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     Abstract–Consider a two component parallel 
system. The defined new stochastic dependences of  
the component’ life-times are understood as a 
stochastic reflection of rather complicated 
components’ physical interactions. The 
interactions are assumed to obey some 
“continuous” pattern, valid until one of the 
components fails. According to that pattern some 
infinitesimal micro-damages in each component’ 
physical structure (caused by the remaining  
component’s “harmful”  activity) are related to 
corresponding  infinitesimal increments in the 
component’ failure rate. Based on this  association 
between the physical failure mechanism and its 
much simpler probabilistic equivalence, we 
describe the latter analytically  in terms of the life-
times’  joint probability distribution; actually we  
constructed  a wide  class of  such  stochastic  
models. As a special case of the bivariate 
distributions we obtain the first bivariate  Gumbel 
distribution along with its, perhaps first known, 
reliability interpretation. 
 
     Index Terms–Gumbel’s bivariate exponential 
distribution as a reliability model, Stochastic 
dependence, System reliability models. 
 
  

I.   INTRODUCTION 
 
We construct a (new) stochastic model for 
reliability ([2]) of a two components parallel 

                                                 
   J. K. Filus  is with the Department of Mathematics 
and Computer Science, Oakton Community College, 
Des Plaines, IL 60016, USA (email: 
jfilus@oakton.edu)  
     L. Z. Filus is with the Department of Mathematics, 
Northeastern Illinois University, Chicago, IL 60625, 
USA (email: L-Filus@neiu.edu) 
 

system.  Both the components u1, u2 , also 
called “units”, are considered in two 
different situations that we call the “off-
system” and the “in-system” conditions. 
While in the ‘off -system conditions’ both 
the units work separately of each other, i. e., 
with no mutual physical interactions. As a 
consequence of lack of physical contact, 
their life-times, say T1, T2  are stochastically  
independent random variables with the, 
given in advance, “original” probability 
distribution functions F(t1) , F(t2) . The ‘in-
system’ conditions are created when the 
components are installed into the system. It 
is assumed, that in the system some mutual  
interactions occur. As a result, in the 
considered system, side-effects of each 
component performance, influence physics 
of  failure mechanism of the remaining unit. 
The components failure mechanism has two 
parallel aspects: 1) the reality aspect, based 
on engineering devices and / or underlying 
physical and chemical processes that 
eventually  lead to each unit’s  failure, and 
2) the stochastic reflection of the system’s 
physics.  The associated physical 
phenomena are often too complex and 
complicated to be followed and efficiently 
handled for the reliability prediction 
purposes.     
On the physical part of this (modeling) 
problem, the mutual impact of any 
component on the other, can be explained in 
the following manner. During the 
components ‘in-system
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performance, either of  the two creates such 
an (environmental) situation that the other 
unit is “constantly bombarded” by a string 
of small  harmful (or  beneficial) “micro-
incentives”  that we call, in this paper, 
“micro-shocks”.  Each such “micro-shock” 
causes a corresponding “micro-damage” in 
the affected unit’s physical constitution. 
This ‘micro-shock  micro-damage’ 
relation we classify  as being the “physics of 
the problem”. This part might be 
investigated by use of engineering methods 
as long as the underlying phenomena are not 
too complicated for an efficient physical 
analysis. Otherwise, in order to simplify 
investigations, we rather consider an 
associated ‘stochastic mechanism’, 
basically  ignoring the details of underlying  
physical phenomena and replacing the 
problem’s  “physics” by proper statistical 
analysis of the stochastic model now being 
constructed.       
For the junction between the system’s  
physics and its probabilistic behavior we 
will consider any possible relation between 
the micro-damages of the components and 
the resulting small “probability -micro-
changes” in the original probability 
distributions of  the unit’ life-times.  This 
stochastic part of the problem we may 
consider as the ‘micro-damages  
probability-micro-changes’ relation that 
in accordance to the chosen methodology of 
the research  replaces the previous, more 
physical, relation.   
In order to quantify these micro-changes in 
the life time’ probability distributions we 
have chosen, among several other 
possibilities, micro-changes (in general 
increments)  in the components’ failure 
rates.   
Denote the components’ (original) ‘off-
system’ failure rates, associated with the 
independent life times T1 , T2  by the 
symbols λ1(t1) , λ2(t2), respectively.   

It is quite obvious that the changes in λ1(x1), 
λ2(x2) will transform the independent  ‘off-
system’ life times T1, T2 into some new 
dependent  ‘in system’ life times X1, X2 .  
Now we can formulate the paper’s objective 
as to determine the joint reliability 
function of the lifetimes’ random vector 
(X1, X2). This function, equivalent of the 
joint probability distribution, will serve as 
the model of the considered system’ 
reliability.  Other, similar stochastic models 
one can find in quite a large subject’s 
literature. See, for example, [3]–[7] .  
 
