
A Linear-Time Algorithm for the Terminal Path
Cover Problem in Block Graphs

Ruo-Wei Hung∗†

Abstract—In this paper, we study a variant of the
path cover problem, namely, the terminal path cover
problem. Given a graph G and a subset T of ver-
tices of G, a terminal path cover of G with respect
to T is a set of pairwise vertex-disjoint paths PC that
covers the vertices of G such that the vertices of T
are all endpoints of the paths in PC. The terminal
path cover problem is to find a terminal path cover of
G of minimum cardinality; note that, if T is empty,
the stated problem coincides with the classical path
cover problem. We show that the terminal path cover
problem can be solved in linear time on the class of
block graphs. More precisely, we first establish a tree
structural representation for the class of block graphs.
Then, based on the tree structure, we present an al-
gorithm which, for a block graph G on n vertices and
m edges, computes a minimum terminal path cover
of G in linear time, that is, in O(n+m) time. The
proposed algorithm is simple and only requires linear
space.

Keywords: graph algorithms, path cover, terminal path

cover, block graphs, linear-time algorithms

1 Introduction

1.1 Framework–Motivation

A well studied problem with numerous practical appli-
cations in graph theory is to find a minimum number of
vertex-disjoint paths of a graph G that covers the vertices
of G. This problem, also known as the path cover prob-
lem, finds application in the fields of VLSI design, code
optimization [4], mapping parallel programs to parallel
architectures [14, 18], making a network have a Hamilto-
nian cycle [9, 21], and program testing [17]. It is evident
that the path cover problem for general graphs is NP-
complete since finding a path cover, consisting of a single
path, corresponds directly to the Hamiltonian path prob-
lem, that is, the problem of deciding whether a graph has
a Hamiltonian path [8].

The Hamiltonian path problem on some special classes of
graphs, including bipartite graphs [13], chordal bipartite
graphs [15], undirected path graphs [3], and directed path

∗Department of Computer Science and Information Engineer-
ing, Chaoyang University of Technology, No. 168, Jifong E. Rd.,
Wufong Township, Taichung Country 41349, Taiwan

†Email:rwhung@cyut.edu.tw

graphs [16], has been shown to be NP-complete. Hence,
the path cover problem on these above classes of graphs is
also NP-complete. However, the path cover problem ad-
mits polynomial time algorithms to solve when the input
is restricted to be in some classes of graphs, including
trees [14], block graphs [22, 23], interval graphs [2, 5],
circular-arc graphs [11], distance-hereditary graphs [10],
and cocomparability graphs [7].

Consider an application of the path cover problem that
mapping a parallel program into a parallel architecture.
The parallel program is divided into some units. The
relations among program units can be represented as a
graph, where program units are represented as vertices,
and two vertices are adjacent if their represented units are
relevant. Then, the program units are mapped into the
processors of the parallel architecture. The capabilities
of the parallel architecture can be increased by adding
some auxiliary links among the processors. The mini-
mum set of edges needed to augment the parallel archi-
tecture so that it can accommodate the parallel program
is determined by a minimum path cover of the graph rep-
resenting the parallel program. However, some program
units of the parallel program may run first. Hence, some
program units must be the endpoints of paths in a path
cover.

Motivated by the above issue we state a variant of the
path cover problem, namely, the terminal path cover prob-
lem, which generalizes the path cover problem. Let G be
a graph and let T be a subset of vertices of G. A terminal
path cover of G with respect to T is a path cover of G
such that the vertices of T are all endpoints of the paths
in the path cover. A minimum terminal path cover of G
with respect to T is a terminal path cover of G of mini-
mum cardinality. The terminal path cover problem is to
find a minimum terminal path cover of G. We denote the
cardinality of a minimum terminal path cover of G with
respect to T by π(G, T), called the minimum terminal
path cover number. We call T the terminal set of G, the
vertices in T the terminals, and the other vertices free
vertices. Note that the path cover problem is a special
case of the terminal path cover problem with T = ∅.

