
 
 

 

  

Abstract— An array antenna system with innovative signal 
processing can enhance the resolution of a signal direction of 
arrival (DOA) estimation.  Super resolution algorithms take 
advantage of array antenna structures to better process the 
incoming signals.  They also have the ability to identify multiple 
targets.  This paper explores the Polynomial Roots Intersection 
for Multi-dimensional Estimation (PRIME) algorithms.   

 
The PRIME algorithm allows a polynomial rooting approach to 
estimate joint azimuth/elevation parameters of the signal 
detection for planer arrays. This method calculates a finite set 
of root intersections, which are the simultaneous solutions from 
multiple independent multivariate polynomials.  The solutions 
for the source angle information are included in the 
simultaneous solutions. The PRIME algorithm does not require 
the use of a scan vector to scan all possible directions. The 
results demonstrate improvement in both resolution and 
computational efficiency with no loss of accuracy.   
 

Statistical analysis of the performance of the processing 
algorithm and processing resource requirements are discussed 
in this paper. Extensive computer simulations are used to show 
the performance of the algorithms. 
 
Index Terms— DOA estimation, antenna arrays, array 
signal processing.   
 

I. SENSOR ARRAY SYSTEM  

A.   Sensor Output Signal Model 
An array sensor system has multiple sensors distributed in 

space. This array configuration provides spatial sampling of 
the received waveform. A sensor array has better performance 
than the single sensor in signal reception and parameter 
estimation. Its superior spatial resolution provides a means to 
estimate the DOA of multiple signals. A sensor array also has 
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applications in interference rejection [1], electronic steering 
[2], multiple beam forming [3], etc. This technology is now 
widely used in communication, radar, sonar, seismology, radio 
astronomy, etc. 

 
Consider a general array of M sensors as shown in Figure 

1. The coordinate of the ith sensor is ri = [xi, yi, zi]T, i = 0, 1, … 
, M-1 

 
 
 

 
 
 
 
 
 
 
 

 
Figure 1 An Array of M Sensors 

 
Suppose a plane target signal waveform comes from the 

direction of k  = [sinθcosϕ, sinθsinϕ, cosθ]T, where θ is the 
elevation angle and ϕ is the azimuth angle. The difference of 
the propagation path of this wave between the origin and the 
ith sensor ∆di is 

 
∆di = ri

T k= sinθ(xicosϕ + yisinϕ) + zicosθ                    (1) 
 

where ri = [xi, yi, zi]T is the coordinate vector of the ith 
element. The corresponding propagation time delay τi is  

 
τi = ∆di /c                                                             (2) 
  

where c is the speed of light. 
 

If the bandwidth of signals is sufficiently narrow, then the 
data picked up by different sensor elements are related by a 
pure phase factor. The relative phase shift of the ith sensor 
with respect to the reference sensor at the origin is 

 

βi = ( )sinφycosφxsinθ
λ

2π
λ

2π
ii

T
i +−=kr       (3) 

 
To avoid the effect of grating lobes, the distance between 

the two neighbor sensors has to be no more than one half of 
the wavelength. If the reference sensor is located at the 
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origin, and a waveform received by the reference sensor due 
to signal coming from direction of k is x(t), then the received 
waveform at ith sensor is xi(t) = x(t-τi).  

 
For the sensor array with M elements, we can define the 

array input vector x(t) and the array weighting vector w as 
 
 x(t) = [x0(t), x1(t), ... , xM-1(t)]T                            (4) 
 
 w = [w0, w1, … , wM-1]T               (5) 
 

where xi(t) is the data input to the ith sensor and *
iw  is the 

weight of the ith sensor. The sensor array output y(t) is 
 
  y(t) = wHx(t)                  (6) 
 

where the superscript represents the complex conjugate 
transpose (Hermitian) of the matrix. 