To start with the model’ construction based 
on the ‘micro-damages  probability-
micro-changes’ pattern we must to take into 
consideration that each micro-damage that 
occurs  is extremely small so that there is 
usually no practical possibility as to detect  
any significant influence of this micro-
damage on  a given unit’ reliability. This can 
only be  realized after a long enough time 
period as the micro-damages cumulate their 
effects. Since also the time periods the 
micro-damages occur are extremely small, 
while the number of these micro-events per 
time unit is a “huge” one, we have chosen 
the  (typical  in such situations) continuous 
approximation as an analytical 
description of these  “fugitive” phenomena. 
In other words we utilize the familiar 
calculus notion of the ‘infinitesimal 
quantities’. Thus, in the classical analytical 
model, an accumulation of the micro-
changes in both the  components’ failure 
rates is to be expressed by the Riemann 
integral device.   
  
 

II.  THE MODEL’S CONSTRUCTION 
 
In this section we find the joint probability 
distribution of the random vector (X1,X2)  in 
terms of its joint survival function S(x1,x2) 
= Pr(X1 > x1 , X2  > x2) . Recall, that the 
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joint survival function s*(x1,x2) of  the 
independent ‘off-system’ component  life-
times  T1, T2  is given by the following 
‘product’ form:  
 
                                                       
s*(x1,x2) =  
 
          x1                                 

x
2 

exp[- ∫0  λ1( t1) d t1   -   ∫0  λ2 ( t 2) d t2 ]     (1) 
     
 
where  λ1(t1) , λ2(t2) are the component’s  
‘off-system’ failure rates. 
When the components u1, u2  work  in the 
system then, in accordance with the adopted  
(in the analytical model) assumption, in 
“every” infinitesimal small time interval  
[τ k , τ k  + d τ k )  an occurrence of  an 
infinitesimal micro-damage of the 
component, say  uk ,  k = 1, 2 ;  (that is 
caused by ‘side effects’ accompanying an 
activity of component um , where m = 1, 2;  
m ≠ k) results in an infinitesimal increment   
α k  m (τk) d τk   of  uk‘s  failure rate. For 
every ‘past’ time instant  τ k  that  increment  
is given by a  predetermined quantity 
αkm(τk)  which, in a stochastic way,  reflects 
“an amount” (or a “density”) of  the physical 
influence of the component um on 
component uk  at a given time instant τk. 
That quantity is chosen (and then must be 
statistically  verified for fit to available 
data) to be a continuous function of all  the 
past epochs τk the micro-damages occurred. 
‘In part’ it stands for time derivative of an 
overall failure rate.  
In the mathematical model, all the 
stochastic effects  α k  m (τ k  )d τ k  (of  the 
physical micro-damage’s ) “sum up” over 
the time. Each of their  “partial 
accumulation” (created from the ‘time zero’, 
up to the epoch , say  t k  considered to be 
“current”) is expressed as the following  
Riemann integral:  
    

                     t k 
ϕ k (t k ) =  (  ∫0  α k  m (τ k  ) d τ k ,  ( k ≠ m ) . 
     (2) 
 
This integral itself  is a non decreasing 
continuous function of the current time t k   
as  is taken over all time intervals [ 0, t k],  
with 0 ≤ t k  ≤  x k  < ∞ , for   k = 1,  2.   
Both the variables x k , ( k = 1, 2 ) as present 
in the foregoing condition, are the same as 
the arguments of  the survival function (1). 
The integral (2) will be thought of as a 
measure of “magnitude” of  the u k ‘s  micro-
damage’s  accumulation up to the current  
time epoch  t k .    
At every “current” time instant  tk , the 
overall ‘in-system’ failure rate  rk(tk) of  
component  uk  ( k = 1, 2)  is defined  to be a 
simple  arithmetic sum of  the ‘off-system’ 
failure rate  λk(tk)  and  the “additional 
failure rate” given by the integral (2). Thus, 
at every time epoch tk one obtains the 
following formula for the ‘in-system’ 
failure rate  r k (t k) of component uk :   
 