We show that the terminal path cover problem is linear
solvable on the class of block graphs. We now introduce
block graphs as follows. Let G be a connected graph. A

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

vertex υ in G is called a cut vertex if the removal of υ
from G increases the number of connected components.
A block is a maximal connected subgraph without a cut
vertex. The intersection of two distinct blocks contains at
most one vertex, and a vertex is a cut vertex if and only if
it is the intersection of two or more blocks. Consequently,
a graph with one or more cut vertices has at least two
blocks. A connected graph is a block graph if every block
in it is a clique (complete graph). Note that the line
graph of a tree is a block graph, but the reverse is not
true, i.e., the class of block graphs is the super-class of
trees.

1.2 Contribution and Related Works

In this paper, we study the the complexity status of the
terminal path cover problem on the class of block graph,
and show that this problem can be solved in linear time
when the input is a block graph. More precisely, we es-
tablish a tree structure of a block graph. Based on the
structure, we traverse its nodes bottom-up and then com-
pute the related minimum terminal path cover numbers.
After completing the traversal, the size of a minimum
terminal path cover of a block graph G with n vertices
and m edges is obtained. The proposed algorithm runs
in time linear in the size of the input graph G, that is, in
O(n + m) time, and requires linear space. To the best of
our knowledge, this is the first linear-time algorithm for
solving the terminal path cover problem on the class of
block graphs.

Previous related works are summarized below. Moran
and Wolfstahl solved the path cover problem on trees
[14]. Skikant et al. proposed a linear-time algorithm
for the path cover problem on block graphs [20]. How-
ever, as pointed out by Yan and Chang [23], their al-
gorithm does not work for all block graphs. Then, Yan
and Chang gave another linear-time algorithm to solve
the path cover problem on block graphs [23]. Although
Wong [22] pointed out Yan and Chang’s linear-time algo-
rithm in [23] for the path cover problem on block graphs
is not correct, Chang [6] corrected one typo at the algo-
rithm in [23] and stated that the algorithm in [22] is much
more complicated and is not clear to be implemented in
linear time. Thus the linear-time algorithm proposed in
[23] is correct and is more simple. Note that the path
cover problem is a special case of the terminal path cover
problem. In this paper, we will expand Yan and Chang’s
result to solve the terminal path cover problem on block
graphs in linear time.

1.3 Road Map

The paper is organized as follows. In Section 2, we estab-
lish the notation and related terminology, and we present
background results. In Section 3, we present our linear-
time algorithm for the terminal path cover problem on
block graphs. Finally, in Section 4 we conclude the paper

v1

v2
v5

v3

v6

v4
v9

v7
v8

v1

v2

v5

v3

v6 v4

v9

v7

v8

v12

v11

v10

(a) (b)

B
1

B
2

B
3

B
4

B
5

B
6

B
7

Figure 1: (a) A tree, and (b) a block graph.

and discuss possible future extensions.

2 Theoretical Framework

We consider finite undirected graphs without loops or
multiple edges. Let G = (V,E) be a graph with terminal
set T and let p be a simple path in G. We denote the ver-
tex set and edge set of G by V (G) and E(G), respectively.
The set of vertices visited by p is denoted by V (p). Let v
be a vertex in G and V ′ be a subset of V (G). We denote
G − v by deleting v and edges incident to v from G and
denote by G−V ′ the graph obtained from G by deleting
all vertices of V ′ and edges incident to any vertex of V ′.
For simplicity, we denote T − {v} by T − v, and denote
T ∪ {v} by T + v. Let G′ be a subgraph of G and let
PC be a terminal path cover of G. We denote T ∩ V (G′)
by TG′ and denote the restriction of PC to G′ by PCG′ .
Then, PCG′ is a terminal path cover of G′ with respect to
TG′ . For two vertex-disjoint paths p1 = u1u2 · · ·u|p1| and
p2 = v1v2 · · · v|p2| of G such that u|p1| and v1 are adjacent,
let p1 → p2 denote the path u1u2 · · ·u|p1|v1v2 · · · v|p2| that
is said to be the concatenation of p1 and p2.