 
Suppose there are L independent signal sources impinging 

the antenna and we want to use a sensor array system to 
identify their directions of arrival (DOA). The input signal to 
each individual sensor is the combination of L independent 
signals. Every sensor in the array also receives random 
environmental ambient noise. This noise is modeled as 
Additive White Gaussian Noise (AWGN). The input 
waveform of the ith sensor element xi(t) is given by  

 

 xi(t) = ∑
=

L

1k
ik, (t)s + ni(t),   i = 0,1, . . ., M-1            (7) 

 
where sk,i(t) = sk,o(t-τk,i), and sk,o(t) denote the kth signal 
picked up by the sensor at the origin. ni(t) is the noise at ith 
sensor, τk,i is the relative delay of kth signal at the ith sensor. 

 
For the narrowband input signals, signal sk,i(t) is related to 

the signal sk,o(t) by a phase shift factor of βk,i. If the input 
signals have a wide bandwidth, the delay time of the signal at 
the ith sensor from reference signal at the origin may not be an 
integer multiple of the sampling time; additional 
interpolation filtering is required to emulate their delay. The 
weighted sum of samples of all sensors forms the array 
output. To estimate the DOA of wideband signals, each 
single weight is replaced by a tape delay lines filter. Such a 
processor is referred to as the Space Time Adaptive 
Processor (STAP) [4]. In this report, only the narrowband 
signal is considered.  

 
DOA estimation of conventional eigen-analysis methods 

uses a scan vector to scan over all possible directions and 
signal directions corresponding to the peak of the power 
spectrum. A more efficient method of estimating the DOA of 
signal is based on the root algorithm. A signal’s DOA can be 
determined by finding the roots of the characteristic 
polynomial whose amplitudes are closest to unity. 

 
The two dimensional array antenna studied in this report 

consists of 7 elements arranged in a honeycomb 
configuration. The geometric configuration of this array 

antenna is shown in Figure 2. Antenna elements are assumed 
to be placed on x-y plane and inter-element spacing d equals 
a half wavelength. 

 
 
 
 
 
 
 
 
 
 

Figure.2  Seven Element Array Antenna 
 
 

B. Narrowband Signal Simulations 
Simulation of the narrowband signal is relatively 

straightforward. The narrowband signal is defined as the 
signal bandwidth is a small fraction of c/D where c is the 
speed of light and D is the length of one dimensional array or 
the diameter of the two dimensional array. The narrowband 
signal s(t) can be expressed as  

 

   s(t) = m(t) tj2πfce                 (8) 
 

where fc is the center frequency of the narrowband signal. 
Due to the propagation path difference, the signal at the ith 
sensor si(t) is related to the reference so(t) by 

 

   si(t) = so(t–τi) = m(t–τi)
)τ(tj2πf ice −          (9) 

 
where τi = ∆di/c is the relative delay of the ith sensor and 
reference sensor. For the narrowband signal, m(t–τi) ≈  m(t), 
thus si(t) = so(t) ijβe  where the phase factor βi is given by 
Equation (3). 

 
If there are L signals impinging on this array, assume the 

kth signal at the reference sensor is sk,0(t). For the narrowband 
waveform, this signal at the ith sensor is related to the 
reference signal sk,0(t) by a phase factor βk,i as shown as si(t) = 

sk,o(t) ik,jβe .  
 
The continuous sensor output waveform may be sampled 

at the sampling rate. Define the received data vector at 
sample n as x(n) = [x0(n), x1(n), … , xM-1(n),]T, where xk(n), k 
= 0, 1, … , M-1 is the signal at kth sensor and x0(n) is the 
signal at the reference sensor. The received data vector x(n) 
consists of a signal component s(n) and a noise component 
n(n), x(n) = s(n) + n(n) where 

 

   s(n) = ∑
=

L

1k
kk,0 (n)s v                (10) 

 
where vk is the array manifold vector of kth signal and  

x 
 

y

d=λ/2 
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ik,jβe is phase factor of ith element due to kth signal. 

