

Abstract— The concept of Evolvable Hardware has attracted

increased attention because it offers adaptive and highly
optimized systems. Also there have been some researches
toward implementing reconfigurable network devices that can
change their architecture while running as a network node. In
combination with evolvable hardware concept we can build
adaptive and self-optimizing network systems which can
autonomously adapt themselves with dynamically changing
network conditions by means of evolutionary algorithms.

In this paper a new model for a high-performance and
flexible implementation of evolvable network controllers is
proposed. Modularity of network controllers is used to decrease
the complexity of such a system and as a case study we have
focused on designing an Evolvable CRC generator module.

Index Terms—Adaptive networks, Evolvable hardware,

FPGA, Genetic algorithm, Reconfigurable network devices.

I. INTRODUCTION
 One of the most important and rapidly growing trends in

the development of networking technology is the ever-
increasing demand by users for more functionality from
their network devices, including higher data rate, quality-of-
service routing, better security, multicasting, etc. [1]. Run-
time flexibility in network devices could increase the
flexibility of those devices while making them suitable for
next generation networks and the networks with nodal
processing capabilities.

While designing a network controller, the designer cannot
predict the situations in which the controller would start
malfunctioning. Then not all scenarios are considered in
design time. Evolvable hardware lets our device adapt itself
autonomously with dynamically changing network
conditions just like it is exactly tailored for that specific
situation. In this paper a preliminary model for applying
hardware evolution concept to network controller
architectures is proposed and cons and pros of such a model
are discussed.

This paper is organized as follows. In the next section,
some background on different issues including the concept
of hardware evolution and reconfigurable networks are

Manuscript received January 7, 2008.

Ramtin Raji Kermani is a senior student of computer engineering in
Computer Science and Engineering department of Shiraz University. His
main fields of research are Hardware Design, Reconfigurable Computing,
Evolvable Hardware and Adaptive Data Communication (Phone:
+98-913-3276533; e-mail: ramtinraji@cse.shirazu.ac.ir).

Fariborz Sobhan manesh is assistant professor in Computer Science and
Engineering department of Shiraz University. His main areas of research are
FPGA, Computer and Signal Processing Implementable Architecture design
(e-mail: sobhan@shirazu.ac.ir).

presented and an overview about the related research is
given. In section three, the main idea about Evolvable
Network Controllers (ENC) and our proposed model is
brought up. Finally section four concludes this paper and
possible future work is discussed.

II. BACKGROUND
In this section the main ideas behind hardware evolution

are presented and the benefits of such devices are described.
Then we have reviewed current researches on reconfigurable
network devices.

A. Evolvable Hardware
Evolvable Hardware (EHW) refers to hardware that can

change its architecture and behavior dynamically and
autonomously by interacting with its environment [2]. The
objective of evolvable hardware is the autonomous
reconfiguration of hardware structure by means of
evolutionary algorithms such as genetic algorithms [3].

The key concept behind hardware evolution is to regard
the configuration bits of programmable hardware devices
(mostly FPGAs) as the chromosomes of Genetic Algorithms
(GA). The architecture programming bits of an FPGA refer
to those bits that specify its logic function and
interconnections.

By designing an appropriate fitness function and
performing the evolution process (e.g. reproduction,
crossover) on an initial population (i.e. initial circuits) and
then evaluating next generation chromosomes, we may
obtain an optimal solution for the circuit.

It is worth mentioning that evolvable hardware is
fundamentally different from the hardware implementation
of evolutionary algorithms in which the hardware
architecture does not change and is used to implement GA
functions [2]. Evolvable systems could be used for
fault-tolerant systems, auto diagnosis and repair systems and
adaptive systems.

In Fig. 1 a programmed PLA along with its architecture
bits is shown. There are two output functions Y0 and Y1
declared by these bit strings. Different variations of the
configuration bit string will result in different circuits and
therefore different output functions. In this approach a
limited number of designs based on some presumptions are
defined in design time and depending on the network
operation conditions, one of them is downloaded into the
device. It should be noted that reconfiguration is done by a
human operator while the device is not operating.

