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Abstract—Given a graph G = (V, E) and two positive
integers k and ∆, the ∆-closest phylogenetic k-th root
problem (∆CPRk) is to find a (phylogenetic) tree T
such that the degree of each internal node in T is at
least three and at most ∆, the external nodes of T
are exactly the elements of V , and the number of “k-
disagreements” is minimized. In this paper we give an
approximation algorithm for ∆CPR2 for any fixed ∆ >
3. The expected ratio of our algorithm is 3, if there
is no vertex with degree more than ∆− 2, and ∆ + 2,
otherwise, which improves the best known previous
ratio of 8 for ∆ ≤ 5.
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algorithm, randomized algorithm

1 Introduction

Phylogenetic trees are used by biologists to depict the
evolutionary relationship among species, organisms or
genes. The leaves of the tree represent the species and
each branching corresponds to a speciation event. Such
an event causes an ancestral species to give rise to two or
more child species [5].

A number of phylogenetic tree construction methods have
been proposed in the literature such as parsimony meth-
ods, distance-based methods, maximum-likelihood meth-
ods, etc. Recently, a graph-theoretic approach was sug-
gested by Lin and others [9]. A graph G = (V,E) consists
of a set of vertices V and a set of edges E where an edge
(u, v) ∈ E connects two vertices u, v ∈ V . The graph
is usually derived from similarity data. The vertices of
graph G represent existing species and an edge connect-
ing two vertices represents the evolutionary similarity be-
tween them.

The degree of a vertex v ∈ V is the number of incident
edges of v in G. A path in G is an alternating sequence
of distinct vertices and edges of G, starting and ending
with two vertices, in which each edge is incident to two
vertices immediately preceding and following it. A cycle
in G is a path with the exception that the first and last
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vertices in the sequence are the same. The length of a
path or cycle is the number of edges in it. A graph G
is connected if for any two vertices u and v in G there is
a path between u and v. A cluster of G is a subgraph
of G such that every pair of vertices in the subgraph is
connected by an edge.

A tree is a connected graph with no cycle. In a tree,
an internal node has degree at least two and an external
node, or a leaf, has degree exactly one. The distance
between two vertices u and v in a tree T is the length of
the (unique) path between u and v in T and is denoted
by dT (u, v).

In the graph-theoretic approach, a phylogeny is con-
structed from a graph in such a way that the leaves of
the phylogeny are labeled by the vertices of the graph
and two vertices are adjacent in the graph if and only if
the corresponding leaves in the tree are connected by a
path of length at most k, where k is a chosen proximity
threshold.

Formally, given a connected graph G and an integer k ≥
2, the k-th root phylogeny of G, if it exists, is a tree T
where the degree of each internal node of T is at least 3,
the leaves of T are labeled by the vertices of V , and for
each pair of vertices u, v ∈ V , (u, v) ∈ E iff dT (u, v) ≤
k. Given G and an integer k, the phylogenetic k-th root
problem (PRk) is to find a k-th root phylogeny of G. For
a given ∆, a restricted version of PRk is ∆-phylogenetic
k-th root problem (∆PRk), where the maximum degree
of the phylogenetic tree is ∆.

However, G is usually derived from some similarity data,
which are inexact in practice and may contain some erro-
neous data. So, such data may result in a graph that has
no phylogeny, which motivates to have an approximate
phylogeny [6].

A k-disagreement between G and its approximate k-th
root phylogeny T is a pair of vertices u and v of G
such that either (i) (u, v) ∈ E and dT (u, v) > k, or (ii)
(u, v) /∈ E and dT (u, v) ≤ k. Given G and an integer k,
the closest phylogenetic k-th root problem (CPRk) is to
find an approximate k-th root phylogeny of G where the
number of k-disagreements is minimum. For a given ∆,
a restricted version of CPRk is ∆-approximate phyloge-
netic k-th root problem (∆CPRk), where the maximum
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degree of the phylogenetic tree is ∆.
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Figure 1: (a) A given graph, and (b) its 4-approximate
phylogeny with fewest (two) 3-disagreements (which are
(3,10) and (7,8).)

In an evolutionary process, a species usually gives rise to
two child species. So the most common practice in phy-
logeny reconstruction is to compute phylogenetic trees of
degree three. But phylogenetic trees with nodes of de-
gree more than three are also required if enough biologi-
cal data is not available to separate individual speciation
events and several such events are collapsed into a super
speciation event [6].

