
A Scalable Index Mechanism for
High-Dimensional Data in Cluster File Systems

Kyu-Woong Lee ∗ Hun-Soon Lee, Mi-Young Lee, Myung-Joon Kim †‡

Abstract—We address the problem of designing in-
dex structures that allow efficient search for approx-
imate nearest neighbors in cluster file systems and
especially the scalability of index to parallel execu-
tion in order to provide adequate contents-based re-
trieval upon overwhelming multimedia data. Given
large image and video collections that are spread over
the world wide web, one of the most challenging field
is scalability in a view of performance. Almost ex-
isting index methods for high-dimensional data are
designed to run on a single machine. In this paper,
we propose the hybrid spill tree with local signature
files. We describe our scalable index structure and
how it can be used to find the nearest neighbors in
the cluster environments.

Keywords:high-dimensional index, feature vector, sig-

nature, contents-based retrieval, cluster systems

1 Introduction

The need to manage various types of large scale data
stored in web environments has drastically increased and
resulted in the development of index mechanism for high-
dimensional feature vector data about such a kinds of
multimedia data. Recent search engine for the multi-
media data in web environment may collect billions of
images, text and video data, which makes the perfor-
mance bottleneck to get a suitable web documents and
contents. Given large image and video data collections, a
basic problem is to find objects that cover a given infor-
mation need. Due to the huge amount of data, keyword-
based techniques are too expensive, requiring too much
manual intervention. In contrast, a content-based infor-
mation retrieval(CBIR) system identifies the images most
similar to a given query image or video clip. It carries
out a similarity search.

A common approach to similarity search is to extract
features like a color information from the objects. Per-

∗Dept. of computer Science, Sangji University, Wonju Korea,
leekw@sangji.ac.kr

†Internet Server Group, ETRI, KOREA, {hunsoon, mylee,
joonkim}@etri.re.kr

‡This work was supported by the IT R&D program of
MIC/IITA. [2007-S-016-01, Development of Cost Effective and
Large Scale Global Internet Service Solution]

forming similarity search to find objects most similar to
a given object is a classical problem with many practi-
cal web applications. These problems involve a collec-
tion of various kinds of objects that are characterized by
a collection of relevant features. A feature typically is
represented by a point in a high-dimensional data space.
The number of features that is represented by dimen-
sionality ranges anywhere from tens to thousands. The
low-dimensional case is well solved, so the main issue is
that of dealing with a large number of dimensions, the
so-called ”curse of dimensionality”

Thus there is a need of indexing techniques that are
able to support execution of similarity queries in high-
dimensional space and furthermore these index tech-
niques should have the scalability to be adopted in cluster
environment. Despite decades of proposed index meth-
ods for high-dimensional data, the current solutions are
not entirely satisfactory because they have not considered
the scalability. If the system was to index significant frac-
tion of the web, the number of multimedia data to index
would be at least of the order billion. From the perfor-
mance point of view, we need the highly scalable index
mechanism which can run on the distributed computing
nodes of cluester file systems because the web search en-
gine have to deal with billions of images and video data
in the web.

In this paper, we propose the highly scalable index mech-
anism in cluster file systems, which can be easily extended
and executed parallelly on the clustered nodes so that the
higher performance can be achieved.

After providing some background and related works in
section 2, section 3 proposes the scalable index mecha-
nism in cluster file systems. Our method is designed to
parallely executed on the multiple nodes in clustered sys-
tems and is generally more suitable for management of
billions of image and video data stored in the web. We
use a tree-based index structure and signature of feature
vector to manage gigantic size of multimedia data. Sec-
tion 4 concludes and suggests topics for further research.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

2 Background and Related Works

There is an underlying needs of indexing techniques which
should support execution of similarity queries. A web
search engine that provides the contents-based retrieval
upon the multimedia data requires complex distance
functions to measure similarities of multi-dimensional
features, such as shape, color, and motion histogram.

