()+2$ (AT () P(a)a(t)
+227 (t — h)BT () P(a)(t)
b = 000 - 2T~ DR - 1)
Vs = hi' ft L& #(0)df Thus, using the

jensen’s mequahty the last term can be bounded as fol-
lows:

_/H #T(O)R(0)do < —[:r(t)—a;(t—h)]T%

We obtain that

Vo< z'(t)P(a)z(t) + 2z (t)AT () P(a)z(t)
+22" (t = h)BT (a) P()x(t) + =T (£)Q(er)x(t)
—'(t = n)Q(a)z(t —h) +a (1 )AT( JhRA(a)x(t)
227 (t — h)BT(a)hRA(a)x( t)+x'(t—h)BT(a)hR
< Bla)a(t — h) — xT(t)%x(t) + ZxT(t)%x (t—h)
—z T (t— h)%x(t —h).
We obtain that
N N
< Zai( Zﬁkpkm )+ 22" Z ATPx
=1 N =
+2x 7 Z (t)B] Pix(t) + =" (t)Qx(t)
aT(t = h)Qix(t — Z ()A] hRA;x(t)
) -
+22"(t — h) Y o;(t)B] hRA;x(t)
v .
+x ' (t —h) ; i(t)B] hRB;z(t — h) — xT(t)Ea:(t)
+22 7 (t — h)%x(t) —x'(t— h)%x(t —h)]

since Zivzl a; ()P < vazl 08; P;. We can rewrite as

N N
Vo< Zai(t)[z aj(t){z " ( Zﬂkpkx

mT(t)A;-'—hRAix(t) + 27 (t)Qx(t)
+22" (t — h)B] hRA;x(t) + 22" (t — h) B/ Pa(t)
x'(t = h)Qix(t — h) + " (t — h)B] hRBx(t — h)

—xT(t)%x(t) 42Tt - %x(t) (- h)%

+ 227 (1)A] Pa(t)

h)
IMECS 2008
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Since Zfil a;(t) =1 and
N N
1= (Y ault)? = Y at(0) +2

Let us set

N
Vo< Za?(t[ Zﬁkpkw
=1

+a ' ()Qiz(t) —x " (t —

+ 2z " (t)A] Pix(t)

h)Qix(t — h)
+2x 7 (t — h)BTPx() x ' (t)A] hRA;x(t)
4207 (¢ — )BT hR A (t) — xT(t)%x(t)

+22 7 (t — h)%x(t) + 2" (t — h)B; hRB;x(t — h)

R
a7 (t— h) 7 alt - h)}

N

N-1
£33 wesv[aT

N
)> BrPra(t)
=1 joitl k=1

+22" (t)A] Pix(t) + 22" (t — h) B} Pix(t)

+a' (0)Qix(t) — " (t — h)Qix(t — h)
+a " (t)A] hRA;x(t) + 22" (t — h)B] hRA;x(t)

+a"(t — h)B] hRB;xz(t — h) — xT(t)ﬁx(t)
. R . R
+2z ' (t— h)ﬁa:(t) -z (t— h)ﬁx(t —h)

+22 7 () A] Pya(t)

Zﬁkpka?

+2z " (t - h)BiT Pyz(t) +x " (1)Q;u(1)

2T (AT RRA z(t) + 227 (t — h) B hRAx(t)
h)B hRBjx(t — h) — z " (t)—=x(t)
R
Ea:(t) —z'(t—

R
a7 (t = h)alt - h)}.

Therefore, we have

' (t—

+2x " (t — h) h)Qjx(t — h)

v < { (gtc " h)] {Za M;(P;, Qi) + Nii(R)]
N—-1 N
0 Y ail®)a (M, (P, Q)
i=1 j=i+1
+M;(P;,Q;) + Nji(R,h) + N, ;(R,h)]} [x(?(—t)h)] _

We use the following condition as

T N
Vo< L] e
N—-1 N
— > zilaxt)%(tm[ )

ISBN: 978-988-17012-1-3

we have
N N-1 N
Za Z a;(t)a;(t)
i=1 i=1 j=i+1
N-1 N
= Z — ot ]2 > 0.
i=1 j=i+1

Thus, V < 0. Therefore, this means that the system
(1) is asymptotically stable. The proof of the theorem is
complete. O
Example 2.1 Consider the following linear parameter
dependent delay system :

A()alt) + Bla)a(t - 3),

@(t) teR", (3)

with any initial function ¢(t) € C([—3,0], RT) where

1] [
—3| T2 3>

—-0.5 0 —0.05 0

B(a)—al[ 1 O:|+042|: 1 O]