1.1 Related results

Phylogenetic root problems have been studied a lot for
both exact phylogeny and approximate phylogeny [5, 6,
8, 9, 10, 11, 13]. For exact phylogeny there exist several
algorithms to decide whether a graph has a phylogeny or
not. Kearney and Corneil [8] have an O(n3)-time algo-
rithm to determine whether a given graph G has a k-th
root phylogeny for a given k, where n is the number of
vertices of G. For k = 2, Lin and Skiena [10] have an
O(n + m)-time algorithm for this problem, where m is
number of edges in G. Nishimura et. al. [11] have given
an O(n3)-time algorithm for k ≤ 4 but the internal nodes
of the phylogeny are allowed to have degree two.

For ∆PRk, Chen et. al. [6] presented a linear time al-
gorithm to decide whether G has a ∆-approximate k-th
root phylogeny and to find one if it exists.

In the contrary, most of the problems of computing ap-
proximate phylogeny are intractable. Chen et. al. [6]
showed that CPRk is NP-hard for k ≥ 2. For ∆CPRk,

Tsukiji and Chen [13] showed that it is NP-hard if ∆ ≥ 3
and k ≥ 3 or ∆ ≥ 4 and k = 2. Exceptionally, 3CPR2

is identical to the maximum matching problem in graph
theory [5] and thus efficiently solvable in polynomial
time [14].

There exist several approximation algorithms for the
∆CPRk (although all of them are due to Chen [5].)
Chen [5] showed that for any given ∆ ≥ 3 and k ≥ 2,
∆CPRk has a polynomial time approximation scheme for
the maximization version of the problem. They have a
polynomial time 8-approximation algorithm for ∆CPR2,
where ∆ ≥ 3, and a quadratic time 12-approximation
algorithm for 3CPR3.

There are many problems that are in one way or other
related to the problems of finding phylogeny. CPR2 is
closely related to the correlation clustering problem [3].
Given a complete graph G with each edge labeled as ’+’
or ’-’, a correlation clustering problem is to partition G
into clusters such that the number of ’-’ edges within clus-
ters and the number of ’+’ edges crossing clusters is mini-
mized. There exist variations of the correlation clustering
problem and they are intractable in general [1]. Ailon et.
al. [1] are the most recent who have given an approxi-
mation algorithm for the correlation clustering problem.
Their algorithm has an expected approximation ratio of
3, which is the best known so far.

Another well studied clustering problem, which is also
closely related to ∆CPR2, is the maximum clustering
problem with given cluster sizes (MCPGCS) [7]. Given
a weighted complete graph G and a sequence of integers
c1, · · · , cp, MCPGCS requires to find a maximum-weight
subgraph of G that has p clusters of weights c1, · · · , cp

respectively. Clustering problems have many applica-
tions ranging from final exam scheduling to VLSI de-
sign [4, 7, 12].

1.2 Our contribution

In this paper we present a polynomial time randomized
approximation algorithm for ∆CPR2 for any fixed ∆ ≥
3. The algorithm has an expected approximation ratio of
3, if there is no vertex with degree higher than ∆− 2, or
has an upper bound of 3+(∆ − 1), otherwise, where the
first term 3 is expected value and a maximum of ∆ − 1
is added to it in the worst case.

2 Approximation algorithm

Let G = (V, E) be the given graph of evolutionary rela-
tionship. G may not be complete. First we convert G
to a complete graph with edges labeled as ’+’ and ’-’ as
follows. For each pair of vertices u, v in G, if (u, v) ∈ E
we assign it the label ’+’, otherwise we add an edge (u, v)
in G and assign it the label ’-’.
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For an integer ∆ ≥ 3, a ∆-clustering GC of G is a par-
titioning of the vertices of G into clusters of size at most
∆−1. A pair of vertices (u, v) in GC is called a disagree-
ment if (u, v) is an edge within a cluster but is labeled
as ’-’ or it is an edge crossing a cluster and is labeled
as ’+’. (See Figure 2). Given G, the approximate ∆-
clustering problem is to find GC such that the number of
disagreements in GC is minimum.

We have two main steps. First, we find a ∆-clustering GC

for G having an approximation ratio (∆ + 2). Then we
construct a ∆-approximate phylogeny from GC without
adding any new disagreement. For the first step we use
the technique of Ailon et. al. which they used for solving
correlation clustering problem [1]. For the second step
our algorithm is same as that of Chen [5] and we only
give a sketch.

(a) (b)

C2C1

C3

Figure 2: (a) A given graph G. Only (+) edges are shown
here. (b) A 5-clustering of G. The disagreements are
shown in dotted lines and the (-) edges that are not dis-
agreement are not shown here.

