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Abstract—NetCDF provides portable and self-
describing I/O data format for array-oriented data in
scientific computation domains. Its parallel I/O in-
terface named parallel netCDF (hereafter PnetCDF)
provides parallel I/O operations with the help of an
MPI interface. To realize such operations among com-
puters which have different MPI libraries through
a PnetCDF interface, a Stampi library was intro-
duced as an underlying MPI library. Decomposition
in multi-dimensional data leads to complex I/O op-
erations in non-contiguous parallel I/O pattern with
the help of a derived data type. However, times
for data communications between computers are in-
dependent of the complexity because the transfered
data are contiguous in memory buffer. Although it
succeeded in effective remote I/O operations in a
LAN environment, throughput is degraded due to un-
optimized configuration for TCP sockets if intercon-
nection among computers has long latency like WAN.
We have addressed the degradation and we observed
that applying an appropriate size in a socket buffer
minimized I/O times effectively.

keywords: parallel netCDF, MPI-I/O, Stampi, MPI-

I/O process

1 Introduction

NetCDF [1, 2] is a popular package for storing and re-
trieving data files in scientific computation domains. It
provides a view of data as a collection of self-describing,
portable, and array-oriented objects that can be accessed
through a simple interface on a wide variety of plat-
forms. For example, atmospheric science applications use
netCDF to store a variety of data types that encompass
single-point observations, time series, regularly spaced
grids, and satellite or radar images [1]. PnetCDF, which
is a parallel I/O interface for netCDF data, was devel-
oped with the help of an MPI library such as MPICH [3],
and the PnetCDF succeeded in scientific computation do-
mains [4]. Although it supports parallel I/O operations
inside the same MPI implementations, seamless I/O op-
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erations to a remote computer have not been available
for visualization of remote calculated results.

Stampi was developed to support seamless MPI opera-
tions including MPI-I/O operations among different MPI
implementations without paying attention to complex-
ity and heterogeneity in underlying communication and
I/O systems [5]. The seamless operations are realized
by deploying a wrapper interface library on top of each
MPI library. MPI communications among different im-
plementations are realized by using TCP sockets. It is
available on a wide variety of supercomputers and UNIX
based PC clusters. To realize remote I/O operations with
a PnetCDF interface, MPI interfaces of the Stampi li-
brary were implemented in an underlying MPI layer of
the PnetCDF library.

In scientific applications, non-contiguous data are usually
created. The more the data format becomes complex,
the more the number of data communications between
user processes increases. As a result, this leads to perfor-
mance degradation. However, I/O times do not increase
so much in this system because such the communications
are carried out among MPI-I/O processes on a remote
computer.

The implemented system provided sufficient performance
for remote I/O operations in a LAN environment. How-
ever, throughput is degraded due to unoptimized socket
buffer size when we carry out the same operations among
computers which are connected via a network with long
latency like WAN. It is well known that applying twice
the product of bandwidth and latency in socket buffer size
provides better performance [6]. To improve throughput,
we have studied optimization for TCP connections to find
a desirable solution for effective remote I/O by tuning
socket buffer size.

In the rest of this article, architecture of Stampi and
implementation of it in a PnetCDF’s MPI layer are ex-
plained in Section 2. Performance measurement is re-
ported in Section 3. Related work is mentioned in Section
4, followed by conclusions in Section 5.
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Figure 1: Architecture of a seamless remote I/O system.

2 Remote I/O in Stampi and Its
PnetCDF support

In this section, details of architecture and execution
mechanism of the remote I/O system are explained and
discussed. Its architecture is illustrated in Figure 1. Since
MPI functions are used in PnetCDF functions, almost all
the MPI functions have been replaced with Stampi’s MPI
functions to realize seamless remote I/O operations with
a netCDF data format. In the next sections, we explain
a mechanism of a remote I/O system with an MPI-I/O
API and PnetCDF support in the remote I/O system.

