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Abstract—We present a novel model identifica-
tion technique for designing complex infinite-impulse-
response (IIR) continuous-time filters through gen-
eralizing the Vector Fitting (VF) algorithm, which
is extensively used for continuous-time frequency-
domain rational approximation to symmetric func-
tions, to asymmetrical cases. VF involves a two-
step pole refinement process based on a linear least-
squares solve and an eigenvalue problem. The pro-
posed algorithm has lower complexity than conven-
tional schemes by designing complex continuous-time
filters directly. Numerical examples demonstrate that
VF achieves highly efficient and accurate approxi-
mation to arbitrary asymmetric complex filter re-
sponses. The promising results can be realized for
high-dynamic frequency range networks.

Keywords: Complex filter, Vector Fitting, Rational

Function Approximation

1 Introduction

Complex signal processing has growing importance in
high-speed communication systems [1, 2]. This can be
seen, for example, by the majority of the LAN wire-
less transceivers papers in IEEE International Solid-State
Circuits Conference (2001-2003) and recent papers [3,4].
The topology of a complex signal processing block com-
prises two parallel paths, namely, an in-phase path and
a quadrature path. The two cross-coupling paths have
equal magnitude gain but have π/2 phase difference, as
in Fig. 1. Modern wireless systems make use of this prop-
erty in the design of quadrature receivers for image rejec-
tion in intermediate frequency (IF), and suppression of
out-of-band signals and interferences [1]. This paper re-
visits and explores the design of complex continuous-time
filters.

Existing complex infinite-impulse-response (IIR)
continuous-time filter design algorithms include the
first-order frequency transformation of a real lowpass
filter [5], which usually results in a high-order filter
due to unnecessary coefficient symmetry. In [2] and [6],
algorithms are proposed to combine real filter design and
conformal mapping to eliminate such transformation.
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Figure 1: (a) The real signal-flow graph (SFG) of a com-
plex multiply and (b) the equivalent complex SFG.

However, both methods can only approximate a single
passband response (but not arbitrary, say, multiple pass-
band response) and do not consider phase matching and
efficient design for advanced and adaptive applications.

On the other hand, a continuous-time frequency-domain
system identification technique, known as Vector Fitting
(VF) [7], is a robust macromodeling tool for fitting sam-
pled frequency data with a rational function. Its ex-
tensive applications include power system modelling [8]
and high-speed VLSI interconnect simulations [9]. Its
counterpart, called discrete-time vector fitting (VFz), has
been adapted to real digital filter design in [10] with
remarkable performance. However, traditional VF has
been restricted to symmetric functions. In this paper,
VF is adapted to asymmetric functions for complex IIR
continuous-time filter design.

The core of VF is a two-step process for refining the fil-
ter poles such that the prescribed response can be accu-
rately reproduced with only a low-order rational function.
VF enjoys simple coding and guarantees well-conditioned
arithmetic by means of partial fraction basis. Flipping of
unstable poles ensures system stability. Numerical ex-
amples then confirm the efficacy and accuracy of VF in
complex IIR filter design over conventional schemes, es-
pecially in the high dynamic frequency range.
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2 Vector Fitting

In complex filter design, the ultimate goal is to ap-
proximate a prescribed asymmetric frequency-domain re-
sponse by a complex transfer function:

f(s) = H0

M∏
i=1

(s − βi)

N∏
i=1

(s − αi)

, (1)

where H0 ∈ ℜ and αi, βi ∈ C. f(s) is the desired fre-
quency response, H0, αi, βi, M and N represent gain,
poles, zeros, the number of zeros and the number of poles,
respectively.

To fit the continuous-time rational function, Vector Fit-
ting (VF) [7] attempts to reformulate (1) into partial frac-
tion basis:

f(s) = (
N∑

n=1

cn

s − an

) + d + se, (2)

to a set of calculated/sampled data points at frequencies
{sk}, for k = 1, 2, · · · , Ns. In real response approxima-
tion of VF, the poles an and residues cn are real or com-
plex conjugate pairs. In complex filtering, this restriction
is relaxed and VF readily handles complex poles and ze-
ros arising in this stage. The constant term d and e are
generally complex.

