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On the Periodic Motion of Nonlinear Discrete
Dynamical System

Jiemin Zhao

Abstract—We give an existence-uniqueness result of periodic | X (n, X,)=Y(n,7,)|

motion for nonlinear discrete dynamical system
< G(}’l, Xo sYn )H Xo _Yo ”

X(n+l)=F(n, X(n)), (n,X)eZxR"
for arbitrary motions

by means of the analysis and computing method.
X(n,X,) and Y(n,Y,)

Index Terms—discrete system, initial value, integer, periodic
motion. of system (1), then

I X (KN, X,)=Y (kN .Y,)||
SG(AN, X,.Y,)] X, Y, .

I. INTRODUCTION

We do research on the nonlinear discrete dynamical system

for natural number N > M .

X(n+)=F(n, X(n)) 1) If there is a natural number N > M such that
where F': ZxR" — R" is a given continuous function, Z is a G(kN,X,,Y, )<C =const. < 1,
set of integer, R =(— o, + o), R"is an m-dimensional linear
vector space over the reals with norm || . || . Suppose there is an then
lntegerk>1 such that HX(kN,XO)—Y(kN,YO)H

F(n+k, X)=F(n, X) <GUEN, X, 3, )X, =5, |

<CX, Y,

forall neZ and X e R"™. There is a unique solution of the

system (1) through (n,, X,). When, = X(kN,X,), we have

The existence-uniqueness problem of periodic motion for
discrete dynamical system (1) is very important [1—4]. In this
paper, a result about the existence-uniqueness problem of
k — periodic motion of system (1) is given.

IX(KN, X,)-¥ (kN.,)|
=[| X (KN, X,)~ X kN .Y,)]|
<G (AN, X, %)l X, -1, |
<ClX, -]
=C|| X, - X(kN, X))

II. ANALYSIS

m m 1 . . USing

Suppose G:Z,xR"xR" — R, is a given mapping

satisfying the following hypothesis: | X(kN, X,)—X 2kN,Y,)||
There is a natural number M such that, forn> M, we <C|l X, = X(kN, X)),

have

we obtain
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| Xo = XCEN, X)) | =Cll X, = X (N, X,) ||
<X = XCAN, X) =l X (AN, Xo) =X (2EN,X,) |,

we obtain
| Xo— X(EN, X)) [|-C|| X, = X(EN, X,) ||

=(1-C) | X, - X(kN, X,)]|
|| X, — X (kN X,) ||~ [| X (KN, X))~ X QKN %),

Thus, for any X, € R”, we have

[ X = X (AN, Xp) |l

1
< EHXO_X(]CN, X))l
1
*EHX(/(N, X)) =X (2kN, X))

We choose
1
w(Xo):EHXo—X(kN, Xl

Let T denote the Poicai¢ mapping T’ X, = X (k,X,), we have
P(X,, TV X)) <o (X)) -(T"X,)

forall X, € R”. Therefore, the 7" has a fixed-point X .
Let X and Y betwo fixed-point of the T ¥ then

IX-T|=IT"X -1 7|
S X(kN, X)-¥ (kN . T)|.

Using the inequality

| X(kN, X,)=Y (kN .Y, |
SG(EN, X, YOI X, =X |l
sClIX =%,

we have
IX-YisClX-Y].
But C <1 and this last inequality can only be satisfied if
| X -Y|=0.

Thus, ¥ - 7. Therefore, the 7" has a unique fixed-point X .
From

TN X)=T(T"X)=TX,

That is the 7" has a fixed-point 7.X . According to the

fixed-point uniqueness of the 7%, (1) has a unique k-periodic
motion.
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ITII. MAIN RESULT

From analysis above, we have result as follow:

Suppose G:Z xR"xR" - R! is a given mapping

satisfying the following hypotheses:

(1) There is a natural number M such that, forn> M ,
we have

X (n, X)=Y(n,Y)
SG(n, X, Y )l X, Y |l

for arbitrary motions
X(n,X,) and Y(n,Y,)
of the system (1).
(i) There is a natural number N > M such that

G(kN,X,,Y, )<C=const. <1.

then there is a unique k-periodic motion of the system (1) .
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