Nearest Neighbor Search Nearest neighbor search has
been studied in the last decade. Each object is repre-
sented by a feature vector with high-dimension. Given
a new object’s features, the result is to find the existing
object which has the closest feature vector according to
designated distance measure. More formally speaking,
given a set of n points P = {p1, ..., pn} in a metric space
X with distance function d, preprocess P so as to effi-
ciently answer queries for finding the point in P closest
to a query point q ∈ X .

A general approach to the “similarity indexing ” among
the proposed in recent years is an index structure based
on metric tree [1, 2, 3, 4]. Metric Trees which is related
to Ball Trees are a spatial hierarchical structure for sup-
porting efficient nearest neighbor search. It is a binary
tree whose nodes represents a set of points. The root
node represents all points, and the points represented by
an internal node v is partitioned into two subsets, repre-
sented by its two children. Upon these trees, indexing a
metric space means to provide an efficient support for ac-
quiring the answer similarity queries, i.e. queries whose
purpose is to retrieve the objects which are similar to a
reference query object, and where the similarity between
objects is measured by a specific metric distance function
d. Formally, N(v) denotes the set of points represented
by node v and v.lc and v.rc denotes the left and right
child of node v. Then we have N(v) = N(v.lc)∪N(v.rc)
and ∅ = N(v.lc)∩N(v.rc) for all the non-leaf nodes. Each
node has two pivots denoted as v.lpv and v.rpv so that
the distance between them is the largest of all pair dis-
tances within N(v) and find the decision boundary L, as
shown in figure 1. All points to the left of L belong to v.lc
and all points to the right of L belong to v.rc. A search
on a metric tree is very efficient when the dimension of a
data set is low but it start to slow down as the dimension
of the data sets increases. Moreover it spends up to 95%
of the time in order to verify that it is the true nearest
neighbor with backtracking.

Hybrid Spill-Trees A spill-tree [5] is a improved version
of metric trees in which the children of a node can spill
over onto each other and share objects between left and
right children. Upon the partition procedure of metric
trees, the data points of v.lc and v.rc in a metric tree
are disjoint. Unlike metric trees, the spill tree node can
share data objects between two children. In a spill tree,

(b) spill tree

Boundary L

Decision
Boundary L

overlap nodes

non−overlap nodes

(c) Hybrid Spill Tree

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

��

�
�
�
�

����

����

��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��

����

��

�
�
�
�

N(v)

V.rpvV.lpv

N(v.rc)N(v.lc)

(a) metric tree

V.rpvV.lpv

LL LR

N(v.lc) N(v.rc)

N(v)

Decision

Figure 1: Metric Trees and Hybrid Spill Trees

the splitting criteria is extended to allow overlaps so that
some data points may belong to both v.lc and v.rc. We
choose two pivots v.lpv and v.rpv and determine the de-
cision boundary L like a metric tree. Then we define two
new separating boundary, LL and LR, both of which are
parallel to L and at distance τ from L. All the points
to the right of LL belong to the child v.rc, and all the
points to the left of LR belong to the child v.lc. The re-
gion between LL and LR is called overlapping buffer and
the points fall in this region are shared by v.lc and v.rc.
The overlap buffer width is 2τ . A spill tree based nearest
neighbor search uses defeatist search, which descends the
tree quickly using the decision boundaries at each level
without backtracking [5].

The depth of spill tree however may vary considerably
depending on the overlapping size τ . In the case of τ =
0, a spill tree is the same as a metric tree with depth
O(logn). On the other hand, If τ ≥‖ v.rpv − v.lpv ‖ /2,
then N(v.lc) = N(v.rc) = N.(v). In other words, both
children of node v contain all points of v. In this case,
the depth of spill tree is ∞
Hence hybrid spill trees are used which are a combination
of spill trees and metric trees. At each node, a decision
should be made whether to use an overlap node in a spill

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

tree or non-overlap node in a metric tree. For non-overlap
nodes, the backtracking is needed like a conventional met-
ric tree but we can still use defeatist search on overlap
nodes without backtracking. In practice, hybrid spill tree
are actually used.