2.1 The Block Tree

Let G be a block graph. Then, every block in G is a
clique (complete graph) and every cut vertex is the inter-
section of two or more blocks in G. If Bi and Bj are two
distinct blocks in G, then Bi ∩ Bj is empty or contains
at most one vertex [1, 12, 19, 22]. For instance, Figure
1(b) depicts a block graph and v1 is a cut vertex which is
the intersection of blocks B1, B2, and B3. On the other
hand, Figure 1(a) reveals a tree. We can find that there
are many similarities between them. In fact, trees are
block graphs. It follows from the above observations that
we can construct a tree-like hierarchy, called block tree,
from a block graph as follows.

Definition 1. Let G be a block graph containing t blocks
B1, B2, · · · , Bt. The representation tree T ∗ = (V ∗, E∗)
of G is constructed as follows: Create t new nodes
B1, B2, · · · , Bt standing for these t blocks in G. Let
BT = {B1, B2, · · · , Bt} and let V ∗ = V ∪ BT . The
edge set E∗ of T ∗ is defined as {(vi, Bj)|vi ∈ Bj in G
for vi ∈ V (G) and t ≥ j ≥ 1}.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

B
1

v2
v3 v4

v5

B
2

B
3

B
4

B
5

v1

v6 v12
v7 v9

v8

B
6

v10 v11

: block node

: cut node

: end vertex

B
7

(b)(a)

v1

v2

v3

v4

v5v6

v7 v8
v9 v10

v11

v12

B
1

B
2

B
3

B
4 B

5 B
6

B
7

B

Figure 2: (a) A representation tree constructed from a
block graph shown in Figure 1(b), and (b) a block tree
TB with root B = B1 for (a).

Clearly, T ∗ is a tree. For instance, given a block graph G
shown in Figure 1(b), the representation tree T ∗ of G is
shown in Figure 2(a). While picking an arbitrary block
node B of T ∗ as the root, we get a rooted tree with root B.
This rooted tree, denoted by TB = (V ∗, E∗), is called the
block tree corresponding to block graph G. Figure 2(b)
depicts the block tree of the block graph shown in Figure
1(b). Note that rooting a representation tree suggests
a natural way to decompose the computation. On the
other hand, given a block graph G the block tree can be
constructed in O(|V (G)|+|E(G)|) time by the depth first
search [1].

We call an element of V ∗ a node of block tree TB in
general. The element of V ∗ is called a block node of TB
if it is in BT ; that is, it is not a vertex of V (G). A node
is called an end vertex in TB if it is in V (G) but it is
not a cut vertex in G. The remains are called cut nodes.
Figure 2(b) also reveals the types of nodes in TB.

Let G be a block graph and let TB be its corresponding
block tree with root B. The subtree of TB rooted at node
ω is denoted by Tω, where ω is either a cut node or a block
node in TB. Let Gω denote the subgraph of G induced by
the set of vertices of V (G) which are nodes in the subtree
Tω of TB. For instance, GB4 = ({v7, v8}, {(v7, v8)}) and
Gv1 = ({v1, v5, v6}, {(v1, v5), (v1, v6)}) in Figure 2.

2.2 The Background Results

In this subsection, we establish some basic lemmas that
are used in proving our main results. Let G be a graph.
Since removing a terminal from a terminal path cover of
G will decrease the number of paths by at most one, the
following lemma and corollary can be easily verified.

Lemma 1. Assume that G is a graph with terminal set
T and v ∈ T . Then, π(G − v, T − v) + 1 ≥ π(G, T) ≥
π(G − v, T − v).

Corollary 2. Assume that G is a graph with terminal
set T and v ∈ T . Then, π(G, T) > π(G − v, T − v) if
and only if π(G, T) = π(G − v, T − v) + 1.

For a graph G with terminal set T and a free vertex v of

G, we have the following lemma and corollary.

Lemma 3. Assume that G is a graph with terminal set
T and v ∈ V (G) − T . Then, the following statements
hold:
(1) π(G − v, T) + 1 ≥ π(G, T + v);
(2) π(G, T + v) ≥ π(G, T);
(3) π(G − v, T) + 1 ≥ π(G, T + v) ≥ π(G − v, T).