 

   n(n) = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
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⎣

⎡

− (n)n
:
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1M

1

0

             (12) 

 
and ni(n), i = 0, 1, … , M-1 are independent white noise 

sequences. 
 

II. POLYNOMIAL ROOT INTERSECTION FOR 
MULTI-DIMENSIONAL ESTIMATION  

For a narrowband signal, if the jth signal’s DOA is (θj, ϕj), 
the relative phase shift of kth element due to the jth signal is 
defined by the following Equation: 

 

       )sinφycosφ(xsinθ
λ

2πβ jkjkjjk, +−=      (13) 

 
In Equation.13, there are two unknown parameters, 

elevation angle θ and azimuth angle ϕ, that need to be 
determined. Thus, to obtain the DOA angles, two 
independent polynomials must be constructed and solved.  
There are several different techniques to derive the two 
independent polynomials.  

 
The first approach constructs the two independent 

Equations from two distinct subsets [5]. Two distinct null 
spaces V1N and V2N can be derived from two different subsets. 
The two independent Equations are: 

 
  J1(z, w) = aH(z,w)V1N

H
1NV a(z,w)             (14) 

 
  J2(z, w) = bH(z,w)V2N

H
2NV b(z,w)           (15) 

 

where variables z =
sinθcosφ

2
πj

e , w = 
sinθsinφ

2
π3j

e . Vectors a 
and b depend on the subset configurations. To guarantee the 
two Equations are independent, the two subsets cannot be 
related to each other by a linear shifting relation. The 
configuration of the subarrays has an affect on the direction 
finding accuracy of this algorithm; therefore for the best 
performance, the aperture of each subarray should be as large 
as possible. 

 
 
 
 
 

A. Computer Simulations 
 
The array elements are defined in Figure 3. If the sensors 

are ordered starting with the origin in the x-y plane then 
moving from the positive x axis clockwise The phase vector a 
of this array is given by 

 
 a = [1  z2  zw  z-1w  z—2  z-1w-1  zw-1]T         (16) 
 
 

     
 
Figure 3 Array Phase as a Function of z and 
 

Assume there is only one narrowband signal impinging on 
this array from angle θ = 50o and ϕ = 35o. The dimensional of 
signal plus noise subspace is only one. If a three element 
subset is chosen from this array, the dimension of the noise 
only subspace in V1N and V2N is two. We should be able to 
construct two independent Equations to define the signal’s 
DOA. The two different three element subsets consist of 
elements (1, 4, 7) and (1, 6, 7) respectively as given in Figure 
4. 

 
 
 
 
 
 
 
 

 
 

Figure 4 Three Elements Subset Array Phase as a  
   Function of z and w 

 
The corresponding vector a and b would be  
 
  a = [1  z-1w  zw-1]T                 (17) 
 
  b = [1  z-1w-1  zw-1]T             (18) 
 
The z, w roots from the Equations J1(z, w) and J2(z, w) are 

shown in Figure 5. This result is derived when the SNR = 20 
dB, and matrices V1N, V2N are constructed based on 100 
snapshots of the observed data. 
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Figure 5 Roots of J1(z, w) and J2(z, w) for SNR = 20 dB 
 
If the SNR reduces to 5 dB, the roots of polynomials J1(z, 

w) and J2(z, w) are slightly different from roots shown in 
Figure 5. Their roots are shown in Figure 6. 

 
 
 
 
 
 
 
 
 
Figure 6 Roots of J1(z, w) and J2(z, w) for SNR = 5 d 
 
The pair of roots closest to the unit sphere corresponding 

to the signal’s DOA [6]. Once this pair of roots is identified, 
the elevation angle and azimuth angle can be computed by 
the following Equations. 

 

  θ = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛− arg(w)
sinφ

1
π3

2sin 1          (19) 

 

  ϕ = cos-1
⎟
⎠
⎞

⎜
⎝
⎛ arg(z)

sinθ
1

π
2            (20) 

where  

   arg(u) = 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−

Re(u)
Im(u)tan 1 .            (21) 

 
Simulation results based on 1000 independent simulations 

using 3 element subsets at two different SNRs are shown in 
Figure 7. The variance and average error both increase with 
increased noise power as expected. The averaged estimation 
error for SNR = 20 dB and SNR = 5 dB are 0.206o and 1.187o 
respectively. The estimation variances are 0.019 and 0.602. 