Signature Files Signature indexing methods have been
basically developed for text databases [6, 7]. A signature
is a small abstraction of an object, which is typically en-
coded as a bit sequence. Given the signatures of a set of
objects and of a query, efficient bit-wise operations can
be used to eliminate many objects which cannot possi-
bly match the query. Thus, a signature file is in effect
a filtering technique. The VA-file [8, 9, 10, 11, 12] is a
linear approach that uses approximations of the signa-
ture vectors instead of the full feature vectors for most
computations. The VA-file consists of two separate files:
the vector file containing the feature data, and the ap-
proximation file containing a quantization(signature) of
each feature vector. The nearest neighbor of a query is
found similarly to signature techniques [6, 7]. In VA-file
structure, for each vector, a b-bit approximation is de-
rived. Each dimension j has the number of bits bj. A
first step scans only the signature file and then a sec-
ond step accesses some of the vectors corresponding to
signature candidates to determine the nearest neighbor.
The relationship between the number of bits(b) and the
number of dimensions(d) determines bj as follows.

bj = 	 b

d

 +

{
1, j ≤ b mod d
0, otherwise

The figure 2 shows an example of signature from the real
feature data. The point 1 with vector data {0.9, 0.1}
in figure 2 has a 11 as a X coordinate value and a 00
as a Y coordinate value. Thus the signature of point
1 is 1100. The major advantage of signature indexing
method is that it retains good performance as dimen-
sionality increases and is relatively to parallelize and dis-
tribute. However it still has the difficulty to avoid the
sequential search in the signature file. Even though a
signature file can be stored in the distributed manner,
the entire set of partitioned signature file should exam-
ined in order to get the k nearest neighbor of a given
query.

Hybrid Spill Trees in Parallel The scalable version
of an approximate nearest neighbor search algorithm was
suggested in the paper [13]. The main challenge in scaling
up the hybrid spill tree generation algorithm is that it
requires all the object’s feature vectors to be in memory.
In a collection of over a billion images in web documents,
there are nearly a thousand times as many as can fit
into one machine’s memory. The paper [13] suggested
the intelligent partition of the data. They first create a
random sample of data small enough to fit on a single

Signature

01

10

11

00 01 10 11

2

5

4

3

1

data space

10 11

11 00

00 01

00 11

01 10

1

2

3

4

5

0.6

0.9

0.1

01.

0.3

0.8

0.1

0.4

0.9

0.7

Feature Vector

00

Figure 2: An Example of Signature File

node, say 1/M of the data, and build the metric tree for
this data. Each of the leaf node in this top metric tree
then defines a partition, for which a hybrid spill tree can
be built on a separate machine, as described in figure 3.

Metric
Tree

Hybrid
Spill Tree

Hybrid
Spill Tree

Figure 3: Hybrid Spill Trees in Parallel

3 Hybrid Spill Tree with Signature files

For the nearest neighbor search, the tree-based and
signature-based indexing methods have been proposed.
The tree-based indexing still has the difficulty since we
have to perform the backtracking in a tree in order to get
the k nearest neighbor. It is not convenient to extend
to the distributed or cluster file systems. The signature-

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

based indexing has also disadvantages because of scala-
bility into the cluster file systems. Moreover very large
scale image collections are difficult to efficiently organize
and navigate in a machine.

Thus, we propose a scalable indexing mechanism for find-
ing the approximate nearest neighbor in the billions of
images and other multimedia data. Our method use a
basic concept of hybrid spill tree and signature file. First
the hybrid spill tree is built based on the sample vector
data that is extracted from the original feature vector file.
The size of sample feature data has to be determined by
the capacity of a machine that accommodate the hybrid
spill tree. All the leaf node of hybrid spill tree makes
the signature file for feature vectors of the corresponding
range of each node in hybrid spill tree.