An Evolvable Network Controller Model for
Reconfigurable Network Devices

Ramtin Raji Kermani, Fariborz Sobhan manesh

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Fig. 1. Reconfiguration bits of a PLA [3]

Another approach is to consider this bit string as a genetic

representation in the solution domain which in our case is the
desired circuit. By applying genetic algorithms to
configuration bits, we may evolve our circuit and get the best
possible bit stream which results in an optimized circuit (Fig.
2).

Fig. 2. Basic idea of Evolvable Hardware

To achieve evolvable hardware we need an evolutionary

algorithm, a circuit problem to be optimized and a technology
[4]. In our model, we are going to design a model for adaptive
network controllers. As we will see, Xilinx Virtex FPGA
families are a good choice for the technology and because all
communicating end-systems need to cooperate on the
evolution and evaluation processes, we could use
co-evolutionary genetic algorithms.

There are three main methods for achieving evolvable
hardware: Extrinsic, Intrinsic and complete hardware
evolution (CHE) [5]. In our model CHE is chosen, in which
the complete evolution process is located on the same chip as
the evolving circuit. In CHE the evaluation of each individual
circuit design is obtained by physical implementation of that
circuit on the target device [7]. This method is used as an
alternative to software simulation in Intrinsic method.

One major disadvantage of hardware evolution is to
produce quite unconventional designs that are very difficult
to be perceived and debugged by human designers. So we
need to consider methods to take fault detection and auto
repair properties of such systems into account. This matter is
beyond the scope of this paper.

B. Reconfigurable Network Devices
The function of a network controller is to gather data

packets that are addressed to it off a particular network
medium and make them available to application software [6].
It might perform some kind of operation on data packets such
as packetizing and depacketizing using deferent protocols. A
network controller could be implemented as an instruction
based processor, a dedicated hardware on ASICs or on
programmable devices such as FPGAs. One of the most
important benefits of the last one is that we may use the
feature of partial reconfiguration that would be necessary for
evolvable systems. Using FPGAs makes our device as
flexible as processors with the same performance as ASICs.

In the following subsections two major researches toward
implementations of network devices on FPGAs related to our
model are presented. The first one is a partially
reconfigurable Ethernet controller, while the other has tried
to utilize the hardware evolution in its system.

1) Partially Reconfigurable Network Controller

There have been some researches and implementations of
reconfigurable network devices that try to implement some
lower layers of OSI model on ASICs and some higher layers
in FPGAs. Most of them implemented PHY on ASICs which
gives the system a high performance and Data Link layer and
Transport layer on FPGAs to achieve a high degree of
flexibility [9, 11].

Chaubal in [6] has proposed and implemented a partially
reconfigurable network controller on IIM7010 Ethernet
module platform which utilizes Xilinx Virtex FPGAs.

Partial bitstreams that can configure certain channels of
the network controller without affecting the functioning of
others have been created. Experiments have been performed
that quantify the manner in which the performance of the
controller can be changed by loading these partial bitstreams
onto the FPGA. Fig. 3. Illustrates the design of the network
controller and compares it to previous implementations.

In this design, he has implemented Transport layer of
TCP/IP protocol suite into FPGAs and a small part into
ASICs. He has achieved an acceptable increase in speed
while keeping the system flexible.

