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Abstract—Process loss index, ,eL provides measures to determine

the quality performance of a process. In real situations where the
actual value of eL is generally unknown one may estimate it by its

corresponding sample counterparts. Most of the results obtained
regarding the distributional and inferential properties of estimated
expected loss indices were based on one single sample. In practice,
however, process information is often derived from multiple samples
rather than from one single sample. In this paper, we first investigate
the relationship between eL and process yield, and the distributional
and inferential properties of the estimator of process loss index based
on X and R control chart samples. We then investigate the
performance of the estimator of ,eL based on the absolute relative
bias, the relative mean square error and theα-level confidence relative
error for various combinations of sample size, and implement the
hypothesis testing procedure. The developed step-by-step procedure
for practitioner to use in determining whether the given process is
capable, then the decision making will be reliable. The technique
provided in this paper will be applicable when the process
measurements are taken from X and R control chart.

Index Terms—Process expected loss, Process yield, Non-central
chi-square distribution,α-level confidence relative error.

I. INTRODUCTION

Under the assumption that the process is in control, the process
capability indices can be estimated reliably, process capability
indices, including ,pC ,aC pkC and ,pmC etc., provide
numerical measures to determine whether this process is capable of
producing items within the established specification limits present
by the product engineer or manufacturing engineer. The process
capability indices were first applied to the automatic industry in
Japan and America. In these widely used indices, the precision
index pC measures the magnitude of process variation, the

accuracy index aC measures the departure of process mean from
the midpoint of the specification interval. The index pkC takes the
process mean into consideration but it can fail to distinguish
between on-target processes. The index pmC takes the proximity
of process mean from the target value into account, and is more
sensitive to process departure than pC and .pkC

Hsiang and Taguchi [3] first used the loss function to improve
process quality, focusing on reducing the process variation around
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the target value. Johnson [4] introduced the process loss index eL
for processes with symmetric tolerances. A process is said to have a
symmetric tolerance if the target value is set to be the midpoint of
the specification interval, i.e. .2)LSLUSL(T  The index

eL is defined as the ratio of the expected quadratic loss to the
square of the half of the specification width. The advantage of
using eL over pmC is that the estimator of the former has better
statistical properties than that of the latter, as the former does not
involve a reciprocal transformation of the process mean and
variance. Also it provides an uncontaminated separation between
information concerning the process precision and process accuracy.

It is known that process capability indices are the functions of
process mean and process standard deviation. The quality and
statistics literatures discussed the estimations of these capability
indices based on a single sample ([2], [4], [5], [11], [12], [13]). In
practice, process information about process measurements is often
derived from multiple samples rather than from one single sample,
particularly, when a daily-based production control plan is
implemented for monitoring process stability. Finley [6] stressed
the importance of using control charts first to determine if a process
is in control, before estimating process capability indices. For
process information came from multiple samples, particularly,
came from X and R control chart samples, Li et al. [7] gave
tables of lower confidence bounds on pC and pkC where the
sample range was substituted for the population standard
deviation in the definition formula. Pearn et al, [14] considered
the problem of estimating and testing process precision based on
X and R control chart and X and S control chart samples.

They provided the statistical properties of the natural estimator of
pC and implement the hypothesis testing procedure.

In this paper, we investigate the relationship between index eL
and process yield, and the distributional and inferential properties
of the estimator of index eL when using X and R control chart
samples. We then investigate the performance of the estimator of

eL based on the absolute relative bias, the relative mean square
error and the α-level confidence relative error for various
combinations of sample size. The results obtained for the accuracy
of the estimated process loss index which is widely used in the
manufacturing industry, relative to the control chart samples, is
useful to the practitioner in determining the combination of sample
size required in his application for its estimation good to the desired
accuracy. We also develop a step-by-step hypothesis testing
procedure for practitioner to use in determining whether the given
process is capable. The technique provided in this paper will be
applicable when the process measurements are taken from X and
R control chart.
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Table 1. The five ranges of eL and corresponding pmC for various