 
 
 
 
 
 
 
 
 

 
Figure 7 Estimated Signal’s DOA Based on 1000 Independent 

    Simulations  (a) SNR = 20 dB, (b) SNR = 5 dB 

 
Increasing the subset from 3 elements to 4 elements 

improves the estimation accuracy. Suppose the elements of 
the two subsets are (1, 2, 6, 7) and (1, 4, 5, 7) as shown in 
Figure 8, then the corresponding vectors a and b are: 

 
  a = [1  z2  z-1w-1  zw-1]T            (22) 
 
  b = [1  z-1w  z—2  zw-1]T            (23) 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 8 Four Elements Subset Array Phase as a  
    Function of z and w 

 
The estimated signal’s DOA based on 1000 independent 

simulation using 4 element subsets at 2 different SNR is 
shown in Figure 9.  The variance and average error both 
increase with increased noise power as expected. The 
averaged estimation errors for SNR = 20 dB and SNR = 5 dB 
are 0.138o and 0.774o respectively. The estimation variances 
are 0.008 and 0.221. 

 
 

 
 
 
 
 
 
 
 

Figure 9 Estimated Signal’s DOA Based on 1000 Independent 
    Simulations  (a) SNR = 20 dB, (b) SNR = 5 dB 

 
Comparing Figures 7 and 9, an increase subset size is seen 

to improve the estimation accuracy. By choosing a larger 
subset, the order of polynomials J1(z, w) and J2(z, w) become 
larger. Thus finding the roots of those polynomials requires 
more computation resources.  

 
There are many different ways to pick the subsets from this 

seven element array. The 3 element subsets in the previous 
simulation are (1, 4, 7) and (1, 6, 7) respectively. If we choose 
different subsets consist of elements (1, 3, 6) and (1, 4, 7), the 
estimation variance is considerably smaller. The comparison 
of scatter diagram using different subsets based on 1000 
independent simulations is shown in Figure 10. This new 
subsets reduces the estimation variance from 0.019 to 0.004, 
better than 6.7 dB improvement. 
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Figure 10 Scatter Diagram for SNR = 20 dB using Subsets 
(a) (1, 4, 7) and (1, 6, 7), (b) (1, 3, 6) and (1, 4, 7) 
 

Similar performance improvement is also observed in 4 
element subsets. Figure 11 shows the scatter diagrams using 
different subsets based on 1000 independent simulations. 
The subsets used are (1, 2, 6, 7), (1, 4, 5, 7) and (1, 2, 3, 6), (1, 
4, 5, 7) respectively. The SNR is assumed 20 dB. 

 
 
 
 
 
 
 
 
 
 

 
Figure 11 Scatter Diagram for SNR = 20 dB using Subsets  

     (a) (1, 2, 6, 7) and (1, 4, 5, 7) , (b) (1, 2, 3, 6) and (1, 4, 5, 7) 
 

By using new pair of subsets, the estimation variance is 
reduced from 0.008 to 0.003; the improvement factor is better 
than 4 dB.  

 
Increasing the number of snapshots improves the 

estimation of the correlation matrix. If the elements of the 
two subsets are (1, 2, 6, 7) and (1, 4, 5, 7), the SNR = 5 dB, 
the estimated angles based on 100 and 1000 snapshots are 
shown in Figure 12. 

 
 
 
 
 
 
 
 
 
 
 Figure 12 Scatter Diagram for SNR = 5 dB 

   (a) 100 Snapshots, (b) 1000 Snapshots 
 
Figure 12 shows increasing the number of snapshots by a 

factor of 10, the estimation variance reduces from 0.2206 to 
0.0226. A factor of 10 dB improvement is achieved. 

