Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II
IMECS 2008, 19-21 March, 2008, Hong Kong

Designing x Control Chart Using DEA
Approach

Shervin Asadzadeh , Farid Khoshalhan

Abstract— Control charts arewidely implemented in firmsto
establish and maintain statistical control of a processwhich
leads to the improved quality and productivity. Design of
control chartsrequiresthat the engineer selectsa samplesize, a
sampling frequency and the control limitsfor the chart. In this
paper, a possible combination of design parametersis
considered as a decision making unit which isidentified by
three attributes: hourly expected cost, detection power of the
chart and in-control averagerun length. Optimal design of
control charts can be formulated as multiple objective decision
making (MODM). We have extended cost function from single
to multiple assignable causes to near the model to thereal
situations. An algorithm using DEA isapplied to solve the
MODM model. A numerical exampleisused toillustratethe
algorithm procedure.

Index Terms— Control chart design, Data envelopment
analysis, X control chart, Multiple-objective decison making
(MODM)

|. INTRODUCTION

If aproduct isto meet or exceed customer expectations, it
should be produced by a process that is stable or repeatable.
Statistical process control isa powerful collection of problem
solving tools useful in achieving process stability and
improving capabilities through the reduction of variability.
The main tool of statistical process control isthe statistical
control chart. The engineering and technical implementation
of control charts entails selecting sample sizes, sampling
frequencies and the control limits for the chart. Selection of
these three parametersis called the design of control chart.
Traditionally, control charts have been designed with respect
to statistical criteriaonly, but the design of a control chart has
€conomic aspects too.

The first model in this case was proposed by Duncan [3].
Since that time, the economic approach has received
considerabl e attention and various models suggested in this
area. But as declared by Woodall [5], control charts based on
optimal economic design, have poor statistical properties. To
solve this problem, Saniga [6] noted that some of the
criticism of economic design can be overcome by introducing
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statistical constraints in the problem and solving the model
using nonlinear optimization techniques. Del Castillo,
Montgomery and Mackin [7] proposed an interactive multi
objective algorithm based on this procedure. Also, Chen and
Liao [8] formulated optimal design of control chartsasa
multiple criteria decision making with respect to the
constraints proposed by Saniga.

In al these articles, a single assignable cause cost function
was used. However in 1971, Duncan[4] developed his
previous model and presented a new mode! in the presence of
multiple assignable causes. Since then, many tried to
optimize this cost function. Chung [9] carried out subsequent
work on Duncan’s model[4]. Chen and Y ang [10]considered
weibull in-control times with multiple assignable causes. Yu
and Hou [11] optimized the control chart parameters with
multiple assignable causes and variable sampling intervals.
Also, Yu, Tsou and Huang [12] used Duncan's model and the
proposed constraints by saniga[6] to investigate
economic-statistical design of X control chart. Table 1
shows the comparison of different models, mentioned above.
However, multiple objective design of X control charts with
multiple assignabl e causes has not been addressed up to now.
So, the purpose of this paper isto model design parametersin
presence of multiple assignable causes. DEA method is used
to find the optimum design parameters which satisfy all
economic and statistical objectives. A numerical exampleis
given to illustrate the model's working.

Il. ECONOMIC COST FUNCTION WITH MULTIPLE
ASSIGNABLE CAUSES

In 1971 Duncan[4] generalized his single assignable cause
model to multiple one. In this model, there is an in-control
state p, an assignable cause of magnitude §; (j=1, 2...,)
which occurs at random, resultsin a shift in the mean to either
p+ djo or p -6jc and so changes the state until the cause is
detected. Meanwhile, during the search for the assignable
cause, the process is allowed to continue in operation. The
cycle consists of four periods:

1) In-control period
It is assumed that assignable causes occur according to
Poisson process with 2; occurrences per hour. So assuming
that process beginsin the in-control state, the timeinterval
that the process remains in control is an exponential random
variable with mean 1/A hour:

i B 1

A S A

j=1

2) Out of control period
When the process goes to out of control state, the probability