We have h = 1,

16 —4 4 -1

Q[ 9 andP{_1 3

of Theorem 2.1. Therefore, the system (3) is 1- stable.[]

Example 2.2 Consider the following linear parameter
dependent delay system :

A(a)al{l

= 2. Taking e = =1, we can find

I—IM\

satisfy all conditions

#(t) = A(a)x(t) + Bla)z(t — 1), te€ RT, (4)
where
-9 1 -9 1
Ala) = aq(t) { 1 —6} + ao(t) { 1 _5] ,
-2 1 -2 1
B(a) = ai(t) [ 1 1} + ao(t) [ 1 2} :
We have h = 1,N = 2. Taking |d;(¢)] < 1,i = 1,2
¢ ¢ 0 -1
(suchasay =e zZandag=1—e€72), Q1 = 1 25},

30 -1 2 -1
Q2 = {_1 26] and R = [_1 2} then

1000
100 -1 0100
Plpz{—l 80]’ =10 010
0001

satisfy all conditions of Theorem 2.2. Therefore, the sys-

tem (4) is asymptotically stable. a
3 STABILIZABILITY CONDITION
Consider the following LPD delay control system

z(t) = A(a)x(t) + B(a)z(t — h) + C()u(t), Vt>0 (5)

IMECS 2008



where A(a), B(a) and C(«) are uncertain time varying
matrices belonging to the polytope 2

Q = [A(a), B(a), C(a)]

N N N
= {[Zai(t)Ai, Zai(t)Bi, Zai(t)ci],
N =1 =1 =1
Y ait)=1, at)>0, i=1,..,N}
=1

The u(t) € R™ is the control of the system.

Definition 3.1 The LPD delay control system (5) is said
to be §— stabilizable if there exists control u(t) = Kx(t),
where K € R such that the closed loop system

z(t) = [A(a) + KC(a))z(t) + B(a)z(t — h)

is B— stable. The control u(t) = Kxz(t) is the feedback
stabilizing control of the system.

Definition 3.2 The LPD delay control system (5) is said
to be stabilizable if there exists control u(t) = Ku(t),
where K is nonnegative real number such that the closed
loop system

z(t) = [A(a) + KC(a)|z(t) + B(a)z(t — h)

is asymptotically stable. The control u(t) = Kx(t) is the
feedback stabilizing control of the system.
Theorem 3.1 The system (5) is B— stabilizable if there
exists P and Q be positive definite matrices and 3, €, K >
0 such that the following condition holds.

1. AJP.4+28P. + P.A;+Q+ KC/] P. + KP.C,
+e*hp.B,Q7'B/P. < -I, i=1,.. N.

2. Al P.+4BP. + P.A; +2Q + A] P, + P. A,
+KC/'P. + KP.C; + KC; P. + KP.C;
+e*"P.B,Q7' B/ P. + ¢*""P.B;Q" ' B/ P.

21
< bl
“N-1

i=1,.,N—1,j=i+1,.. N.

The feedback control is given by

u(t) = Ka(t).

Consider the system (5). Let P;,Q;,j = 1,2,..,N
be symmetric matrices and S be positive definite
S c R2n><2n

mij

Mi(Pjan): |:BTPJ / :|7

~Q;
mij = Y0, B Pot Al Pi+PjAi+Q;+KCJ P+ K P;C;,

— i, T . T 4 R
N (R h) = {1” hAl RB;j + hKC] RB; + h] ’

2 hBI RB; — &

ISBN: 978-988-17012-1-3
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R
1;j == hA] RAj+hKC; RAj+hKA] RC;+hKC; RCj—+

2;; == hB] RA; + hKB; RC; + &

Theorem 3.2 The system (5) is stabilizable if there
exist Pj,Q;,7 = 1,2,...,N, let R be symmetric positive
definite matrices and S be symmetric semi-positive def-
inite matriz and h, K € R™ which satisfy the following
matriz inequality holds.

. M;(P;,Q;)+ N;i(R,h)<—S, i=1,..,N.
2. M;(P;,Q;)+M;(P;,Q;) + Nji(R,h),
25

+N1’7j (R, h) < —

v i=LeaN-Li=i+l..

The feedback control is given by

u(t) = Kx(t).

4 CONCLUSIONS

In this paper, we study linear parameter dependent
(LPD) delay system and LPD control delay system. We
gave sufficient condition for exponential stability with a
given convergence rate and asymptotically stability of lin-
ear parameter dependent (LPD) delay system and also
sufficient condition for stabilizability of LPD delay con-
trol system. We use appropriate Lyapunov functions and
derive stability condition in term of linear matrix inequal-
ity (LMI).
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