
 
 

 

  
Abstract— This paper presents the numerical technique 

for the evaluation of per unit length parameters of 
multiconductor lines used in high frequency integrated 
circuits. The conducting surfaces are modeled by planar 
rectangular subdomains. The Method of Moments is 
employed to calculate the charge distribution on the surface 
and hence the capacitance and inductance. The exact 
formulation for the matrix element is evaluated for 
rectangular subsection.  

Index Terms— Multiconductor lines, method of moments, 
per-unit-length parameters, rectangular subareas. 

I. INTRODUCTION 
  The accurate evaluation of the per unit length 

capacitance and inductance of multiconducting lines and 
PCB lands is an important step in the design and packaging 
of high frequency integrated circuits. Considerable work 
has already been performed by other researchers on the 
development of different wideband microstrip 
interconnects and determination of capacitance of 
microstrip transmission lines [1-4]. For the capacitance 
calculation, the theory of dc field computation is used. The 
Method of Moments analysis with triangular and square 
subsections is available in other literatures [2-4]. In this 
paper, the authors have chosen the rectangular shape of the 
subsection because of its ability to conform easily to any 
geometrical surface or shape and at the same time to 
maintain the simplicity of approach compared to the 
triangular patch modeling. The Method of Moments with 
Pulse basis function and Point Matching has been used to 
evaluate the charge distribution and hence the capacitance 
and inductance of multiconducting bodies. The 
capacitances of different conducting structures such as 
square plates, circular disc are compared with other 
available data in literature [4-6]. Next the same method has 
been  extended  for  multiconducting  bodies  e.g.  parallel  
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rectangular plates, parallel circular discs, circular coaxial 
conducting structures and the results for capacitance and 
inductance of these structures are presented.  

II. THEORY  
We consider a perfectly conducting surface is charged to a 
potential V. The unknown surface charge density 
distribution σ (r′) may then be determined by solving the 
following integral equation [4] 

                        (1) 
Here r and r′ are the position vectors corresponding to 

observation and charge source points respectively, ds' is an 
element of surface S and ε is the permittivity of free space. 
The arbitrary-shaped bodies are approximated by planar 
rectangular subdomains (Figure 1). The Method of 
Moments with pulse basis function and point matching is 
then used to determine the approximate charge distribution 
[4]. On each subdomain, a pulse expansion function Pn(r) 
is chosen such that Pn(r) is equal to 1 when r is in the n-th 
rectangle and Pn(r) is equal to 0 when r is not in the n-th 
rectangle. With the above definition of expansion function, 
the charge density, σ (r′) may be approximated as follows 

                   
                                 

 
                        (2) 

Here N is the number of rectangles modeling the surface 
and σ n's are the unknown weights (charge density).  

Substitution of charge expansion (2) in (1) and point 
matching the resulting functional equation, yields an N x N 
system of linear equations which may be written in the 
following form 

[ ] [ ][ ]QKV =                       (3) 
Here [K] is an N × N matrix and [Q] and [V] are column 

vectors of length N.  
The elements of [K], [Q] and [V] are given as follows 
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Fig. 1 Square plate divided into rectangular subsections.   

 
 

                                                                                    (4) 
Qn=σn =unknown charge density in subdomain n 
Vn= V 
rm denotes the position vector of the center of the mth 

rectangle. A' is the area of the source rectangle. 

( ) ( )2ymy2xmxrmr ′−+′−=′−  
Here we have considered the conducting surface at z=0 

plane.  
Since the numerical formulation of (1) via the Method of 

Moments is well-known [4], we consider only the 
evaluation of the element of the moment matrix as given 
by equation (4). Each element corresponds to the potential 
at some point in space, r = (x, y, z), due to a rectangular 
patch of surface charge of unit charge density. In general, 
the patch is arbitrarily positioned and oriented in space.  

The integration of equation (4) is quite tedious, but the 
final result is relatively simple [7]. 

For the diagonal elements of the matrix, the integration 
is evaluated as follows  

                          (5) 
Here 2a and 2b are the sides of each rectangular 

subsection. 
Using the standard integral formula the non-diagonal 

elements are evaluated as follows 

 
                          (6) 
Here the source point is (xn , yn) and the field point is (xm 

, ym). The x′ and y′ of equation (6) are replaced by their 
respective limits. Solution of the matrix equation (3) yields 
values for the surface charge density at the centers of the 
subdomains. The capacitance, C, of the conducting surface 
is obtained from the following equation  

                       (7) 
where N is the total number of rectangular subsections. 