2.1 Remote I/O with an MPI-I/O API

We have adopted a Stampi library to support remote I/O
operations. It supports seamless accesses in both local
and remote I/O operations. Inside a local computer, a
Stampi’s start-up command (Stampi starter; jmpirun)
calls a native MPI start-up command (MPI starter) such
as mpirun. Later, user processes are initiated by the na-
tive MPI start-up command. Stampi’s MPI function calls
are translated into native MPI function calls in this case.
This leads to high performance MPI operations includ-
ing MPI-I/O operations by using a vendor’s MPI library
through the Stampi’s MPI functions. If the vendor’s one
is not available in MPI-I/O operations, UNIX I/O func-
tions are used instead of it.

On the other hand, remote I/O operations are realized
as illustrated in Figure 2. The Stampi starter calls an
MPI starter and the MPI starter initiates user processes.
Moreover, a router process is initiated by the Stampi
starter to relay message data from/to the user processes if
computation nodes where the user processes are initiated
can not communicate outside directly. When Stampi’s
MPI File open() is called in an MPI program to open
a remote file, another Stampi starter is invoked on the
remote computer by the Stampi starter or the router pro-
cess by using a remote shell command (rsh or ssh). The
invoked Stampi starter kicks off MPI-I/O processes on
computation nodes by using a native MPI starter. If the
computation nodes can not communicate outside directly,
a router process is invoked by the starter. Finally, a com-
munication path is established among the user processes

 Server node 

2. fork

3. start-up

: Router process

: Stampi starter (jmpirun)

8. fork

1. issue
   a start-up command

5. connect
6. spawn

11. connect12. connect

13. ack

Computation nodes 

user
process

9. start-up

: MPI starter (e.g. mpirun)

4. start-up

Local computer Remote computer

Disk

MPI-I/O
process

10. start-up

 7. remote 
   start-up 

Figure 2: Execution steps of remote I/O operations.

and the MPI-I/O processes.

Each I/O request of Stampi’s MPI functions is transfered
from the user processes to the MPI-I/O processes so that
the MPI-I/O processes play the requested I/O operations.
The operations are carried out on a target computer by
using a vendor’s MPI-I/O library or UNIX I/O functions
if the vendor’s one is not available. Associated parame-
ters for derived data types such as a unit data type, the
number of units in each block, and the number of bytes
between the start of each block are stored in a linked list
based table in the user processes. The same parameters
are transfered to the similar table of MPI-I/O processes.
The same derived data type and file view are created in
both the user processes and MPI-I/O processes.

Once the derived data type is created, each user pro-
cesses can start remote I/O operations with the derived
data type. Figure 3 shows typical remote collective read
operations with a derived data type support by four pro-
cesses. A target data file is read by all the MPI-I/O
processes in the collective manner. Each MPI-I/O pro-
cess sends the data to a corresponding user process. The
user processes carry out all-to-all data communications
to reorder the read chunks of the data file. It is remarked
that data to be transfered between the user processes and
the MPI-I/O processes are contiguous in memory. Thus,
the data transfer time is dependent of data size, however,
independent of complexity of a derived data type.

After I/O operations, the MPI-I/O processes close the
opened file when a function to close the file is called.
Finally, they are terminated and whole I/O operation
finishes.

2.2 PnetCDF Support in Remote I/O Op-
erations

We have realized PnetCDF support by introducing the
Stampi library into a PnetCDF’s underlying MPI inter-
face. Sequence of function calls in typical write and read
programs is illustrated in Figure 4. When user processes
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Figure 3: Data flow of remote collective read operations
using a derived data type. MPI-I/O denotes an MPI-
I/O process on a remote computer.

call PnetCDF functions, those function calls are trans-
lated into several MPI function calls based on the orig-
inal PnetCDF implementation. In the write operation,
parameters which are associated with the I/O operations
such as a hostname of a remote computer, a user ID,
a working directory, and a file name are specified in an
MPI Info object with the help of MPI Info set() prior to
I/O operations. Stampi’s MPI functions identify which
operation is requested, local or remote I/O operations,
according to them. When ncmpi create() is called,
Stampi’s MPI File open() is called to invoke MPI-I/O
processes on a remote computer. Later they creates a new
netCDF file according to the parameters. Information
values for array data are written in a record header of it
in a define mode by using several PnetCDF functions such
as ncmpi def dim(). The array data are written in it by
using ncmpi put vars int all() in the collective man-
ner. Inside the function, several MPI functions including
MPI-I/O functions are used. Finally the file is closed by
ncmpi close(), followed by calling MPI File close(),
and all the I/O operations finish. On the other hand, the
read operation is carried out in the same manner except
that inquiry of parameters from the record header and
reading data from the file.