(1)
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that it will be detected on any subsequent sampleisrelated to

the assignable cause occurred. If the jth assignable cause

Tablel.comparison of the models

Model/year Assumptions Output
Del Cadtillo, Single assignable Multi-obiective
Montgomery cause des é] n
"?‘”d . Exponent_l a (economic-statistical)
Mackin(1996) in-control times
Single assignable Co
Chenand Liao cause Mu“('j;% ictlve
(2004) . Exponent_l a (economic-statistical)
in-control times
Multiple assignable
causes . .
Chung (1994) Exponential Economic design
in-control times
Multiple assignable
Chen and Yang | causes Economic design
(2002) Weibull in-control
times
Multiple assignable
Yu and Hou | Causes Economic design
(2006) variable sampling
intervals
Multiple assignable | Economic-statistical
Yu, Tsou and causes design (economic
Huang (2007) Exponential objective with
in-control times statistical constraints)

happens, then the detection power will be:

-k-dj M + o0
Pi= | ®(z)dz+ [d(z)dz (2)
- k-] VI
Where ¢(2), is the probability density function of

standardized normal distribution. So the average samples
taken after the jth assignable cause happens, is 1/p; .

Also, given the occurrence of the jth assignable cause
between the uth and u+1st sample, the expected time of
occurrence within thisinterval is:

(u+1)h

Aije

it — uh ) dt

Tij— (ur1)h

1- 1+ 42;h)ett

ﬂ,jeiljtdt

(3)

Ai(—e?l)
Where h is the sampling frequency.
Therefore, the time required to observe an out of control
alarm when the jth assignable cause occurs, will be:

h
— — 7,
Pi

(4)

3) The timeto take sample and interpret the resultsis a

constant g proportional to the sample size n, so that gn isthe

length of this part of the cycle.

4) The time required to find the assignable cause. If thistime
is Dj for the jth assignable cause, then the expected timein a

cycle for detecting assignable cause is

ISBN: 978-988-17012-1-3

> AiD |
=1

) (5)

Therefore, the expected length of acycleis:

s h
1 A )
Ecr = —+ — +
A A
JilljDJ
n + = =
g A
s h
L+ 22 (0 - e+ 00+ D))
i
6
7 (6)

If the fixed component of sampling cost is g and the variable
oneis &, then the cost of taking a sample of size n will be
a+ a&N. The cost of finding an assignable causej, is a; and
the cost of investigating afalse alarm is a;. The expected
number of false alarm generated during acycleisa, timesthe
expected number of samples taken before the shift or:

(7)

In which a is calculated through the below equation:

1
ARL (8)
Now if one defines & , as the hourly penalty cost associated
with production in out of control state, then the expected cost
per cyclewill be

a =

= z”kjcp (z)dz

Ec =
jZSIaSJﬂ,-(;— i+ 0N + D)+ J_Z:asiﬁ*;
i
A
" as eilh n (a1+ azn) Ecr (9)
1-— ¢ h

And the expected cost per hour can be indicated as:
Ecc (a1+ azn) n

Ewc =
Ecr h

=1

S h s
(Zasj/lj(P—f,~+ agn+Dj)+ jzlagjij
j -
A
s h
o 1+> 2 (—-7;+0n+ D))
aid e )/( P )
+
1_efﬂ.h /1

(10)

So economic design of X control chart involves
determination of optimal parameters n, h and k which
minimize Exc.
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11I. MULTIPLE OBJECTIVE OPTIMAL DESIGN OF X CONTROL
CHART

To establish the multiple objective decision making model,
we should first determine a set of conflicting objectives that
define the problem for the quality control manager. Due to
the nature of the DEA method used in algorithm, various
combinations of design parameters n, h, k should also be set
in advance. Taking into account the Saniga’s constraints, the
multi-objective model is:

Max ARL(D)

Max P(D)

Max Epc(D)

st (1)

P> P (-1, 2...,9

a <a "
ATS <ATS; (=12..9

D isapossible combination of design parameters that has
been shown in bracket for the entire three objectives for
emphasizing on the fact that it does have an impact on the
values of objectives.
The aims of MODM models are to find solutions that can
satisfy and set a balance among all objectives.. To solve
MODM problems, the DEA method is one of the most
powerful and popular method to optimize the feasible
combinations of design parameters specifically when
measuring the efficiencies of similar unitsis under
consideration.