quality conditions

Condition Range of eL
Range of corresponding

pmC

Inadequate e11.0 L 00.1pm C

Capable 11.006.0 e L 33.100.1 pm C

Satisfactory 06.005.0 e L 50.133.1 pm C

Excellent 05.003.0 e L 00.250.1 pm C

Super 03.0e L pm00.2 C

II. PROCESS LOSS INDEX AND PROCESS YIELD

Under the assumption that the process measurements X arises
from a normal distribution with a mean and a variance ,2 and
has a symmetric tolerance, then the index eL is defined as the ratio

of 22 )T(  (the expected quadratic loss) to 2d (the square
of the half of the specification width):
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where 2)LSLUSL(d  denotes the half of the specification
width, LSL and USL are the lower specification limit and upper
specification limit, respectively, and T denotes the target value,

)(xF is the cumulative distribution function of the process
measurements .X Tsui [15] rewrote otpee LLL  to provide
an uncontaminated separation between information concerning
process relative inconsistency loss peL and process relative

off-target loss .otL In fact, the subindex peL is defined as the first

term 2)d( and the second term 2)d)T((  as subindex
.otL We note that the mathematical relationships peL

,)(1 2
pC 2

aot )1( CL  and 2
pme )3(1 CL  can be

established.
While the subindex peL measures process variation relative to

the specification tolerance and the subindex otL measures the
relative process departure. For processes with bilateral
specification limits, process yield can be calculated as

).LSL()USL( FF  On the assumption of normality, process
yield can be expressed as ),)LSL(())USL((  

where )( is the cumulative function of the standard normal
distribution. For cases with symmetric tolerances, since

,2)LSLUSL(T  the process yield can be calculated as:
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For example, suppose the process is perfectly accurate (that is,
0ot L ), then the process yield can be expressed as

1)1(2 pe  L for various peL values.

In current practice, a process is called “inadequate” if

;11.0 eL it indicates that the process is not adequate with respect
to the required specifications, either process mean needs to be
shifted closer to the target value or process variation needs to be
reduced. A process is called “capable”if ;11.006.0 e L it
indicates that caution needs to be taken regarding process
distribution, some stringent quality improvement is required. A
process is called “satisfactory”if ;06.005.0 e L it indicates
that process quality is satisfactory, and no stringent quality
improvement is required. A process is called “excellent”if

;05.003.0 e L it indicates that process quality exceeds
“satisfactory”. Finally, a process is called“super”if .03.0e L

Table 1 displays some commonly used eL values and the
corresponding pmC values. For example, if the quality

requirement is ,06.0e L then from Table 1, we can find that the
equivalent quality requirement for the pmC index is .33.1pm C

III. ESTIMATING PROCESS LOSS INDEX

Many statistical quality control textbooks recommend the use of
subgroup ranges for estimating the standard deviation of a normally
distributed random variable. Suppose the combination of sample
size has m independent subgroups, each of size ,n from a normal
distribution with standard deviation . We denote this sequence
of independent samples as },,,,{ 21 inii XXX  ,,,2,1 mi 

.mnN  Let nXX m
j iji  1 and  }max{ iji XR

}min{ ijX be the ith subgroup mean and the subgroup range,

respectively. mXX m
i i 1 and mRR m

i i 1 are the grand
mean and the mean of subgroup range, respectively. The mean and
variance of the statistic R are respectively given as

2)(E dR  and ,)(Var 2
3 mdR  as well as the values of

2d and 3d as determined from .n The coefficients ,2d and 3d
are tabulated and referred in Montgomery [9].