2) Evolvable Reconfigurable Internet Platform
Research focused on the development of an evolvable
Internet hardware platform is also being carried out at the
Applied Research Lab at Washington University [10]. The
Field Programmable Port Extender (FPX) system uses
FPGAs to allow reconfigurable hardware modules to be
dynamically installed into network devices. An FPX module
contains two FPGA devices. One of these is a static Network
Interface Device (NID) FPGA, which is a Xilinx Virtex
XCV600E part. The other is a single Reconfigurable User
Application Device (RAD), which is a Xilinx Virtex
XCV1000E part.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Fig. 3. Two different approaches on Network controller design

The FPX modules are inserted into an existing network

stream to provide user-specified traffic processing including
routing, buffering, and packet content modification. Recent
work on this system has included the development of an
interface that allows FPX modules to be programmed
remotely via a TCP/IP network.
Although this system is capable of implementing various
design strategies and configurations, it doesn't fully utilize
the basic idea of hardware evolution.

III. EVOLVABLE NETWORK CONTROLLER (ENC)
In this section the advantages of hardware evolution in

network devices which are known as complex systems is
introduced. Then regarding the benefits of hardware
evolution and design constraint, a model for incorporating
run-time hardware evolution is proposed.

A. The use of run-time evolution in network devices
A network device or simply a network controller

functioning inside a network may be dedicated to perform
some functions on data packets or bit streams. A network
interface card (NIC) for example, is devoted to get data from
upper network layers of a host computer and after doing
some manipulation, such as encryption, would pass the
processed data appropriately to the network it belongs to via
a standard network interface. The internal architecture of
most NICs is usually modular.

In real world applications, digital systems are always
functioning in a noisy, unreliable, dynamically changing and
somehow randomly varying condition. We may use the
reconfigurable approach to change the functionality of our
system if and only if we are aware of the future possible
changes in network condition and system parameters. But
what would be the solution if we cannot precisely predict
changes? We need to incorporate some kind of intelligence
into our system. In this way, our network controller would
have the ability to recognize all changes and adapt itself to
them.

One approach is to take advantages of Evolvable
Hardware concept in our network device. The following
shows the evolution process of an adaptive ENC (using CHE
method) [3, 13, 14].

1. If there is a major change in network conditions

(Network traffic, flow, high congestion, etc.), go to
step 2, otherwise go to step 1.

2. Start with a randomly generated of N L-bit
chromosomes (representing candidate circuits)

3. Calculate the fitness measure f(x) of each
chromosome x in the population in the following
manner:

a. Physically implement each individual
circuit on the FPGA.

b. Apply a test (training) input and check out
the corresponding output. (Test input is
achieved)

c. Depending on how close is the real output
to the desired one, assign each
chromosome (i.e. circuit design) a
deserving fitness value.

4. Select individuals with higher fitness values to
reproduce the next generation.

5. Breed new generation through crossover and
mutation (genetic operations) and give birth to
offspring.

6. Evaluate the individual fitnesses of the offspring
7. Replace worst ranked part of population with

offspring.
8. While the terminating condition is not satisfied, go

to step 3.
9. If terminating condition is true, we have reached the

best solution. Download the configuration bits into
the FPGA and put the system back to work.

As you can see, the main problem in designing an EHW is

to find an appropriate fitness function to evaluate each
individual circuit designs to find out how "Good" is that
design. Unfortunately as the complexity of our system grows,
the length of FPGA configuration bits would increase and the
evolution process will take much longer processing time.
Also finding an appropriate fitness function for a complex
system would be a very difficult task.

To overcome this problem in complex EHWs we have two
choices:

- Using function level evolution, instead of bit-level

evolution [15]
- Take advantage of the complex systems modularity.

In the first approach, we are not dealing with zeros and
ones. Instead, we try alternative functions of hardware as
chromosomes. For example we would try the following
alternatives as input/outputs of a mathematical calculation
[15]:

• Input: (a,b) Function: Sin (a) + Sin (b)
• Input: (a,b) Function: Cos (a) + Sin (b)
• Input: (a,b) Function: Tan (b) + Sin (b)
• …
• Input: (a,b) Function: Sin(a) – Cos (~b)

In the second approach, we would try to utilize divide and

conquer strategy to design evolvable modules, instead of a
complete evolvable system. Since the computation of the
CRC is one of the most computational extensive operations
performed by a network controller, in our case, we are going
to show how to make the CRC (Cyclic Redundancy Check)
generator module evolvable. However because of the
standard feature of communication protocols, many

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

constraints should be set. To overcome this issue, we would
use function level evolution. Furthermore we will have a
limitation on chromosomes length while designing the GA
processing unit. A small circuit like CRC generator could be
presented by a relatively short configuration bit string.