IV. DATA ENVELOPMENT ANALYSIS(DEA)

DEA isthe optimization method of linear programming to
generalize the Farrell [1] single input, single output technical
efficiency measure to the multiple-input, multiple-output
case by constructing arelative efficiency score of a group of
competing decision making units (DMU). Applications and
implementations of DEA in modeling performance
measurement [13] has gained alot of attention in recent
years. |n this paper we have used the CCR model(Charnes,
Cooper and Rhodeg 2]). The objective in CRR model isto
maximize the relative efficiency value of each of DMUs from
among areference set of design D, by selecting the optimal
weights associated with the inputs and outputs. The algebraic
model is asfollows:

4

U r Yri (D)

MaX Ei (D) == 7?11

JZ&V i Xji (D)
st. 12
ZZ: U r Y ri (D)
=< for other designs D
jZ:lV i Xii (D)
Where

U, : the weights given to output r

Y, : amount of output r from unit i

V; : weight given to input j

X;i - amount of input j from unit i

To solve the model, it is necessary to convert it into linear
form so that methods of linear programming can be applied.
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This nonlinear programming is equivalent to two linear
programming: 1) setting its denominator to one and
maximizing its numerator (output maximization) 2) setting
its numerator to one and minimizing denominator (input
minimization). Because CCR model considers constant
retunes to scale, there exists no difference which one to
choose and CCR yields the same efficiency score. So,the
linear programming will be:

Max Ei(D):rzi:lUrYri(D)
st. (13
lZlV iXi®DO =1

SU YD) -LV X0 <1

for other designs D
Uu.,v ;>0

If E;" =1, that means no other design is more efficient than
design i under its own weights. If E; <1, then thereiis at least
one other design that is more efficient under optimal set of
weights determined. Calculation should be done for each
DMU to find the relative efficiency of each one.

V. SOLUTION ALGORITHM

Unlike many multiple-objective models that the DM has an
implicit unknown value function, here the values of E (D),
P(D) and ARL (D) must be calculated for each potential
combination D according to formula 1 to 10 in advance. Due
to the complicated multi-assignable cause cost function, all
calculations have been facilitated by Excel software. Also, to
eva uate and compare the efficiencies of DMUs, Microsoft
Excel with XIDEA has been implemented. Chen and Liao [8]
proposed a solution procedure for their multi-criteria
decision making model. In this paper, we have employed
their 4-step algorithm to solve our multi-objective mode.
They applied this procedure for their model with one
assignable cause cost function. The procedureis
approximately the same except steps 1 and 2 which have been
converted a bit to suit our proposed model.

The four-step procedure will be:

1) Determining all possible solutions by putting bounds on
each parameter. In this paper the scope of samplesizenis set
from 1 to 35, increased by 1. Scope of sampling frequency is
confined from 0.1 to 4 increased by 0.1h and finally the scope
of control limit width k isconsidered from0.1to 3interms
of standard deviation increased by 0.1. Contemplating all
possible combinations the number of potential solutions will
be 35*40* 30=42000

2) In this step we have added another constraint too, in order
to take into account the value of parameter h, becausein the
two previous constraints Chen and Liao used, there was no
sign of parameter h. subsequently, we eliminate infeasible
solutions by the following constraints:
a <oy P> Py ATS < ATS;

3) Partial optimization. Remain the elements with Pareto
optimality for each subset Q, . A solution "s" with Pareto
optimization in a set Q, means that there is no other solution
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in the same set such that "'s"' is dominated in terms of
statistical properties and cost.

4) Global optimization. Merge all the remaindersinto aset W
and select the elements with highest relative efficiency
among W. The selected elements will afford to DM to make
final decision.

V1. NUMERICAL EXAMPLE

In this section, Duncan’s [4] data were employed to illustrate
the use of the proposed model and algorithm.