Several authors have provided approximations for the
distribution of the range. Patnaik [10] showed that R is

distributed approximately as c for sample size of ,10n

where  is the chi distribution withdegrees of freedom and c
is constant, was most accurate. It is noted that c and  are
determined from m and .n Table 2 displays the corresponding
c and for 30)5(5m and .8)1(2n In fact,

)(E R ,))2(()2)1((2  c

)(Var R .)))2()2)1(((2)(( 22  c

Therefore, we can derive the constant .)( 2
2

2
3 dmdc  In this

case, Montgomery [9] recommended estimator of  is ,2dR

( 2dR is the unbiased estimator of ) and the grand mean X is

used as an estimator for the process mean associated with X and
R control chart samples. In this paper, we choice the estimator

cR to estimate , since 2)( cR is the unbiased estimator of

.2 Thus, 2))(( cR is distributed as ,2  and the
estimator of process loss index eL as the following:
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Table 2. The coefficients of the distribution of R with 30)5(5m

and 8)1(2n
m = 5 m = 10 m = 15n

c ν c ν c ν
2 1.191 4.591 1.160 8.989 1.150 13.376
3 1.739 9.305 1.716 18.389 1.708 27.467
4 2.096 13.927 2.078 27.623 2.071 41.315
5 2.358 18.353 2.342 36.471 2.337 54.586
6 2.563 22.567 2.549 44.896 2.544 67.223
7 2.730 26.581 2.717 52.923 2.713 79.262
8 2.871 30.399 2.859 60.557 2.855 90.713

m = 20 m = 25 m = 30n
c ν c ν c ν

2 1.144 17.760 1.141 22.142 1.139 26.523
3 1.704 36.544 1.702 45.619 1.700 54.695
4 2.068 55.006 2.066 68.697 2.065 82.387
5 2.334 72.700 2.332 90.714 2.331 108.927
6 2.542 89.549 2.540 111.875 2.539 134.200
7 2.711 105.600 2.710 131.939 2.709 158.277
8 2.853 120.869 2.852 151.024 2.851 181.179

Table 3. )̂(BIAS eLR for ,25m ,8)1(2n various ,peL and otL

peL
n

0.11 0.06 0.05 0.03
otL 0.56

2 0.0033 0.0019 0.0016 0.0010
3 0.0022 0.0013 0.0011 0.0007
4 0.0016 0.0010 0.0008 0.0005
5 0.0013 0.0008 0.0007 0.0004
6 0.0011 0.0006 0.0005 0.0003
7 0.0009 0.0006 0.0005 0.0003
8 0.0008 0.0005 0.0004 0.0003

otL 0.25
2 0.0061 0.0039 0.0033 0.0021
3 0.0041 0.0026 0.0022 0.0014
4 0.0031 0.0019 0.0017 0.0011
5 0.0024 0.0015 0.0013 0.0009
6 0.0020 0.0013 0.0011 0.0007
7 0.0017 0.0011 0.0010 0.0006
8 0.0015 0.0010 0.0008 0.0005

otL 0.06
2 0.0129 0.0100 0.0091 0.0067
3 0.0086 0.0067 0.0061 0.0044
4 0.0065 0.0050 0.0045 0.0033
5 0.0052 0.0040 0.0036 0.0027
6 0.0043 0.0033 0.0030 0.0022
7 0.0037 0.0029 0.0026 0.0019
8 0.0032 0.0025 0.0023 0.0017

otL 0.00
2 0.0200 0.0200 0.0200 0.0200
3 0.0133 0.0133 0.0133 0.0133
4 0.0100 0.0100 0.0100 0.0100
5 0.0080 0.0080 0.0080 0.0080
6 0.0067 0.0067 0.0067 0.0067
7 0.0057 0.0057 0.0057 0.0057
8 0.0050 0.0050 0.0050 0.0050
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Since iX and iR are mutually independent as has been

shown by Lord [8], this will then equally hold for X and .R If
the process measurement is normally distributed, then we can

shown that the statistic 22 ))T( XN is distributed as
non-central chi-square with 1 degrees of freedom and
non-centrality parameter , we denote as ),(2

1  where 

.)T( peot
22 LNLN   If we define the statistic 

,))T()()(( 222   XNNcR then  is distributed as

)(2
1 Q and is a linear combination of two independent chi-

square distributions, ).()( 2
1

2  N Thus, the estimator êL

is distributed as ).()( 2
1pe  QL the probability density function

of êL can be expressed as (see Appendix):
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for ,0x where ,!)2exp()2()( jP j
j   K and jY

are distributed as 2
 and ,2

21 j respectively.