2.1 Problem Formulation

The fitting process begins with specifying an initial set of

pole {α
(0)
n }. By introducing of the scaling function σ(s),

a linear problem is set up for the ith iteration, namely

(
N∑

n=1

cn

s − α
(i)
n

)
+ d + se

︸ ︷︷ ︸
(σf)(s)

≈

((
N∑

n=1

γn

s − α
(i)
n

)
+ 1

)

︸ ︷︷ ︸
σ(s)

f (s) ,

(3)

for i = 0, 1, · · · , NT , where NT denotes the number of
iterations when convergence is attained or when the up-
per limit is reached. The unknowns, cn, d, e and γn, are
solved through an overdetermined linear equation formed
by evaluating (3) at the Ns sampled frequency points.
One important feature in (3) is that (σf)(s) and σ(s)f(s)
are enforced to share the same set of poles, which in turn
implies that the original poles of f(s) are cancelled by
the zeros of σ(s). And the relationship can be described
as follows:

N+1∏
n=1

(
s − β

(i)
n

)

N∏
n=1

(
s − α

(i)
n

)

︸ ︷︷ ︸
(σf)(s)

≈

N+1∏
n=1

(
s − β̃

(i)
n

)

N∏
n=1

(
s − α

(i)
n

)

︸ ︷︷ ︸
σ(s)

f (s) , (4)

⇒ f (s) ≈
(σf) (s)

σ (s)
=

N+1∏
n=1

(
s − β

(i)
n

)

N+1∏
n=1

(
s − β̃

(i)
n

) . (5)

Subsequently, solving the zeros of σ(s), in the least-
squares sense, results in an approximation to the poles

of f(s), i.e., {α
(i+1)
n }, without restriction of real coeffi-

cients. The new poles are then fed back to (3) as the
next set of known poles for further refinement iteratively.
In practical implementation, the fitting equation in (3)
is linear in its unknowns cn, d and γn. Therefore, the
non-linear problem can be solved using over-determined
equations and eigenvalue solving.

2.2 Pole Calculation

At a particular frequency point, with e = 0, (3) becomes

(
N∑

n=1

cn

sk − α
(i)
n

)
+ d −

(
N∑

n=1

γnf (sk)

sk − α
(i)
n

)
≈ f (sk) , (6)

it can be reformulated into:

Akx = bk, (7)

where x =
[

c1 · · · cN 1 γ1 · · · γN

]T
, Ak =[

1

sk−α
(i)
1

· · · 1

sk−α
(i)
N

d −f(sk)

sk−α
(i)
1

· · · −f(sk)

sk−α
(i)
N

]

and bk = f(sk).

In the above expression, Ak and x are row and column
vectors, respectively, while bk is a scalar.

Equating (7) at all frequency samples, mathematically
sk = jΩk, for k = 1, 2, · · · , NS , where NS > 2N + 1, and
by stacking Ak’s and bk’s into a (tall) column matrix and
a vector, an overdetermined equation for the ith iteration
is obtained:

Ax = b. (8)

The scaling function σ(s) in (3) can be reconstructed from
the last N entries obtained from the least-squares solu-

tion (i.e., γ1,γ2,· · · ,γN in x), such that its zeros, {α
(i+1)
n },

for n = 1, 2, · · · , N , are taken as the new set of starting
poles in the next VF iteration. Moreover, it can be shown

that {α
(i+1)
n } are conveniently computed as the eigenval-

ues of Ψ ∈ C
N×N where
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Ψ =




α
(i)
1

α
(i)
2

. . .

α
(i)
N



−




1
1
.
.
.
1



[

γ1 γ2 · · · γN

]
.

(9)

Since the poles are not restricted to complex-conjugate
pairs, Ψ is generally a complex matrix. Upon conver-

gence, the update in α
(i)
n diminishes and σ(s) ≈ 1.

To ensure system stability, it is necessary that

Re
(
α

(i+1)
n

)
< 0. If this is not the case, any unstable

pole is flipped about the imaginary axis to the open left

half plane Re
∣∣∣α(i+1)

n

∣∣∣ := −Re
∣∣∣α(i+1)

n

∣∣∣. Such stability

enforcement has the physical meaning of multiplying all-
pass filters onto the filter transfer function such that the
magnitude response is preserved.