The numbers of assignable causes are assumed to be 12.
When an assignable cause j with the average occurrence of A,
occurs, it produces a shift of size §; in the mean. The cost of
taking a sample that is independent of sampling is 1$ and the
variable cost per item of sampling, testing and plotting is
0.1$. An average time of 0.05h is needed to test and analyze a
sample item and the cost of looking for trouble when none
exists, is estimated 25$. Vaues of other parameters have
been tabulated in table 2.

Table2.input values of parameters

J A Dj & a3,
0.75 0.001098 | 4.17 | 19.68 7.22
1.25 0.000855 | 3.08 | 1457 27.6
1.75 0.000666 | 250 | 11.81 76.14
2.25 0.000519 | 2.08 9.84 165.69
2.75 0.000404 1.92 9.06 302.36
3.25 0.000314 | 1.84 8.66 433.64
3.75 0.000245 1.77 8.37 570.32
4.25 0.000191 | 1.72 8.17 659.86
4.75 0.000148 1.70 8.05 708.4
5.25 0.000115 | 1.68 7.93 728.97
575 0.000090 1.66 7.83 735.78
6.25 0.000070 | 1.64 7.73 737.56

Also our statistical constraints in false alarm rate o, , detection
power P, and averagetimeto signal ATS are

a <01 P> 09 ATS <4
The optimization procedure can be carried out as
described.Table3 illustrates the results.

Asindicated by *, two design parameters combinations have
received score 1 and therefore offered to the DM for fina
selection. Then the DM may choose the first combination if
low cost is of paramount importance for him/her. Similarly if
he/she is much more interested in the outgoing quality, then
the second combination with large average run length and
detection power may be the final choice.

VI1l. CONCLUSION

A multi-objective model for designing X control chart in
presence of multiple assignable causes, is proposed. For this
model, various combinations of n, h, k are contemplated as
DMUs. DEA method is employed to assess the efficiency of
DMUs and to select the optimum designs with large average
run length, high detection power and low expected cost.
Numerical example is given based on the Duncan’s [4] data
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to illustrate the solution procedures .Other interesting
research areas for future research involve multi-objective
design of X control chart under weibull shock and
multi-objective design of adaptive X control chart.

Table3.Non-dominated solutions with largest efficiencies

(n,h,k) Cost P ARL
(27,29,26) 59662 09773 107.5269 *
(28,29,26) 6.0481 0.9801 107.5269
(29,29,26) 6.1301 09825 107.5269
(29,29,27) 61103 0.9789  144.9275

(30,3,2.6) 6.2109 09846  107.5269
(30,3,2.7) 6.1918 09814  144.9275
(30,29,28) 6.1771 09777 196.0784
(31,3,2.6) 6.2917 09866 107.5269
(31,3,2.7) 6.2725 09837  144.9275
(31,3,2.8) 6.2601 09803 196.0784
(32,3.1,26) 6.3723 0.9883 107.5269
(32,3,2.7) 6.3533 0.9856  144.9275
(32,3,2.8) 6.3387 09826 196.0784
(32,3,2.9) 6.3291 09791  270.2703
(33,3.1,26) 6.4519 0.9898 107.5269
(333.1,27) 64334 0.9874  144.9275
(33,3.1,28) 6.4193 09846 196.0784
(33,3,2.9) 6.4084 09814  270.2703
(33,3,3) 6.4003 09777 370.3704 *
(34,3.1,26) 65316 09911 107.5269
(34,3.1,2.7) 6.5131 0.989 144.9275
(34,3.1,28) 6.4989 0.9865 196.0784
(34,3.1,29) 6.4883 09836 270.2703
(34,3.1,3) 6.4804 09802 370.3704
(35,3.2,26) 6.6109 0.9922 107.5269
(353.1,27) 65926 0.9904  144.9275
(35,3.1,28) 65785 09881 196.0784
(353.1,29) 65679 0.9855 270.2703
(35,3.1,3) 6.5599 09824  370.3704
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