Since ,)(E 2   ,2)(Var 2   ,1))((E 2
1   and

),21(2))((Var 2
1   the expected value, the variance and

the mean square error of êL are
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)̂(MSE eL .])̂(E[)̂(Var 2
eee LLL  (7)

To evaluate the performance of the estimator ,̂eL the first

criterion, the absolute relative bias of êL is defined as

,|)̂(E|)̂(BIAS eeee LLLLR  which presents the absolute

relative deviation of the average value of êL from the true value of

.eL Since the bias of ,̂eL )̂(BIAS eL  ee )̂(E LL NLpe

,0 then the estimator êL overestimates .eL Table 3 displays

)̂(BIAS eLR for ,25m ,8)1(2n and some commonly used
values of peL 0.11, 0.06, 0.05 and 0.03, equivalent to otL

0.56, 0.25, 0.06 and 0.00. For example, if ),5,25(),( nm

11.0pe L and ,06.0ot L then .0052.0)̂(BIAS e LR We

expect that the deviation of ,̂eL on the average, would be no
greater than 0.52% of the true .eL

The second criterion, the relative mean square error presents the
average of the squared relative deviation of êL from the true value

of ,eL and defined as ].))ˆ([(E)̂(MSE
2

eeee LLLLR  Thus,
the value of the relative mean square error is a function of peL and

.otL The statistic ,)̂(MSE eLR a more direct measurement of
the deviation, can be easily calculated and used to measure the
performance of the estimator ,̂eL which presents the average of the

relative deviation of êL from the true .eL Table 4 displays

)̂(MSE eLR for ,25m ,8)1(2n and some commonly
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used values of peL 0.11, 0.06, 0.05 and 0.03, equivalent to

otL 0.56, 0.25, 0.06 and 0.00. For example, if ),5,25(),( nm

peL 0.11 and otL 0.06, then .1289.0)̂(MSE e LR We

expect that the value of ,̂eL on the average, would be no greater
than 12.89% of the true .eL

IV. THE RELIABILITY ANALYSIS

To evaluate the reliability of the estimator ,̂eL we consider the
criterion calledα-level confidence relative error. Pearn and Lin [13]
noted that the α-level confidence relative error which is obtained
from the same approach as used for finding the confidence interval,
provides the practitioners with more direct and easily understood
information than the confidence interval approach regarding the
accuracy of their estimations and suggests a clear range on the true
value of the process performance measure using the process
capability index. The α-level confidence relative error of ,̂eL

which is defined as  }|ˆ|{max)̂(CRE eeee LLLL 

|},1||,1{|max|1)ˆ(|max 22ee   ULLL where

the percentiles 2L and 2U satisfy the probability equation

,1}ˆPr{ 2ee2   ULLL which can be obtained as

Table 4. )̂(MSE eLR for ,25m ,8)1(2n various ,peL and otL

peL
n

0.11 0.06 0.05 0.03
otL 0.56

2 0.1160 0.0886 0.0815 0.0640
3 0.0923 0.0713 0.0657 0.0519
4 0.0793 0.0614 0.0566 0.0448
5 0.0706 0.0548 0.0506 0.0400
6 0.0644 0.0500 0.0461 0.0365
7 0.0596 0.0463 0.0427 0.0338
8 0.0557 0.0433 0.0399 0.0316