                               t k    
r k (t k ) = λ k (t k ) + ∫ α k  m (τ  k  ) d τ  k      (3) 
         0 

   
as   k, m  = 1, 2,  and k ≠ m. 
We consider the failure rate formula (3) to 
be valid  for each time argument tk  
satisfying  0 ≤ tk ≤ x , where  x  = minimum 
(x1, x2)  is considered to be the time of  the 
first failure in the system. From the above 
one obtains the following survival function:    
S1(x) = Pr ( min(X1 , X2 ) > x ),   with  x = 
min(x1, x2) ), for the first  order  statistics  X  
of the set of  random variables: { X1,  X2 }.  
That is:  
                        x                                 x  
S1(x) = exp[ - ∫  r1( t1) d t1   - ∫ r 2 ( t 2) d t 2 ] 
            0            0                                                          
                                                                 (4) 
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where  r1( t1) and r 2 ( t 2)  are  given by (1) 
for  k = 1,  2.    
These two functions represent the ‘in 
system’ failure rates of  the components u1 
and u2  respectively, at  the time instances t1,  
t2 , both  prior to the time, say  x,  after 
which the first  failure in the system  occurs. 
Consequently, the given by (4) function 
S1(x) is the (whole) system’ reliability 
function, if the system reliability structure 
was series.      
At next, consider the (parallel) system’s  
residual life -time’s  failure rate, say r k (t)  
i.e., the failure rate of either surviving 
component c k,  at any time t  satisfying  x ≤ 
t ≤ y ,  ( where x, y are the time epochs of 
the first and the second  failure in the system  
respectively ).  For that period of the time 
we have chosen the following failure 
pattern.  
Namely, we define the failure rate  r k (t) in 
the time interval [x , y]  as the following   
arithmetic sum:      
                             x 

r k (t) = λ k (t )  +  ∫0  α k  m ( τ  ) d τ  .  
     (5) 
                                                                       x 

In this context, the integral  ∫0 α k  m ( τ ) d τ  
is  constant over time past  x  ( k, m  = 1, 2,  
and k ≠ m ).   
The reason for its constancy is based on a 
simple observation that in the time interval 
[x , y] only (one) component c k  is working 
in the system, and thus the process of  micro 
-damages accumulation is terminated since 
the time x  passed. This integral (present as a 
part in (6), (6a) that follow) is an additional 
part of the overall failure rate  r k (t) of 
component c k , and may be understood as a 
measure of  “memory” of  the micro-
incentives the c k  received  before the other 
component c m  stopped its activity at time x.  
   
The Final Formula for the joint survival 
function  S(x1, x2 ) = Pr(X1 > x1 , X2  > x2 )  

of  the in-system component life-times  X1,  
X2  , is given below as:   

         
x

1                                                            

Pr (X1 > x1 , X2  > x2  ) = exp [ - ∫0  { λ 1 (t 1 ) 
 
       t1 
  +  ∫0 α 1,  2 (τ 1  ) d τ 1 }d t 1  
 
   x1                                  

t 
2                                                     

- ∫0   { λ 2 (t 2 )  +  ∫0 α 2,  1 (τ 2  ) d τ 2 }  d t 2 ]  
 
             x2 
 exp [ - ∫ { λ 2 (t 2 ) d t 2 }  (6)   
  x1                                                                                 
                       x1 

- (x2 - x1 ) ∫0   α 2, 1 (τ 1  ) d τ 1  ] ;  
 
when  x1  ≤ x2  , and  
 
                                                   x2                                  

Pr(X1 > x1 , X2  > x2 ) = exp [ - ∫0  { λ 2 (t 2 ) 
 
      t 2 
  +  ∫0  α 2, 1 (τ 2  ) d τ 2 } d t 2  
 
    x

2                                 
t
1                                                                                

- ∫0  { λ 1 (t1 )  +  ∫0   α 1,  2 (τ 1 ) d τ 1 }  d t 1 ]   
 
            x1 
exp [ - ∫ { λ 1 (t 1 ) d t 1  }  (6a) 
            x2 
                                                                                            

- (x1 - x2 ) ∫0   α 1,  2 (τ 1  ) d τ 1  ] , 
 
when   x1  > x2  .  
 
If  in both formulas (6) and (6a) one sets  x2  
= 0,  then one obtains the marginal  
probability distribution of  X1  to be the 
same as the original probability distribution  
F1(x1)  of the off-system life-time T1 , 
related to the given in advance original 
failure rate λ 1 (t1 ).  The similar result one 
obtains when imposing in (6), (6a)  the 
condition x1  = 0.  
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The latter condition yields the marginal 
distribution of  the  X2  to be equal  F2(x2).   
As the conclusion one derives the following 
surprising Property, shared by all the  
models that obey the pattern expressed by 
(6) , (6a) .  
 