The same method for a single conductor is extended for 
evaluating the capacitance of multiconducting bodies.   

We consider two parallel rectangular conducting plates 
(2Lx2W) each divided into equal number of subsections 
(Figure 2).  

 The simplified formula achieved is as follows 

                         (8) 
In matrix form, equation (8) can be written as follows 
[ ] [ ] [ ]nVnmnK =σ                                           (9) 

where 
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The diagonal sub matrices represent the effect of the 

plate itself and the non diagonal sub matrices represent the 
mutual interaction between the plates.  

 

Fig. 2 Parallel plate divided into rectangular subsections. 
 
The elements of the diagonal matrix remain same as the 

single element case. The elements of the non-diagonal 
matrix are evaluated following the same method. 
However, due to lack of space it is not possible to include 
the final expressions for the diagonal and non-diagonal 
elements of the non-diagonal matrices.  

Similarly the exact expression for the elements of the 
non-diagonal sub matrices can be evaluated for two 
inclined plates (Figure 3). In this case, the expressions for 
the non diagonal elements remain almost same as for 
parallel plates, the only difference is that the value of d 
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does not remain constant – it varies with the positions of 
the subsections. 

For multiconductor lines surrounded by homogeneous 
medium the inductance of the line is evaluated from the 
following relation 

   1C Lμε −=                         (10) 
     where the surrounding medium is characterized by μ and 
ε. 

The characteristic impedance can be found out using the 
simple formula Z=1/vC where v=3x108 m/sec.  

 
Fig. 3 Inclined plate divided into rectangular subsections. 

III.  RESULTS AND DISCUSSIONS 
A computer program based on the preceding formulation 
has been developed to determine the charge distribution 
and hence the capacitance of arbitrary shaped 
multiconducting bodies. The capacitance of different 
conducting surfaces e.g. rectangular plate, square plate, 
circular disc have been calculated (Figure 4 – 6). The 
capacitance data for a square and rectangular plate agrees 
with the available data in literature [4-6, 8-9]. Also the 
result for a circular disc (radius=1m, N=24, 
capacitance=68.36 pF) matches with the value available in 
literature [6]. Next the same method has been extended for 
multiconducting bodies e.g. parallel rectangular and 
circular plates, co-axial conductors with circular 
cross-section. The per-unit-length parameters for parallel 
square conductors, circular discs and co-axial conductors 
are presented and compared with other available data in 
Table 1 - 3.  
 For coaxial conductor, each circular cylinder is replaced 
by a cylinder with octagonal structure of surface area equal 
to that of the circular cylinder (Figure 7). Each side of the 
octagonal cylinder is divided into rectangular subsections. 
For co-axial conductors of finite length, there is 
appreciable fringing effect. The per unit length capacitance 
of the circular coaxial line is found by evaluating the 
capacitance of various lengths and then subtracting the part 
due to the fringing effect. Also the characteristic 
impedance of the coaxial conductor is evaluated and 
compared with the analytical value (Figure 8). 

 
       Fig. 4 Square plate (2L=1m; 2w=1m; V=1 volt) divided into N=32  
                   subsections. Capacitance=38.69 pF. 

 
Fig. 5 Rectangular plate (2L=4m; 2w=1m; V=1 volt) divided into 4x2  
            subsections Capacitance=54.73 pF. 

 
Fig. 6 Circular disc (radius=1m, N=24). Capacitance=68.36 pF agrees 
with the value in literature =70.73 pF [9].  

  
Fig. 7 Circular coaxial conductor approximated with octagonal  
        cross-sectional coaxial structure. 
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Fig. 8 Plot of the characteristic impedance versus ratio of outer to inner  
                 dimension of circular coaxial line.  