otL 0.25
2 0.1598 0.1262 0.1168 0.0933
3 0.1243 0.0999 0.0930 0.0749
4 0.1060 0.0857 0.0798 0.0645
5 0.0942 0.0763 0.0711 0.0576
6 0.0857 0.0695 0.0648 0.0525
7 0.0792 0.0643 0.0600 0.0486
8 0.0741 0.0602 0.0561 0.0455

otL 0.06
2 0.2379 0.2071 0.1968 0.1672
3 0.1754 0.1563 0.1496 0.1295
4 0.1465 0.1317 0.1265 0.1103
5 0.1289 0.1164 0.1119 0.0979
6 0.1168 0.1057 0.1017 0.0890
7 0.1077 0.0976 0.0939 0.0823
8 0.1007 0.0913 0.0878 0.0770

otL 0.00
2 0.3025 0.3025 0.3025 0.3025
3 0.2107 0.2107 0.2107 0.2107
4 0.1715 0.1715 0.1715 0.1715
5 0.1491 0.1491 0.1491 0.1491
6 0.1342 0.1342 0.1342 0.1342
7 0.1235 0.1235 0.1235 0.1235
8 0.1154 0.1154 0.1154 0.1154
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where  is distributed as ).(2
1 Q Therefore, the percentiles

2L and 2U may be obtained by finding the corresponding
percentiles of the distribution. Thus,

,
)(
)(

otpe

2
2,1pe

2 LL

QL
L


 




 and ,

)(
)(

otpe

2
21,1pe

2 LL

QL
U


 




 (9)

where )(2
,1 Q is the lowerαth percentile of ).(2

1 Q

Thus, eL )̂(CRE e presents that with at least 1

confidence the relative deviation (relative error) of êL will be no
greater than .e In this case, because the value of N is
reasonably constant and not dramatically different from 1, it is
suggested that )(2

,1 Q be replaced by ).(2
,1   Table 5

displays )̂(CRE eL for ,25m ,8)1(2n ,05.0 and
some commonly used values of peL 0.11, 0.06, 0.05 and 0.03,

equivalent to otL 0.56, 0.25, 0.06 and 0.00. The values of

),ˆ(CRE eL for other values of peL and ,otL and the

combinations of sample size ),( nm are available from the authors.
We find under equal total sample size, the larger ,n we can obtain

smaller value of ).ˆ(CRE eL If m or n is increasing, then the

value of )̂(CRE eL is decreasing. For example, if ),( nm

),5,25( 11.0pe L and ,06.0ot L then )̂(CRE eL

,4579.0 which indicates that with at least 95% confidence the

obtained êL value will be within 45.79% of the true eL value, for

the described condition. If the estimated value êL based on
)5,25(),( nm and 05.0 is equal to 0.02, then the true

value of eL would be between 0.0137 )%)79.451(02.0( 

and 0.0369 )%)79.451(02.0(  with at least 95% confidence.

V. ADECISION MAKING PROCEDURE

We can consider the following statistical testing hypothesis for
:eL 0e0 : lLH  (the process is incapable) and 0e1 : lLH  (the

process is capable), which judges whether a given process meets
the preset capability requirement and runs under the desired quality
condition. Process fails to meet the capability requirement if

,0e lL  and meets the capability requirement if .0e lL  We

define the test )(x as: 1)( x if ,ê lL  and 0)( x
otherwise. Thus, the test )(x rejects the null hypothesis 0H if