Proof. Since a minimum terminal path cover of G−v with
respect to T together with the path v forms a terminal
path cover of G with respect to T + v, π(G− v, T) + 1 ≥
π(G, T + v). Since a minimum terminal path cover of G
with respect to T + v is a terminal path cover of G with
respect to T , π(G, T +v) ≥ π(G, T). On the other hand,
suppose that PC is a minimum terminal path cover of G
with respect to T + v. Consider removing vertex v from
PC. What results is a terminal path cover P̃C of G − v
with respect to T . Since the deletion of a terminal in PC
will decrease the number of paths by at most one and v
is an endpoint of a path in PC, we get that |P̃C| = |PC|
or |P̃C| = |PC| − 1. Since P̃C is a terminal path cover
of G − v with respect to T , |P̃C| ≥ π(G − v, T). Thus,
|PC| = π(G, T + v) ≥ |P̃C| ≥ π(G − v, T). Combining
with Statement (1), we obtain that π(G − v, T) + 1 ≥
π(G, T + v) ≥ π(G − v, T).

Corollary 4. Assume that G is a graph with terminal
set T and v ∈ V (G) − T . Then, π(G, T) > π(G − v, T)
if and only if π(G, T) = π(G, T + v) = π(G − v, T) + 1.

3 The Terminal Path Cover Problem in
Block Graphs

We next present a linear-time algorithm to solve the ter-
minal path cover problem on block graphs. In the rest of
the paper, let G denote a block graph with terminal set
T and let TB represent its block tree with root B. We will
traverse the nodes of TB in a bottom-up manner. Then,
the traversed node may be either a block node or a cut
node.

3.1 Block Nodes

Suppose that B is a block node with children
v1, v2, · · · , vc in TB. By definition, v1, v2, · · · , vc form a
clique and (Gvi

− vi)’s are pairwise disjoint for c ≥ i ≥ 1.
By Lemma 1, if vi ∈ T then either π(Gvi

, TGvi
) = π(Gvi

−
vi, TGvi

− vi)+1 or π(Gvi
, TGvi

) = π(Gvi
− vi, TGvi

− vi).
By Lemma 3, if vi �∈ T and π(Gvi

, TGvi
) = π(Gvi

, TGvi
+

vi) then either π(Gvi
, TGvi

) = π(Gvi
− vi, TGvi

) + 1 or
π(Gvi

, TGvi
) = π(Gvi

− vi, TGvi
). Note that vi is a free

vertex and π(Gvi
, TGvi

) = π(Gvi
, TGvi

+ vi) implies that
vi is an endpoint of a path in a minimum terminal path
cover of Gvi

with respect to TGvi
. We then define the

following notation:

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

It Jt If Jf

Figure 3: The sketch map of It, Jt, If , Jf , where terminals
are drawn by filled circle, a line represents a path, and
for vi ∈ It ∪ If , vi is a path in a minimum terminal path
cover of Gvi

.

Definition 2. Let B is a block node with children
v1, v2, · · · , vc in block tree TB. Define
It = {vi ∈ T |c ≥ i ≥ 1, π(Gvi

, TGvi
) = π(Gvi

− vi, TGvi
−

vi) + 1},
Jt = {vi ∈ T |c ≥ i ≥ 1, π(Gvi

, TGvi
) = π(Gvi

− vi, TGvi
−

vi)},
If = {vi �∈ T |c ≥ i ≥ 1, π(Gvi

, TGvi
) = π(Gvi

, TGvi
+

vi) = π(Gvi
− vi, TGvi

) + 1},
Jf = {vi �∈ T |c ≥ i ≥ 1, π(Gvi

, TGvi
) = π(Gvi

, TGvi
+

vi) = π(Gvi
− vi, TGvi

)}.

By Lemma 1, It ∪ Jt = {vi|c ≥ i ≥ 1, vi ∈ T }. By
Lemma 3, If ∪ Jf = {vi|c ≥ i ≥ 1, vi �∈ T , π(Gvi

, TGvi
) =

π(Gvi
, TGvi

+ vi)}. Figure 3 gives a brief illustration of
It, Jt, If , Jf . We then have the following lemma for com-
puting π(GB , TGB

).