2.3 Building the Rational Function

Once a converged set of poles {α
(NT )
n } is obtained, the

final stage is to reconstruct the rational function complex
IIR filter. Referring to (3), we should now have σ(s) ≈ 1
so that

(
N∑

n=1

cn

s − α
(NT )
n

)
+ d ≈ f(sk), (10)

for k = 1, 2, · · · , Ns. The residues cn of F (s) are deter-
mined exactly in the same manner, except (7) is replaced
as follows:

Akx = bk, (11)

where x =
[

c1 · · · cN 1
]T

, bk = f(sk) and Ak =[
1

sk−α
(i)
1

· · · 1

sk−α
(i)
N

d
]
. The summation of partial

fractions

(
N∑

n=1

cn

s−α
(NT )
n

)
+d generates a rational function

representing the complex IIR filter in the form of (2). By
seeking a near-optimal fit to f(sk) [5], VF matches both
magnitude and phase of f(sk) simultaneously.

In summary, comparing to VF, other complex IIR de-
sign algorithms such as the pole-placement algorithm
in [2] give similiar accuracy but has much higher com-
putational requirement and does not emphasize the im-
portance of phase linearity. For high-order filter design,
it was claimed that 10-15 seconds are required on a 3-
GHz computer [2], in great contrast to the 1-2 seconds
by our design methodology implemented on a 1.8-GHz
computer. In comparison to [2] and other complex filter
design algorithms, VF is superior in terms of the phase
linearity in passband and much higher efficiency, as will
be seen in our numerical examples.

3 Remarks

3.1 Numerical consideration

Recent research has shown that VF is in fact a reformu-
lation of the Sanathanan-Koerner (SK) iteration [11], an
iterative continuous-time frequency-domain system iden-
tification technique [12], which minimizes the following
objective function:

Ns∑
k=0

∣∣∣ N(i)(sk)
D(i−1)(sk)

− D(i)(sk)
D(i−1)(sk)

f (sk)
∣∣∣
2

=
Ns∑
k=0

∣∣∣∣
N∑

n=1

cn

sk+α
(i−1)
n

−

(
1 +

N∑
n=1

γn

sk+α
(i−1)
n

)
f (sk)

∣∣∣∣
2 ,

(12)

where N (i), D(i) are the numerator and denominator de-
termined during the ith iteration. In theory, the ap-
proximation converges for a noise-free model using (12),
but some numerical errors occur during iterative calcu-
lation [15]. Therefore, numerical considerations for im-
proving the approximation accuracy are highlighted:

1. The approximation accuracy in noisy environment
(e.g., finite precision) is affected by the equation
normalization in the original VF. Furthermore, the
normalization also gives a biased approximation in
the low frequency region [13]. Recently, a relaxation
is proposed to improve the normalization situation.
Firstly, the unity basis in (3) is replaced by a variable
and a relaxation constraint,

Re

{
Ns∑

k=0

(
1 +

N∑

n=1

γn

sk + α
(i)
n

)}
= Ns + 1, (13)

is introduced in (8) with a row weighting of
‖f (s)‖/(Ns + 1). As shown in [14], this relaxation
outperforms other relaxation approaches.

2. The conditioning and the approximant accuracy are
affected by the choices of function basis and the lo-

cation of initial-poles (i.e. α
(0)
n in (3)). In [7], it is

recommended that the initial poles should be dis-
tributed over the frequency range of interest. As a
rule of thumb in VF, the complex design algorithm
starts with complex conjugate poles based on the
following relationship:

an = −α + jβ, an+1 = −α − jβ, (14)

where β = 100α, α and β are the real part and
the imaginary part of the initial poles, respectively.
This selection criterion excludes the possibility of ill-
conditioned computation in most practical cases.

This problem can also be alleviated by introduc-
ing orthonormal function basis [15] or digital par-
tial fraction basis [16]. In this paper, column scaling
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Table 1: Approximation errors in the numerical exam-
ples.

Ex 1. (VF) Ex 1. ( [2]) Ex. 2

L2 passband 0.0124 0.0234 0.0083
L∞ passband 0.0071 0.0126 0.0022
L2 stopband 0.9975 1.0000 0.0068
L∞ stopband 5.1452 5.1953 0.0029

technique from linear algerba [17] is used in system
equation calculation to improve the numerical con-
ditioning, and gives a similar accuracy as using the
orthonormal basis.