2.1 Algorithm for ∆-clustering

We construct one cluster at a time for GC. Let C be the
cluster we are currently constructing. We will also main-
tain a set V ′ that will contain the vertices not assigned to
any cluster so far. Initially both C and V ′ are empty. We
pick a vertex u randomly from V and add it to C. For
each remaining vertex v ∈ V , u 6= v, if (u, v) is a (+) edge
of G, we move it to C, otherwise we move it to V ′. If the
size of C becomes ∆ or more, then we remove the extra
vertices from C which are chosen arbitrarily and are not
u. Let G′ be the subgraph of G induced by V ′. We assign
G = G′ and repeat the above procedure to form the next
cluster until V becomes empty. See Algorithm 1 for the
summary of our algorithm.

Running time for this algorithm is obviously O(|V |2).
Lemma 2.1. If there is no vertex in G with degree higher
than ∆ − 2, then the algorithm Pivot ∆-Cluster is
an expected 3-approximation algorithm for ∆-clustering
problem.

Proof. Let CO denote the minimum number of disagree-

Algorithm 1 Pivot ∆-Cluster(G)

1: Set C = ∅, V ′ = ∅
2: Pick a random vertex u ∈ V
3: Add u to C
4: for all v ∈ V , v 6= u do
5: if (u, v) is an (+) edge of G then
6: Add v to C
7: else
8: Add v to V ′

9: end if
10: end for
11: while |C| > ∆− 1 do
12: Choose an arbitrary vertex x 6= u from C
13: Remove x from C
14: Add x to V ′

15: end while
16: Output C
17: Let G′ be the subgraph induced by V ′

18: Recursively call Pivot ∆-Cluster(G′)

ment possible in a clustering of G. Let C∆ denote the
number of disagreement in GC by our algorithm. We
need to show that C∆ ≤ 3 · CO.

When the vertices of G have degree no more than ∆− 2,
|C| ≤ ∆ − 1. In that case Line 12 through 14 of Pivot
∆-Cluster are never executed and the expected ratio of
disagreement is as follows.

Consider a particular recursive call of Pivot ∆-
Cluster(G). Let C be the cluster that results from
this recursive call. Consider a triplet (i.e., a set of three
vertices) (u, v, w) in G. A pair of vertices, say (u, v), of
this triplet incurs a disagreement for C if and only if in
this recursive call there are two (+) and one (-) relations
among u, v, w in C (irrespective of order) and w is cho-
sen at random in Line 2. For example if (u, v) is a (-)
edge of G and (u,w) and (v, w) are (+) edges of G, then
the (-) edge (u, v) is included in the cluster C causing a
disagreement. Again, if (v, w) is a (-) edge and (u, v) and
(u,w) are (+) edges and w is selected at random, then
v is not included in C resulting in the (+) edge (u, v)
crossing boundary of C. We call the triplet (u, v, w) a
bad triplet. If there is no bad triplets over all recursive
calls then the algorithm have zero disagreement, which is
optimum. Let T denote the set of bad triplets. For each
t = (u, v, w) ∈ T we define At as the event such that all
three of u, v, w are in the same recursive call when one
among them was chosen at random. Let pt denote the
probability of At. Now observe that a triplet t incurs a
disagreement exactly when At occurs, and it can incur
disagreement at most once. Therefore, the expected cost
of the algorithm is

C∆ =
∑

t∈T

pt. (1)
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Conditioned on the event At, each of (u, v, w) can be cho-
sen at random with probability 1/3, because all vertices
of G in a recursive call are chosen at random with equal
probabilities. Therefore (u, v) becomes a disagreement
with probability 1/3, conditioned on At. Let B(u,v) de-
note the event that (u, v) becomes a disagreement. Now
if At occurred then B(u,v) occurred if and only if w was
chosen at random before u and v. Then we get for all
t ∈ B and u, v ∈ t,

Pr[B(u,v) ∧At] = Pr[B(u,v)|At]Pr[At] =
1
3
pt

Now for two different triplets t, t′ ∈ B that share a pair
of vertices (u, v), the events B(u,v) ∧ At and B(u,v) ∧ At′

are disjoint. If t incurs a disagreement due to (u, v), then
u and v are not in G′ and never picked at random. So
the event At′ cannot occur. Therefore for all (u, v) ∈ V ,

∑
t:u,v∈t

1
3
pt ≤ 1 (2)

Ailon et. al. proved that if Eq. 2 holds, then CO ≥∑
t:u,v∈t

1
3pt [1, Proof of Theorem 1]. (They prove it by

modeling it to the fractional packing problem.) Thus by
Eq. 1,

CO ≥
∑
t:e∈t

1
3
pt = C∆/3.