B. ENC architecture
Any well designed complex system including a network

interface card, built upon Ethernet, comprises different
functional modules that interact to accomplish a specific job.
These modules have to do some processes on incoming and
outgoing data units of MAC and LLC sub layers of Data Link
Layer such as:

- Segmentation, fragmentation, and reassembly
- Error detection and correction
- Queuing
- Packetizing and depacketizing
- Frame and protocol demultiplexing, etc.

Defining a complete fitness function for the complete

system would be a complex task. Instead, we divide our
system into some sub systems and try to make each one
Evolvable and then combining them as a whole. In the
following subsections we have concentrated to show how to
make a CRC generator Evolvable.

1) Cyclic Redundancy Check Generator
A typical Ethernet frame has six fields and the last field is

the Frame Check Sequence (FCS). An FCS refers to the extra
checksum characters added to a frame in a communication
protocol for error detection and correction [16].

One popular solution for error detection and generating
FCS field in Ethernet is Cyclic Redundancy Check (CRC). In
the CRC method, a certain number of check bits, often called
a checksum, are appended to the message being transmitted.
The receiver can determine whether or not the check bits
agree with the data, to ascertain with a certain degree of
probability whether or not an error occurred in transmission.

Fig. 4. A typical Ethernet frame

The CRC is calculated based on polynomial arithmetic, in

particular, on computing the remainder of dividing one
polynomial by another. In CRC, original data is treated as a
polynomial. This procedure can be described by (1) [17].

]
)(

)([
xG

xxMremCRC
n

×= (1)

Where M(x) is the original data, G(x) is the generator

polynomial and n is the degree of G(x). Depending on
different strategies, G(x) could be a polynomial of various
orders. CRC hardware implementation is based on a
loop-back shift register with several XORed taps (Fig. 5).
After the related CRC is generated using software or

hardware implementations, it is appended to the original data,
forming the Codeword to be transmitted.

Fig. 5. Typical CRC hardware with G(x) as generator polynomial

CRC generation has been implemented in the following

schemes [17]:

1. Software solution
2. Serial and parallel ASIC solution
3. LUT based solution

The LUT implementation enables some configurability

since it is possible to change the polynomial by changing the
content of the LUT memory. Nordqvist et al. in [17] have
implemented and manufactured "Radix-32 Configurable
CRC Unit", a reconfigurable CRC generator. By noticing that
any polynomial of a fixed length can be represented by
implementing the CRC using a LSR with switches on the
loop back as illustrated by fig. 6, a configurable hardware can
be implemented using NAND-gates to implement the
switches.

This allows us to change the polynomial G(x) of a given
length L by storing a bit description of the polynomial in a
register. However some protocols use CRC with different
constraint length L [17].

Fig. 6. The architecture of Radix-32 configurable CRC generator [17]

Different configurations that are stored in the

configuration register, can build a specific CRC module with
different generator polynomials. We regard this register as
our target chromosome and let it evolve until the best
possible generating polynomial for that specific network
condition is obtained. Fig. 7 shows the overall architecture of
Evolvable CRC generator. In this scheme we've utilized a GA
processing unit (GPU) based on the system proposed in [18,
19].

Fig. 7. The overall architecture of two ENC communicating

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

The scenario is as follows: Each system is configured with
a primary configuration. If there is a detected major change in
critical parameters or network conditions, a signal is sent to
the GPU. After fetching the previous configuration from the
memory and comparing previous and current parameters, an
evolution cycle is started by the GPU. After reaching a limit,
the new optimized and adapted configuration is downloaded
into the reconfigurable device.