3.2 Further extension

Besides L2 norm minimization, some filter design requires
equiripple passband to minimize the maximum error of a
filter. In IIR digital filter design, an equiripple filter can
be designed by a weighted least-squares method with a
suitable least-squares frequency response weighting func-
tion [18]. The idea can be extended into complex filter
design, and the frequency weighting can be included using
row weighting in a particular frequency-data row of (7).

4 Numerical Examples

The performance of VF in direct complex IIR filter design
is illustrated by two examples run in the MATLAB 7.1
environment on a 512-RAM 1.8-GHz PC.

4.1 Example 1

In this example, we design a single-passband positive
passband filter (PPF), which is widely used in communi-
cation systems (e.g. single-side-band communication [1]).
The specification is extracted from [2]. The response is
sampled at 40 linearly spaced points in the passband,
and 80 uniform sampling points in each stopband. The
passband spans [−10, 10].

Vector fitting constrains the numerator and denominator
of the transfer function to have the same order. An 8-
pole (8-zero) complex IIR filter was designed via VF to fit
the prescribed response. It takes 0.9063 seconds for the
system poles to attain convergence in 5 pole refining iter-
ations. The frequency response and the passband group
delay (the change of phase) are shown in Fig. 2. It can
be observed that VF achieves an excellent fitting to both
desired magnitude and phase response. The L2 norm and
L∞ norm errors in magnitude of solution are summarized
in Table 1. The numerical example is compared with [2],
and is shown by Fig. 2. It can be concluded that the
phase response matches the desired constant group de-
lay (i.e. linear passband) with a significantly improved
computation complexity and better approximation in the
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Figure 2: Frequency response of Example 1. (a) Magni-
tude in the entire band, (b) magnitude in the passband
and (c) group delay in the passband.
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in Example 1.
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passband, with a slightly better stopband design. Fig. 3
shows the initial and final system poles.

4.2 Example 2

The second example demonstrates the versatility of the
VF algorithm through the design of a wide-frequency-
range double-passband complex filter, which can be used
in low-IF architecture [1]. The specifications are as fol-
lows:

Hd(e
jω) =





−60 dBejωD, (−10fs ≤ ω ≤ −7fs)
0 dBejωD, (−6fs ≤ ω ≤ −4fs)

−60 dBejωD, (−3fs ≤ ω ≤ fs)
0 dBejωD, (2fs ≤ ω ≤ 6fs)

−60 dBejωD, (7fs ≤ ω ≤ −10fs)

(15)

where D is the group delay. To illustrate the capability of
VF to design wide frequency range filters, we take fs in
the GHz. Uniform sampling points of 80 and 40 are used
in each passband and stopband respectively, i.e., 280 sam-
pling points in total. The transition bands are not sam-
pled as a way of relaxation. We set the group delay to
be 10 microseconds in both the passband and stopband.
To approximate the desired response, a 20th-order IIR
filter is designed via the VF algorithm with the numeri-
cal enhancements in Section 3.1. The set of system poles
converges in only 4 iterations, taking 0.8063 seconds for
computation. From Fig. 4 and Table 1, the complex IIR
filter via VF matches the desired magnitude response and
phase linearity well over a wide frequency range. The lo-
cation of initial assigned poles and converged poles in the
s-plane is plotted in Fig. 5. It is noticeable that the poles
are roughly located separately into two elliptical regions,
each of them corresponding to a passband. Fig. 6 shows
the L2 error and the condition number in (3) during each
iteration. Both quantities show a significant descending
trend for each iteration and converge within a few itera-
tions, and in fact converge much faster than the original
VF. It also shows the numerical improvement using row
scaling technique.
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5 Conclusions

This paper has generalized VF to the design of arbitrary
response complex IIR continuous-time filters. With-
out symmetry constraints, the proposed method demon-
strates its efficacy in producing low-order approximation
functions to the desired magnitude responses over a wide
frequency range with matching of phase linearity. Arbi-
trary response approximation, passband phase matching,
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Figure 4: Frequency response of Example 2. (a) Magni-
tude, (b) Group delay in passband.
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and the algorithm effectiveness are definite advantages
over existing methods. Different enhancement techniques
are applied in the numerical computation. Numerical ex-
amples have confirmed the superiority of VF over con-
ventional complex IIR filter design algorithms.
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