TABLE I 
CAPACITANCE OF PARALLEL SQUARE CONDUCTING PLATE 

 (LENGTH= WIDTH= 2L=1M)  

d/2L  

Capacitance in 
pF 

(calculated) 
 

Capacitance in 
pF 

(C0=εA/d) 
 

 
C/C0 

 
C/C0 
[4] 

0.01 904.48 884.14 1.023 
 

1.024 

0.025 378.43 353.67 1.07 1.05 
0.05 203.35 176.83 1.15 1.15 
0.10 105.92 88.41 1.198 1.2 

TABLE II 
CAPACITANCE OF PARALLEL CIRCULAR CONDUCTING PLATES 

 (RADIUS=1M)  

d in 
meter  

Capacitance in 
pF 

(MoM) 
 

Capacitance in 
pF using 
analytical 
formula 

(C0=επr2/d ) 

 
C/C0 

 
C/C0 
[12] 

0.02 1405.86 1388.8 1.015 
 

 

0.03 981.16 925.92 1.0597 1.062 
0.05 617.64 555.56 1.11  
0.07 471.5 396.82 1.18  

 

TABLE III 
CAPACITANCE AND INDUCTANCE OF CIRCULAR COAXIAL LINES (RADIUS=1M)  

Capacitance in pF 
(including fringing 

effect) 

Ratio 
of 

outer 
to 

inner 
dimen
sion  

Length 
=1m 

Length 
=2 m 

Capacitance / 

unit length in 

pF/meter 

 
Analytical 

value 
C=2πε 
/ln(b/a) 

pF/meter 

 
Inductan
ce  
/ unit 
length in 
μH / m 

2 109.44 189.75 80.21 80.15 0.1386  

 

IV. CONCLUSION 
 A simple and efficient numerical procedure based on 
Method of Moments is presented for the evaluation of the 
per-unit length parameters of multiconducting bodies. The 
conducting structure is divided into rectangular subareas. 
The data for capacitance of different planar and non-planar 
conducting structures show well agreement with their 
analytical value. This method can be used for the 
determination of equivalent circuit models of 
multiconductor or multiwire arrangements used in 
electronic systems.  
 

REFERENCES 
[1] Albert E. Ruehli, Pierce A. Bernnan, “Efficient capacitance 

calculations for three-dimensional multiconductor systems”, IEEE 
Transactions on Microwave Theory and Techniques, Vol. MTT-21, 
No. 2, February 1973.  

[2] Sadasiva M. Rao, Allen W. Glisson, Donald R. Wilton, B. Sarma 
Vidula, “A simple numerical solution procedure for statics problems 
involving arbitrary-shaped surfaces”, IEEE Transactions on Antennas 
and Propagation, Vol. AP-27, No. 5, September 1979.  

[3] Saila Ponnapalli, Alina Deutsch, Robert Bertin, “A package analysis 
tool based on a method of moments surface formulation”, IEEE 
Transactions on Components, Hybrids, and Manufacturing 
Technology, Vol. 16, No. 8, December 1993. 

[4] R. F Harrington, Field Computation by Moment Method, Krieger 
Publishing Company, Florida, 1985.  

[5] T. J. Higgins and D.K. Reitan, “Accurate determination of the 
capacitance of a thin rectangular plate”, AIEE Transactions Vol.75, 
part-1, January 1957.  

[6] N. Nishiyama and M. Nakamura, “Capacitance of disk capacitors by 
the boundary element method”, Proceedings of First European 
Conference on  Numerical Methods in Engineering, September 1992. 

[7] S. Ghosh and A. Chakrabarty, “ Capacitance evaluation of 
arbitrary-shaped multiconducting bodies using rectangular subareas”, 
Journal of Electromagnetic Waves and Applications,  Vol.20, No. 14, 
pp. 2091-2102, 2006.  

[8] V. K. Hariharan, S. V. K. Shastry, Ajay Chakrabarty and V.  R.  Katti, 
“Free space capacitance of conducting surfaces”, Journal of Spacecraft 
Technology, Vol. 8, No. 1, pp. 61-73, January 1998.  

[9] E.Goto, Y. shi  and  N.  Yoshida, “Extrapolated surface charge method 
for capacity calculation of polygons and polyhedra”, Journal of 
Computational Physics, Vol.100, 1992.  

20

30

40

50

60

70

80

2 2.2 2.4 2.6 2.8 3 3.2 3.4

Ratio of outer to inner dimension

C
ha

ra
ct

er
is

tic
 Im

pe
da

nc
e 

Coaxial line ( analytical
value) 
Coaxial line (MoM)

 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-17012-1-3 IMECS 2008