Lemma 5. Assume that B is a block node with children
v1, v2, · · · , vc in block tree TB. Then,

π(GB , TGB
) =

c∑
i=1

π(Gvi
, TGvi

) − |If | + 1

, if If �= ∅ and It ∪ Jf = ∅;
c∑

i=1

π(Gvi
, TGvi

) − |If | − � |It|+|Jf |
2 	

, otherwise.

Proof. For each c ≥ i ≥ 1, let PCi be a minimum terminal
path cover of Gvi

with respect to TGvi
. For vi ∈ It (resp.

vi ∈ Jt, vi ∈ If , vi ∈ Jf), we may assume that vi (resp.
vi → pi, vi, vi → pi) is a path in PCi with vi ∈ TGvi

(resp. vi ∈ TGvi
and pi �= ∅, vi �∈ TGvi

, vi �∈ TGvi
and

pi �= ∅). For the case of If �= ∅ and It ∪ Jf = ∅, let PC =
∪c≥i≥1PCi−∪vi∈If

{vi}∪{p}, where p is a path visiting all
vi’s of If . Then, PC is a terminal path cover of GB with

respect to TGB
. Hence, π(GB , TGB

) ≤
c∑

i=1

π(Gi, TGvi
) −

|If | + 1. For the other cases, let P = ∪vi∈It
{vi} ∪vi∈Jf

{vi → pi} and let PC = ∪c≥i≥1PCi − ∪vi∈If
{vi} − P ∪

{p1, p2, · · · , p� |It|+|Jf |
2 �}, where each pi except p1 is the

concatenation of two paths in P and p1 is formed by the
remaining one or two paths in P together with all vi’s for
vi ∈ If . Then, PC is a terminal path cover of GB with

respect to TGB
. Hence, π(GB , TGB

) ≤
c∑

i=1

π(Gvi
, TGvi

) −

|If | − � |It|+|Jf |
2 	.

On the other hand, suppose that PC is a minimum termi-
nal path cover of GB with respect to TGB

. A path in PC
is called mixed if it contains vertices in at least two differ-
ent Gvi

’s. We may assume that PC is chosen to contain
the fewest vertices in all mixed paths. Any mixed path r
is of the form r′ → r′′ → r′′′, where r′ or r′′′ is either ∅,
vi in TGvi

, or a nontrivial path in some Gvi
with vi as an

endpoint, and r′′ is either ∅ or a sequence of some vi’s.
It follows that the deletion of any vertex x in r′′ is still a
path, which we denote by r − x. Let
I ′ = {vi|c ≥ i ≥ 1, vi is the only vertex of Gvi

that is in
some mixed path r and vi �∈ TGvi

}, and
J ′ = {vi|c ≥ i ≥ 1, Gvi

contains a nonempty r′ or r′′′ of
a mixed path r}.
It is easy to see that I ′ ∩ J ′ = ∅. We claim that I ′ ⊆ If

and J ′ ⊆ If ∪ It ∪ Jf .

Next, we will prove the above two claims. Suppose that
vi ∈ I ′ − If . Let vi be the only vertex of Gvi

that is
in some mixed path r. By definition, vi �∈ TGvi

. Con-
sider the terminal path cover P̃C = PC − PCGvi

−vi
−

{r} ∪ PCi ∪ {r − vi} of GB . Then, we get that |P̃C| =
|PC| − |PCGvi

−vi
| + |PCi| ≤ |PC| − π(Gvi

− vi, TGvi
) +

π(Gvi
, TGvi

) ≤ |PC| since vi �∈ If and vi �∈ TGvi
implies

π(Gvi
, TGvi

) ≤ π(Gvi
− vi, TGvi

) by Corollary 4. Con-
sequently, P̃C is another minimum terminal path cover
of GB with fewer vertices in all mixed paths than PC, a
contradiction. Hence, I ′ ⊆ If .