3 Performance Results

To evaluate the implemented remote I/O system, its per-
formance was measured on two interconnected PC clus-
ters. Specifications of the clusters are summarized in Ta-
ble 1. Each cluster had one server node and four compu-
tation nodes. All the PC nodes were connected via each
Gigabit Ethernet switch. One FreeBSD PC server was
located between the clusters as a gateway with 1 Gbps
connections.
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Figure 4: Sequence of function calls in collective (a) write
and (b) read programs.

In a PC clusters I and II, MPICH [3] version 1.2.7p1
was used as a native MPI library. In a PC cluster-II,
PVFS2 [7] version 1.4.0 was available on its server node
by collecting disk spaces (73 Gbyte each) of four computa-
tion nodes. Thus 292 Gbyte (4×73 Gbyte) was available
for the file system. During this test, default stripe size
(64 Kbyte) of it was selected. A Stampi library was avail-
able on both the clusters. Several network latencies were
applied to the network connections by dummynet [8] of
the FreeBSD PC server.

User processes were executed on the PC cluster-I and
MPI-I/O processes were invoked on the PC cluster-II by
rsh. A router process was invoked on each server node
of both the clusters because each computation node was
able to communicate outside via own server node only.

PnetCDF functions were evaluated using three-
dimensional data. The data set with 16 × 16 × 16
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Table 1: Specifications of PC clusters which were used in performance evaluation, where server and comp in bold
font denote server node and computation nodes, respectively.

PC cluster-I PC cluster-II
server DELL PowerEdge800 × 1 DELL PowerEdge1600SC × 1
comp DELL PowerEdge800 × 4 DELL PowerEdge1600SC × 4
CPU Intel Pentium-4 3.6 GHz × 1 Intel Xeon 2.4 GHz × 2
Chipset Intel E7221 ServerWorks GC-SL
Memory 1 Gbyte DDR2 533 SDRAM 2 Gbyte DDR 266 SDRAM
Disk system 80 Gbyte (Serial ATA) × 1 73 Gbyte (Ultra320 SCSI) × 1 (server)

(all nodes) 73 Gbyte (Ultra320 SCSI) × 2 (comp)
NIC Broadcom BCM5721 (on-board) Intel PRO/1000-XT (PCI-X card)
Switch 3Com SuperStack3 Switch 3812 3Com SuperStack3 Switch 4900
OS Fedora Core 3 kernel 2.6.12 (server)

Fedora Core 3 kernel 2.6.11 (comp)
NIC driver Broadcom tg3 version 3.71b Intel e1000 version 6.0.54

(16 Kbyte), 64 × 64 × 64 (1 Mbyte), 100× 100 × 100 (∼
3.8 Mbyte), 128×128×128 (8 Mbyte), and 256×256×256
(64 Mbyte) were prepared with an integer data type.
In this test, times to issue the I/O functions in the
data mode were measured using MPI Wtime() in a test
program.

Firstly, we compared I/O times of non-collective and col-
lective PnetCDF functions with 5 ms latency in the in-
terconnected network. In the non-collective case, we exe-
cuted a single user process on the cluster-I and the same
number of MPI-I/O process was invoked on the cluster-
II. Data to be written or read were managed by the sin-
gle process, thus a derived data type was not used. On
the other hand, four user processes were executed on the
cluster-I and the same number of MPI-I/O processes were
invoked on the cluster-II. Data were split evenly into four
pieces and each piece was managed by one of the user pro-
cesses in the collective manner. MPI-I/O processes car-
ried out I/O operations according to a created derived
data type.

Measured times were shown in Figure 5. In both the op-
erations, the collective case quite outperformed the non-
collective one. This was due to data buffering of the
MPICH library in the collective operations. Each MPI-
I/O process managed data of the corresponding user pro-
cess, and the process was able to cache the data in the
collective case. While a single MPI-I/O process was not
able to cache all the data due to memory size constraint
for the data buffering in the non-collective case. As a
result, the non-collective case took longer time than that
in the collective case.