,ê lL  with type I error ,)(  l the probability of incorrectly
judging an incapable process as capable. The critical value, ,l can

be determined from  }|ˆPr{ 0ee lLlL . Thus,

.
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peot 
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Hence, we have the critical value as:
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Table 5. )̂(CRE eL for ,25m ,8)1(2n ,05.0 various ,peL

and otL

peL
n

0.11 0.06 0.05 0.03
otL 0.56

2 1.5595 1.5313 1.5192 1.4817
3 0.8385 0.8152 0.8065 0.7814
4 0.6101 0.5899 0.5828 0.5625
5 0.5094 0.4919 0.4858 0.4685
6 0.4562 0.4412 0.4359 0.4208
7 0.4293 0.4167 0.4121 0.3988
8 0.4169 0.4065 0.4026 0.3908

otL 0.25
2 1.5392 1.5622 1.5599 1.5382
3 0.8415 0.8431 0.8390 0.8203
4 0.6177 0.6147 0.6106 0.5942
5 0.5167 0.5134 0.5098 0.4956
6 0.4617 0.4596 0.4565 0.4444
7 0.4321 0.4319 0.4296 0.4194
8 0.4165 0.4187 0.4171 0.4089

otL 0.06
2 1.2683 1.4152 1.4519 1.5271
3 0.7251 0.7915 0.8074 0.8375
4 0.5443 0.5878 0.5979 0.6158
5 0.4579 0.4930 0.5011 0.5152
6 0.4078 0.4396 0.4470 0.4602
7 0.3776 0.4089 0.4163 0.4303
8 0.3585 0.3907 0.3987 0.4143

otL 0.00
2 0.7279 0.7279 0.7279 0.7279
3 0.4766 0.4766 0.4766 0.4766
4 0.3781 0.3781 0.3781 0.3781
5 0.3239 0.3239 0.3239 0.3239
6 0.2887 0.2887 0.2887 0.2887
7 0.2638 0.2638 0.2638 0.2638
8 0.2452 0.2452 0.2452 0.2452

Table 6. Critical values for ,25m ,8)1(2n variousα-risk, and 0l

0ln
0.11 0.06 0.05 0.03

05.0
2 0.0656 0.0358 0.0298 0.0179
3 0.0770 0.0420 0.0350 0.0210
4 0.0824 0.0450 0.0375 0.0225
5 0.0856 0.0467 0.0389 0.0234
6 0.0879 0.0479 0.0399 0.0240
7 0.0895 0.0488 0.0407 0.0244
8 0.0907 0.0495 0.0412 0.0247

025.0
2 0.0586 0.0319 0.0266 0.0160
3 0.0715 0.0390 0.0325 0.0195
4 0.0777 0.0424 0.0353 0.0212
5 0.0814 0.0444 0.0370 0.0222
6 0.0839 0.0458 0.0382 0.0229
7 0.0858 0.0468 0.0390 0.0234
8 0.0872 0.0476 0.0397 0.0238

01.0
2 0.0511 0.0279 0.0232 0.0139
3 0.0654 0.0357 0.0297 0.0178
4 0.0724 0.0395 0.0329 0.0197
5 0.0766 0.0418 0.0348 0.0209
6 0.0795 0.0434 0.0361 0.0217
7 0.0817 0.0446 0.0371 0.0223
8 0.0833 0.0455 0.0379 0.0227
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Therefore, if ,ê lL  then 1)( x and we reject the null
hypothesis 0H and conclude that the process is capable.
Otherwise, we can not conclude that the process is incapable. Here,
we set ,)()T(ˆˆ 22

peotpeot cRXLLLL  since generally
22

peot )T( LL is unknown. This approach is similar to
the one proposed by Johnson [4]. Such an approach introduces
additional sampling errors from estimating ,peot LL and would
be less reliable. Consequently, any decisions made would provide
less quality assurance to the customers. However, to eliminate the
need for further estimating ,peot LL as the description from

above section, it is suggested that )(2
,1 Q be replaced by

),(2
,1   Pearn et al. [11] examined the sensitivity of the critical

value l against the parameter .peot LL The result indicated that

the critical value l is increasing in peot LL and reaches its

minimum at 0peot LL (that is, T ) in all cases. Hence, for
practical purposes we may calculate the critical value l by setting

,0ˆˆ
peotpeot  LLLL for given ,0l  and , without having

to further estimate the parameter .peot LL Thus, based on such an
approach, the α-risk can be ensured and the decisions made are
indeed more reliable.