In our case, evaluating the CRC generator architecture is
performed by applying a training input string to the CRC
generator and sending the resulting codeword to receiving
device. The receiver then checks the codeword such that the
closer the sent FCS and the calculated FCS are, the higher
fitness value is assigned to the current configuration of the
CRC generator.

As Kajitani in [18] shows, the best Genetic Algorithm
suitable for such systems is Linking Elitist Recombination
(LER). In LER two parents are selected and after cross over
and mutation operations, two children are made. Finally two
best fit chromosomes among two parents and two children
are selected as next generation parents [20].

2) Reconfigurable GA processing unit (GPU)
Kajitani et al. in [18] have proposed a model for

implementing GA operations on a single LSI chip. In their
model the complete hardware evolution is performed by a
reconfigurable hardware (GPU) (Fig. 8).

Torressen and Glette in [19] also have introduced a method
for implementing an on-chip evolution system on Xilinx
Virtex II chips. Their design allows for a rapid processing of
the time consuming parts in hardware and leaving other parts
to more easily modifiable software. The GPU used in our
model is closest to the first model proposed by Kajitani.

Fig. 8. GPU proposed by Kajitani et al.

3) The proposed Evolvable CRC generator

architecture
Unfortunately EHW are not scalable while implementing

complex and large systems. The more complex the circuit is,
the more time it takes to evolve it. To overcome this problem,
Torresen in [8] has proposed some solutions. For network
controllers, the best possible approach is to use Multi-FPGA
systems (MFS). MFS systems utilize multiple FPGAs,
connected in a fixed pattern, to implement complex logic
structures. In our model we could use a MFS with two Xilinx
Virtex FPGAs, one for implementing the GPA and the other

as the target for the main circuits of ENC. Any EHW needs
run-time and partial reconfiguration which Virtex family of
Xilinx FPGAs fully supports these features [12]. Fig. 9
shows the complete design of our proposed system.

Fig. 9. The proposed Evolvable CRC generator architecture

The proposed architecture is composed of six functional

blocks: Reconfigurable area, GA unit, Training data memory,
Chromosome memory, CPU and control unit. The detail of
each functional block is as follows:

Reconfigurable area: While the other blocks have a fixed
architecture, this block is reconfigured in run-time, based on
partial reconfiguration capability of some FPGAs. It reads a
4bit chromosome from the GA unit and implements them.
Also the final optimized circuit is to be implemented in this
area. A configurable CRC generator circuit is implemented
using tri-state buffers. By applying different nibbles to C
register, we may change the generating polynomial.
GA unit: This block reads two chromosomes from the
Chromosome Memory and initiates crossover and mutation
operations on them to make children.
Chromosome memory: A memory for the chromosomes of
all individuals. The maximum length for each chromosome is
4 bits, and the maximum population is 2048.
CPU: This 16 bit processing unit is the interface between
outside and inside the chip. It also gathers critical parameters
(e.g. traffic, data flow, etc.) from the network and determines
when an evolution is necessary to adapt to the current
network conditions.
Control Unit: Sets the control signals for all functional
blocks.
Training data memory: Memory used for storing test data.
For evaluating each generation, after implementing an
individual, an appropriate test input is applied to the circuit
and the results determine how good the circuit is functioning.

Because we have summarized our system into a CRC
generator, the system is not complex and only one FPGA
would suffice. But in case we are designing a complete
system, we need to use Multi-FPGA systems to let our design
preserve its scalability.

IV. CONCLUSIONS AND FUTURE WORK
In this paper a model for utilizing hardware evolution for

network devices were proposed. Benefits of a network

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

controller to be evolvable were mentioned and it was tried to
take advantages of complex systems modularity and design
an Evolvable CRC generator module. It was also described
how a particular module could be designed to be evolvable
and adaptive. As future works, one may try to design an
overall fitness function for a complete complex system or all
internal modules separately.