 
The aperture of a seven element antenna is very small. If 

this is a conventional fixed antenna, then the mainlobe 

beamwidth is about 57o. This antenna will not be able to 
resolve multiple targets if their angle separation is less than 
57o. This limitation can be easily resolved by using array 
antenna and PRIME processing algorithm. 

 
Suppose there are two signals impinging on this array with 

DOA (θ = 60o, φ = 15o) and  (θ = 50o, φ = 35o), the angle 
separation between those two target is 15.4o. If the SNR is 20 
dB, the estimated DOA based on 1000 independent trials by 
using 4 element subsets with element (1, 2, 6, 7) and (1, 4, 5, 
7) is shown in Figure 13. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 13 Estimated DOA using 4 Element Subsets, Signals’ Angle 

Spacing Approximately equal One Quarter of Mainlobe Beamwidth 
 
Suppose the DOA of two signals are (θ = 50o, φ = 25o) and  

(θ = 50o, φ = 35o), the angle separation between those two 
targets is 8.4o. Under the same SNR and using identical 
subsets, the estimated signal DOA is shown in Figure 14. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 14 Estimated DOA using 4 Element Subsets, Signals’ Angle  

Spacing Approximately equal One Seventh of the Mainlobe  
Beamwidth 
 

Figures 13 and 14 show that with the PRIME processing 
algorithm, the array antenna can resolve multiple targets even 
their angle separation is considerably less than the 
conventional antenna mainlobe beamwidth. 

 

B. Sensitivity Analysis 
For a sensor array with a large number of elements 

arranged symmetrically on an x-y plane, the DOA estimation 
variance should be weakly depended on the azimuth angle. In 
this section, we use computer simulation to evaluate the 
estimation variance as a function of elevation angle due to 
noise, element position and phase error. 
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Since element position error yields an equivalent phase 
error, the system imperfection can be lumped into a total 
equivalent phase error. Figure 15 shows the DOA estimation 
variance of seven element array when a single signal is 
impinging the array from different elevation angles. The 
signal to noise ratio is assumed to be 20 dB. This result is 
based on using two different three element subsets. Variance 
computations are derived from 100 independent simulations. 
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Figure 15 Estimation Variance vs Signal’s Elevation Angle 

 
Figure 15 shows that when the signal’s elevation angle 

exceeds 75o, the estimation variance increases rapidly. 
 

III. CONCLUSION 
This paper investigates the possibility of combining the 

array antenna and advanced signal processing techniques to 
enhance the estimation of the direction of signal sources.  

 
A conventional method to detect the direction of signal 

source is to use a fixed antenna to scan over certain searching 
region. Whenever there is a high received power from a 
particular direction, then we assume that is the signal’s DOA. 
This primitive estimation technique has many limitations. 
First its resolution is limited by the antenna mainlobe 
beamwidth. For small aperture antennas such as a missile 
seeker antenna, the resolution is very poor. Also, if there are 
multiple signal sources, a conventional fixed antenna has 
difficulty in detecting them simultaneously. 

 
Using the advanced signal processing techniques, the 

DOA estimation can be improved and one of the important 
algorithms is the PRIME algorithm. PRIME algorithms 
results are summarized as follows: 

1. The performance of the PRIME algorithm improves if 
the subsets contain the largest number of possible 
elements, or the number of snapshots is increased. 

2. For the subsets using the same number of elements, the 
particular subsets whose elements span the largest region 
has the best performance. 

3. The array antenna can resolve multiple targets even 
though their angle separation is considerably less than 
the conventional antenna mainlobe beamwidth. 

 

The PRIME algorithm studied in this paper derives the two 
independent polynomials J1(z, w) and J2(z, w) from two 
distinct subsets of the original array. Another possible 
approach is to derive two independent polynomials by using 
the full array, but in this case the null space matrices V1N and 
V2N should have at least one different column. We propose to 
investigate this approach in future studies. 
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