Generally, the calculated  is not always an integer. If is not
an integer, then we may approximate  

2
,1 by interpolating

values of   
2

, and  ,2
,1   where  means the least

integer such that  .  We may use the conservative value of

 ,2
,1   because  

2
,1 is a monotonic decreasing

function of in the case of 5.0 [1].
In the following, we develop a practical step-by-step procedure

for testing process loss index. The practitioner can use the
procedure in his in-plant application to obtain reliable decision.
Step 1: Decide the definition of“capable”, (common requirement

values of 0l include 0.11, 0.06, 0.05, and 0.03) and the
α-risk (normally set to 0.05, 0.025, or 0.01), the chance of
wrongly concluding an incapable process as capable.

Step 2: Estimate the process expected loss eL from the past “in
control”data by using the sample range.

Step 3: Calculate the critical value  
2

,10 ll based on the

specified α-risk, ,0l and . (If is not an integer, then

we may approximate  
2

,1 by interpolating method or

using the conservative value of   
2

,1 ).

Step 4: Conclude that the process is capable )( 0e lL  if the

estimated êL value is less than the critical value l ê(L

).l Otherwise, we do not have enough information to
conclude that the process is capable.

Table 6 displays critical values for ,25m ,8)1(2n 
0.05, 0.025 and 0.01, and some commonly used requirement values
of“capable”of 0l 0.11, 0.06, 0.05 and 0.03. Suppose that the
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requirement for a process to be capable is that .06.0e L We

take a X and R control chart samples 25m and ,5n and

calculate .̂eL Using Table 2 based on 25m and ,5n we
obtain ,714.90 We then can compute the critical value

.0467.0l Thus, if the calculated ,0467.0ê L then we claim
that the process is capable at least 95% of the time.

VI. CONCLUSION

Process loss index provides measures to determine the quality
performance of a process. In fact, ,otpee LLL  peL denotes

the process relative inconsistency loss, otL is the relative off-target
loss. In real situations where the actual value of eL is unknown one
may estimate it by its corresponding process samples. Most of the
results obtained regarding the distributional and inferential
properties of estimated process loss index were based on one single
sample. In practice, however, process information is often derived
from multiple samples rather than from one single sample.
Particularly, process measurements come from control chart
samples, since the importance of using control charts first to
determine if a process is in control, before estimating process
capability. In this paper, we first investigated the relationship
between eL and process yield, and the distributional and inferential

properties of the estimator of process loss index eL based on X
and R control chart samples. We then investigated the
performance of the estimator of eL based on the absolute relative
bias, the relative mean square error and the α-level confidence
relative error for various combinations of sample size. The results
obtained for the accuracy of the estimated process loss index which
is widely used in the manufacturing industry, relative to the control
chart samples, is useful to the practitioner in determining the sample
size required in his application for its estimation good to the desired
accuracy. We also developed a practical step-by-step hypothesis
testing procedure for practitioner to use in determining whether the
given process is capable, then the decision making will be reliable.
The technique provided in this paper will be applicable when the
process measurements are taken from X and R control chart.

APPENDIX

To derive the probability density function of the estimator ,̂eL
we define some statistics:
(1) ,peLND 

(2) ,)( 22  cRK  is distributed as ,2
 and

(3) ,)T( 22  XNY is distributed as ).(2
1 

Thus, êL can be rewritten as .))((ê DYKNL   The

cumulative distribution function of êL is:
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for .0x The last equality is valid since 0pe yLNx for

.0 peLNxy  Thus, 0)})((Pr{ pe  yLNxNK  for

,peLNxy  and the probability density function of Y is

)(yfY ,)()(0
j Yj yfP

j
 where )(yf

jY is the probability

density function of chi-square distribution ,2
21 j we have
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for .0x Therefore, the probability density function of êL as:
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for .0x
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