Next we have the following lemma for the case |C| >
∆− 1.

Lemma 2.2. The number of additional disagreement in-
curred by removing the extra vertices from C is no more
than ∆− 1 times of that in the optimum clustering.

Proof. Consider the situation after deleting the |C|−∆+1
extra vertices in a particular recursive call of Pivot ∆-
Cluster. Let C ′ be the cluster that results from C after
removing the vertices. Let x be a vertex that was removed
from C. How many disagreement does x incur after its
removal? In worst case x has (∆− 1)-many (+) edges to
all vertices in C ′, and so x can incur a maximum of ∆−1
disagreements. See Figure 3. Over all removed vertices,
the maximum number of disagreement is (|C| −∆ + 1) ·
(∆− 1).

Let u be the vertex that was chosen randomly in this
recursive call (and has degree |C| − 1.) In any optimum
∆-clustering of G, u has at most ∆− 2 neighbors in the
same cluster and therefore has at least |C|−∆+1 adjacent
edges crossing the boundary. So u incurs at least |C| −
∆ + 1 disagreements in that optimum clustering.

Observe that in both cases any edge causing a disagree-
ment is removed. So an edge can incur a disagreement at

C

x

Figure 3: Removing x from C can incur at most ∆ − 1
new disagreements.

most once. Therefore, the ratio of disagreement due to
the removal of vertices over all recursive calls of Pivot
∆-Cluster and the disagreement in optimum clustering
is

r ≤
∑

(|C| −∆ + 1) · (∆− 1)∑
(|C| −∆ + 1)

= (∆− 1).

The following theorem follows from Lemma 2.1 and
Lemma 2.2.

Theorem 2.3. The algorithm Pivot ∆-Cluster has
an expected approximation ratio of ∆+2.

2.2 Tree construction

Let GC be the (∆ + 2)-approximation ∆-clustering of G
constructed by the above algorithm. It suffices to show
how to construct a 2-phylogeny from GC without adding
any new disagreement. We give only sketch here. Detail
can be found in [5].

Let C1, · · · , Ch be the clusters of GC . A cluster Ci may be
singleton or not. Observe that any two singleton clusters
can not be connected by an edge, otherwise we could
combine them together to a cluster of two. Since G has at
least one edge, GC has at least one non-singleton cluster.
We have two cases: (i) GC has at least two non-singleton
clusters and (ii) GC has only one non-singleton cluster.
We sketch case (i) only.

Case (i). Suppose C1 and C2 are two non-singleton clus-
ters. For each i = 1, . . . , h, create an internal node xi of
T . For i = 1, 2, connect each vertex of Ci to xi. Other-
wise, create a subtree Ti for each cluster Ci and connect
Ti to xi by an edge. See Figures 4(a) and (b). Then
connect x1, x3, x4, . . . , xh, x2 in a path as shown in Fig-
ure 4(c).
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Figure 4: Forming a sub-tree for (a) non-singleton cluster,
(b) singleton cluster. (c) Adding those sub-trees in a path
to form T .

Within the premise of Case (i), let us justify T . Clearly
the minimum degree of T is at least three. Since |Ci| ≤
∆− 1, the maximum degree of T is at most ∆. For dis-
agreements, observe that two vertices (u, v) of a (+) edge
(similarly of a (-) edge) within a cluster Ci of GC have a
path length of two in the corresponding sub-tree of Ci and
so they remain an agreement (similarly a disagreement)
in T . On the other hand, since the distance between two
vertices in two different clusters in T is at least three,
a (-) edge (similarly a (+) edge) crossing clusters in GC

remains an agreement (similarly a disagreement) in T .
Therefore, no new disagreement is added in T .

Theorem 2.4. There is a polynomial time (∆ + 2)-
approximation algorithm for ∆CPR2 problem.

3 Conclusion

In our algorithm of constructing ∆-cluster graph we chose
the very first vertex for C arbitrarily. It is possible to ap-
ply some heuristics here. One possible heuristic could be
to choose the vertex with highest degree. This heuris-
tic has been used by Altaf et. al. [2] for the clustering
problem but they do not give any concrete approxima-
tion ratio for it. Another heuristic may be to select a
vertex that is part of least number of bad triangles.

While deleting extra vertices from C, we deleted them ar-
bitrarily. Again different heuristics might be applied here,
for example, removing nodes with highest disagreement,
fewest degree, etc. It would be interesting to see whether
any of those heuristics improves the approximation ratio
and/or makes the algorithm purely deterministic.
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