3.1 Overall Construction Procedure

The high dimensional data space is transformed into a hy-
brid spill tree in our method. In this construction step,
the hybrid spill tree just consider sampled feature data
from the original high dimensional data space. The leaf
node which should be accommodated in a distinct ma-
chine has a local signature file for the corresponding range
of original feature vector. Thus we can support the paral-
lel search through the leaf nodes and ensure the efficient
response for the contents-based retrieval.

The figure 4 describes the overall construction procedure
of hybrid spill tree with signature files. The sampler in

Generator

Constructor

Index Manager

Multimedia Data
(image, movie, ...)

Feature Vector
Extractor Sampler

Feature Vector
Distributor

Signature File

Hybrid Spill Tree

Figure 4: Overall Construction Procedure

figure 4 extracts some feature vector from the original
vector file as described at step (1) in figure 5. The sam-
pled feature vectors should be in a machine’s memory.
Then hybrid spill tree constructor makes a basic hybrid

spill tree based on the sampled feature vector as shown
at step (2) in figure 5. At step (3), the feature vector
distributor sends the feature vector to the corresponding
computing machine according to the range of each leaf
node. The signature file generator at each machine col-
lects the feature vector which is sent by distributor and
makes its signature and stores in its own local signature
file, as illustrated in figure 5.

machine 1
Step 3 : Distribute
 Feature Vectors

machine 2

Step 4 : Make the Local Signature machine n

Sampled
Feature Vector

N−dimensional Feature Vector File

Step 2 : Construct HSP

Step 1: Sampling

Local Feature
Vector File

Local
Signature

Spill Tree
Hybrid

Internal Node

Leaf Node

Figure 5: Hybrid Spill Tree with Local Signature Files

3.2 Query Processing in Hybrid Spill Tree
with Local Signature Files

After the hybrid spill trees with signature files have been
built, they can be queried. The top tree with the signa-
ture files can be regarded as one large hybrid spill tree
which is managed in a machine. As mentioned in previ-
ous section, the top hybrid spill tree cannot consider all
feature vector data due to the capacity of a machine’s
memory. In order to find the k nearest neighbor, the top
tree only guide the way which node(machine) has the the
nearest neighbor from the given query point. At this step,
if the parent node of leaf node is not a overlapped node,
the candidate node can be more than one node because
of the basic characteristics of hybrid spill trees. We hence
the query send to multiple candidate nodes and each node
process it to find the nearest neighbor concurrently. At
each node, the local signature file is used to find the near-
est neighbor. For the signature of the given query, the
local signature file is scanned sequentially.

Figure 6 describes the overall process of query process-
ing in hybrid spill tree with local signature files and the
traverse for the nearest neighbor is illustrated in figure 7
For the given query, we first extract the feature vector of
the query by using conventional extracting tools. Then

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Given Query

hybrid spill tree

Extract the feature vector
from the given query

Determine the Candidate nodes
in the hybrid spill tree

make the signature of the
given query

Search in the local signature
files at each candidate nodes

find the candidates for the nearest
neighbors in the local signature files

Get the feature vectors
according to the candidates

Return the list of candidate
feature vectors

Tree search in

Figure 6: Query Processing in Hybrid Spill Tree with
Local Signature Files

we traverse the top tree in order to determine which leaf
nodes can process the given feature vector. After the
candidates are determined, the candidates make the sig-
nature of the query’s feature vector and search in the
local signature file at each node. We finally decide the
feature vector as the result of query in the local feature
vector files by using the candidates of the local signature
file.