Secondly, times for remote collective I/O operations were
measured with respect to maximum socket buffer size.
The size was adjusted by rmem max and wmem max in
/proc/sys/net/core/. I/O times for four user processes
are shown in Figure 6. It is noted that applying the twice

the product of network latency and bandwidth (2× 5 ms
×125 Mbyte/s = 1.25 Mbyte and 2×50 ms ×125 Mbyte/s
= 12.5 Mbyte for the 5 ms and 50 ms cases, respectively.)
in the maximum socket buffer size was sufficient to min-
imize the times. From these results, it is concluded that
optimization in the socket buffer size was quite effective
for long message data. However, the minimization effect
in the read operations was smaller than that in the write
operations in the case of 50 ms in latency. In the read
operations, every user processes had to wait until whole
data were transfered to an own user space memory buffer.
While in the write operations, I/O function calls finished
once the whole data were transfered to a kernel-space
memory buffer. In this case, it is considered that data
transfer from the PC cluster-I to the PC cluster-II and
I/O operations on the cluster-II were continuing after the
I/O function call finished. As a result, visible I/O times
became shorter than the real I/O times.

4 Related Work

Providing a common data format makes data I/O op-
erations not only portable but also tolerate for applica-
tion programmers. This kind of implementations such as
netCDF [1] and HDF5 [9] has been proposed. NetCDF
provides a self-describing and common multi-dimensional
data format and a simple interface. Its parallel I/O oper-
ations have been realized in parallel netCDF (PnetCDF),
which is an extension of the interface, by introduc-
ing MPI-I/O functions as an underlying parallel I/O li-
brary [4]. On the other hand, HDF5 provides hierarchi-
cal data format so as to access a huge amount of data
effectively. An HDF5 interface has two objects, one is
“Dataset” and the other is “Group”. The Dataset man-
ages multi-dimensional array data, while the Group pro-
vides relational mechanisms among the objects. Parallel
I/O operations are also available with this interface by
introducing MPI-I/O functions as an underlying parallel
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(a) read (b) write

Figure 5: I/O times of non-collective and collective PnetCDF functions for 5 ms latency network.

(a) read, latency = 5 ms (b) write, latency = 5 ms

(c) read, latency = 50 ms (d) write, latency = 50 ms

Figure 6: I/O times for collective PnetCDF functions using an integer data type. (a) and (b) show I/O times for
read and write operations using a network with 5 ms latency, respectively. While (c) and (d) show the times for the
same operations using a network with 50 ms latency. Number of each plot denotes a maximum socket buffer size for
TCP sockets.
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I/O interface library [10].

An MPI-I/O interface in the MPI-2 standard [11] real-
izes parallel I/O operations in an MPI program. Several
implementations of it are available such as ROMIO [12].
Its MPI-I/O operations to many kinds of file systems are
realized through an ADIO interface [13]. It hides het-
erogeneity in architectures of each system and provides
a common interface to an upper MPI-I/O layer. Remote
I/O operations using the ROMIO are available with the
help of RFS [14]. An RFS request handler on a remote
computer receives I/O requests from client processes and
calls an appropriate ADIO library. On the other hand,
Stampi itself is not an MPI implementation but a bridg-
ing library among different MPI implementations. It real-
izes seamless MPI operations among them by using TCP
socket communications.

5 Conclusions

We have studied optimization effects in collective
PnetCDF functions for remote I/O on a network with
long latency. In this study, we have observed that collec-
tive operations outperformed non-collective ones in re-
mote I/O operations. This was due to data buffering in
an MPICH library layer of MPI-I/O processes. We also
noticed that optimization in a maximum socket buffer
size was quite effective. Applying the twice the product
of bandwidth and network latency provided good perfor-
mance.

However, network communication is still bottleneck in
blocking operations. As a future work, we are planning
to implement a non-blocking API to overlap of compu-
tation by user processes and I/O operations by MPI-I/O
processes.
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