Property 1. For any joint probability 
distribution given by the joint reliability 
function S(x1, x2 ) defined by (6), (6a), any, 
given in advance, original probability 
distributions  F1(x1), F2(x2)  of  the ‘off-
system’ life-times T1, T2  (with the assumed 
notation: x1 = t1, x2 = t2 )  are preserved ! as 
the marginal distributions of the joint 
probability distribution of  the ‘in-system’ 
life-times X1, X2  of the considered units u1 , 
u2 .   � 
 
From Property 1, the conclusion can be 
derived as the following:    
 
Corollary.   Suppose we are given a pair of  
probability distributions  G1(x1), G2(x2) that 
belong to any class of probability 
distribution functions, whose all members 
posses continuous failure (hazard) rates, say 
λ 1 (t 1),  λ 2 (t 2 ) . If one puts any arbitrary 
single pair of such distributions into the 
scheme defined by  (7), (7a) then, as a result, 
one can generate a wide class of the 
bivariate survival functions S(x1, x2), whose 
marginals  remain to be the G1(x1), G2(x2). 
The class of the so obtained bivariate 
probability distributions, “given the (fixed)  
marginals G1(x1), G2(x2)”,  is determined by 
the family of all the continuous functions α i 

, j (τ i ), ( i, j = 1, 2, with i ≠ j ) that  produce 
all the integrals in  (7), (7a) finite.    � 
   
So, in this particular sense one can consider  
the “bivariate  Weibull, gamma (in  
particular, exponential), the extreme 
value”  and other joint  probability 
distributions.  

Realize, however that the marginal 
distributions  G1(x1), G2(x2), in the 
Corollary also may represent two distinct 
distribution classes. The last possibility 
may be utilized in  modeling reliability of  
two stochastically dependent units (such as 
system components) each one subjected to a 
different failure mechanism . Apparently 
such cases often are realistic.  
     
 

III. EXAMPLE 
 
As a particular class of the bivariate survival 
functions S(x1, x2 ), satisfying the  
pattern given by (6), (6a), we now choose a 
class of  bivariate exponential distributions, 
given by two arbitrary  constant failure rates 
λ 1, λ 2  for the marginals. We also restrict 
the dependence structure, by assuming it is 
only determined by two constant functions 
α1,  2 (  ),  α 2,  1 (  ) .  Recall, they represent 
the rates of increment in the failure rate of 
the unit u1 caused by u 2 and the failure rate 
increment of u2, caused  by u1, respectively.   
The resulting class of the joint exponential 
survival functions can be expressed by  
the following specification of the previous, 
more general, patterns (6) , (6a) :  
 
 
Pr(X1 > x1 , X2  > x2  ) =  
                                                                                   
            x1                        

t
1 

exp [ - ∫0   { λ 1  +  ∫0  α 1,  2  d τ 1 } d t 1  
   
    x1                        

t 
2                                                                     

 - ∫0   { λ 2  +  ∫0  α 2,  1  d τ 2  }  d t 2 ]          (7) 
 
            x2 
exp [ - ∫  { λ 2  d t 2  } -  (α  2, 1 x1 ) (x2 - x1 ) ]                           
            x1 
                                                           
for  x1  ≤ x2  , and 
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Pr(X1 > x1 , X2  > x2 ) =                       
 
             x2                t 2 
exp [ - ∫0   { λ 2  +   ∫0   α 2, 1   d τ 2  } d t 2 

   
  x2                t1                                                
- ∫0  { λ 1  +   ∫0  α 1,  2  d τ 1  }  d t 1 ]      (7a) 
 
            x1 
exp [ - ∫  { λ 1  d t 1 } - (α 1,  2  x2  ) (x1 - x2 )],    
           x2 
 
for x1  > x2  . 
 
Upon additionally simplifying the 
assumption stating that  α 1,  2 (  )  = α  2, 1 (  )  
= α = constant, both formulas (7) and (7a) 
reduce to the following  single one: 
 
Pr(X1 > x1 , X2  > x2 ) =  
 
exp [ - λ 1 x1  - λ 2 x2  -  α x1 x2 ]  (8) 
           
 
Thus, as a special case of the model one 
obtains the first bivariate exponential 
Gumbel probability  distribution as system 
reliability model.   � 
 
 

IV. REMARK 
 
There is an interesting relationship between 
the models defined in this paper (in 
particular the Gumbel model) and the model 
given by Freund in [5]. In Freund model the 
two components work independently (no 
interactions) until the first failure and then 
the remaining component is affected ‘by 
lack’ of the other component.  Unlike in 
Freund’s case we have exactly opposite , say 
complementary failure mechanism. The 
components interact as long as they work 
together while after the first failure, the 

remaining component enjoys the off system 
(normal) situation.  
Also, the constructions presented  here 
differ significantly from the models 
considered in [1] or in similar papers cited in 
[1].  
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