ACKNOWLEDGMENT
Hereby authors would like to acknowledge professor

Kajitani (University of Tsukuba, Japan), Professor Torresen
and Kyrre Glette (University of Oslo, Norway) for their kind
cooperation, useful guides and providing us with their
precious papers.

REFERENCES
[1] David C. lee, et.al, "Reconfigurable Routers: A New

Paradigm for Switching Device Architecture"
[2] X. Yao, T. Higuchi, "Promises and challenges of evolvable

hardware", Proceedings of the First International Conference
on Evolvable Systems: From Biology to Hardware, 1996

[3] Tetsuya Higuchi, YongLiu, Masaya Iwata, Xin Yao,
"Introduction to Evolvable Hardware", Book Chapter:
"Evolvable Hardware", Springer, 2006

[4] P. Haddow, G. Tufte, P. Van Remortel, "Evolvable hardware:
pumping life into dead silicon", On Growth, Form and
Computers, 2003

[5] H De garis, "LSL evolvable hardware workshop report",
ATR, Japan, Tech. Rep., Oct, 1995

[6] Aditya P. Chaubal, "Design and Implementation of an
FPGA-based Partially Reconfigurable Network Controller",
M.Sc. thesis, Virginia Polytechnic Institute and State
University, 2004

[7] P Haddow, G Tufte, "Prototyping a GA Pipeline for Complete

Hardware Evolution", Proc. The First NASA/DOD Workshop
on Evolvable Systems, 1999

[8] J. Torresen, "A Scalable Approach to Evolvable Hardware",
Genetic Programming and Evolvable Machines, 2002 –
Springer

[9] R. Jaganathan, K. Underwood, and R. Sass, “A Configurable
Network Protocol for Cluster Based Communications using
Modular Hardware Primitives on an Intelligent NIC,” 11th
Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, (FCCM 2003), 2003

[10] J. Lockwood, “Evolvable Internet Hardware Platforms,”
Third NASA/DoD workshop on Evolvable Hardware, pp.
271–279, July 2001

[11] P. Bellows, J. Flidr, T. Lehman, B. Schott, and K.
Underwood, “GRIP: A Reconfigurable Architecture for
Host-Based Gigabit-Rate Packet Processing,” 10th Annual
IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM 2002), 2002

[12] Xilinx Inc., ISE software manuals, 2005
[13] Melanie Mitchell, "An introduction to genetic Algorithms",

The MIT press, ISBN 0−262−13316−4, 1999
[14] Wikipedia the free encyclopedia, "Genetic Algorithm",

http://en.wikipedia.org/wiki/Genetic_algorithm, 2007
[15] Tetsuya Higuchi et al., "Evolvable hardware at function

level", IEEE International Conference on Evolutionary
Computation, 1997

[16] Wikipedia, "Frame Check Sequence (FCS)",
http://en.wikipedia.org/wiki/Frame_Check_Sequence

[17] Ulf Nordqvist, Tomas Henrikson and Dake Liu,
"Configurable CRC generator", Proceedings DDECS, Brno,
Tjech Republic, pp. 192-199, Apr 2002

[18] I. Kajitani et al., "A Gate-Level EHW Chip: Implementing
GA Operations and Reconfigurable Hardware on a Single
LSI", Proc. 2nd Int. Conf. on Evolvable Systems: From
Biology to Hardware, 1998

[19] K. Glette, J. Torresen, "A Flexible On-Chip Evolution System
Implemented on a Xilinx Virtex-II Pro Device", Proc. 6th Int.
Conf. on Evolvable Systems: From Biology to Hardware,
2005

[20] Dirk Thierens, D. E. Goldberg, "Elitist recombination: an
integrated selection recombination GA", In proceedings of
First conference on Evolutionary Computation, page 508-512,
1994

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