Our proposed hybrid spill tree with local signature files
ensures the efficient processing to find the nearest neigh-
bor since our index structure can be easily partitioned to
cluster environments and operated by multiple comput-
ing nodes.

the given feature vector

candidates

Find the corresponding
feature vectors and
return them

A given query

Local Feature

Vector File

Determine the

A feature vector of

Local

Signature

the given query

Make a signature of

Search in

Hybrid

Spill Tree

the local
signature files

Figure 7: Traverse in Hybrid Spill Tree with Local Sig-
nature Files

4 Conclusion

Almost all existing index methods for high-dimensional
data are designed to run on a single machine and are
not useful to extend to cluster environments. Given large
image and video collections that are spread over the world
wide web, we have to provide the index scalability in
a view of performance. Thus, in this paper, we have
proposed the highly scalable index mechanism which can
run on the distributed computing nodes of cluester file
systems because the web search engine has to deal with
billions of images and video data in the web. We have
described the hybrid spill tree with local signature files
that can be used for building parallel distributed index
structure.

References

[1] P. Ciaccia, M. Patella, and P. Zezula, “M-tree : An
efficient access method for similarity search in met-
ric spaces,” in Proc. of the 23rd VLDB Conference
Athens, Greece, 1997.

[2] P. Ciaccia, P. Zezula, and M. Patella, “M-
tree: An efficient access method for similarity
search in metric spaces,” in The VLDB Journal,
1997, pp. 426–435. [Online]. Available: cite-
seer.ist.psu.edu/article/ciaccia97mtree.html

[3] P. Ciaccia and M. Patella, “Bulk loading the
m-tree,” in Proc. of the 9th Australasian Database
Conference (ADC’98), pages 15–26, Perth, Aus-

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

tralia, February 1998., 1998. [Online]. Available:
citeseer.ist.psu.edu/ciaccia98bulk.html

[4] A. W. Moore, “The anchors hierarchy: Us-
ing the triangle inequality to survive high
dimensional data,” in Proc. of the 20th Con-
ference on Uncertainty in Artificial Intelligence,
2000, pp. 397–405. [Online]. Available: cite-
seer.ist.psu.edu/moore00anchors.html

[5] T. Liu, A. W. Moore, A. Gray, and K. Yang, “An
investigation of practical approximate nearest neigh-
bor algorithms,” in Proc. of the Adavances in Neural
Information Processing Systems, 2004.

[6] Z. Lin and C. Faloutsos, “Frame-sliced signature
files,” IEEE Transaction on Data Engienering,
vol. 4, no. 3, 1992.

[7] Z. Lin, “Concurrent frame signature files,” Dis-
tributed and Parallel Databases : An International
Journal, vol. 1, no. 2, 1993.

[8] R. Weber and S. Blott, “An approxi-
mation based data structure for similar-
ity search,” 1997. [Online]. Available: cite-
seer.ist.psu.edu/weber97approximationbased.html

[9] R. Weber, K. Böhm, and H.-J. Schek, “Interactive-
time similarity search for large image collections
using parallel VA-files,” in Lecture Notes in Com-
puter Science, vol. 1923, 2000, pp. 83+. [Online].
Available: citeseer.ist.psu.edu/344285.html

[10] S. Blott and R. Weber, “A simple vector approxi-
mation file for similarity search in high-dimensional
vector spaces,” 1997. [Online]. Available: cite-
seer.ist.psu.edu/blott97simple.html

[11] R. Weber and K. Böhm, “Trading quality for
time with nearest-neighbor search,” Lecture Notes
in Computer Science, vol. 1777, 2000. [Online].
Available: citeseer.ist.psu.edu/weber00trading.html

[12] R. Weber, H.-J. Schek, and S. Blott, “A quantitative
analysis and performance study for similarity-
search methods in high-dimensional spaces,” in
Proc. 24th Int. Conf. Very Large Data Bases,
VLDB, 1998, pp. 194–205. [Online]. Available:
citeseer.ist.psu.edu/weber98quantitative.html

[13] T. Liu, C. Ronsenberg, and H. A. Rowley, “Cluster-
ing billions of images with large scale nearest neigh-
bor search,” in Proc. of the IEEE Workshop on Ap-
plications of Computer Vision, 2007.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