Suppose that vi ∈ J ′−(If ∪It∪Jf). Without loss of gen-
erality, assume that Gvi

contains a nonempty r′i for some
mixed path ri = r′i → r′′i → r′′′i . Consider that r′i con-
tains vi ∈ TGvi

only. Let P̃C = PC − {ri} − PCGvi
−vi

∪
PCi ∪ {ri − vi}. Then, P̃C is a terminal path cover of
GB with respect to TGB

and |P̃C| = |PC| − |PCGvi
−vi

|+
|PCi| ≤ |PC|−π(Gvi

−vi, TGvi
−vi)+π(Gvi

, TGvi
) ≤ |PC|

since vi �∈ It and vi ∈ TGvi
implies that π(Gvi

, TGvi
) ≤

π(Gvi
− vi, TGvi

− vi) by Corollary 2. Consequently, P̃C
is another minimum terminal path cover of GB with
fewer vertices than PC in all mixed paths, a contra-
diction. Now, consider that r′i = r̃i → vi such that
r̃i �= ∅ and vi �∈ TGvi

. Consider the terminal path cover
P̃C = PC − {ri} − PCGvi

−V (r′
i)
∪ PCi ∪ {r′′i → r′′′i } of

GB , where PCGvi
−V (r′

i)
∪ {r′i} forms a terminal path

cover of Gvi
with respect to TGvi

+ vi. Then, |P̃C| =
|PC| − |PCGvi

−V (r′
i)
| + |PCi| ≤ |PC| − (π(Gvi

, TGvi
+

vi) − 1) + π(Gvi
, TGvi

) ≤ |PC| since vi �∈ If ∪ Jf and
vi �∈ TGvi

implies that π(Gvi
, TGvi

+ vi) > π(Gvi
, TGvi

)
by Statement (2) of Lemma 3. Consequently, P̃C is an-
other minimum terminal path cover of GB with fewer ver-
tices than PC in all mixed paths, a contradiction. Thus,
J ′ ⊆ If ∪ It ∪ Jf .

Now, suppose PC has κ mixed paths. Then,
π(GB , TGB

) = |PC| =
∑

vi �∈I′∪J ′
|PCi| +

∑
vi∈I′

|PCGvi
−vi

| +

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

∑
vi∈J ′∩It

|PCGvi
−vi

| +
∑

vi∈J ′∩(If∪Jf)

|PCGvi
−V (r′

i)
| + κ

≥
∑

vi �∈I′∪J ′
π(Gvi

, TGvi
) +

∑
vi∈I′

π(Gvi
− vi, TGvi

) +∑
vi∈J ′∩It

(π(Gvi
, TGvi

) − 1) +
∑

vi∈J ′∩(If∪Jf)

(π(Gvi
, TGvi

) −

1) + κ =
c∑

i=1

π(Gvi
, TGvi

) − |I ′| − |J ′| + κ.

For the case of If �= ∅ and It ∪ Jf = ∅, I ′ ∪ J ′ ⊆ If . If
κ = 0, then I ′ = J ′ = ∅, and, hence, −|I ′| − |J ′| + κ =
0 ≥ −|If |+ 1. If κ ≥ 1, then −|I ′| − |J ′|+ κ ≥ −|If |+ 1.

Thus, π(GB , TGB
) ≥

c∑
i=1

π(Gvi
, TGvi

) − |I ′| − |J ′| + κ ≥
c∑

i=1

π(Gvi
, TGvi

) − |If | + 1. Consider the other cases.

Since each mixed path contains vertices in at most two
Gvi

’s with vi ∈ J ′, we get that κ ≥ � |J ′|
2 . Since J ′ ⊆

If ∪ It ∪Jf , we have that |J ′| = |J ′∩ If |+ |J ′∩ (It ∪Jf)|,
and, hence, � |J ′|

2 	 = � |J ′∩If |+|J ′∩(It∪Jf)|
2 	 ≤ |J ′ ∩ If | +

� |J ′∩(It∪Jf)|
2 	. Then, −|I ′| − |J ′| + κ ≥ −|I ′| − � |J ′|

2 	 ≥
−|I ′| − |J ′ ∩ If | − � |J ′∩(It∪Jf)|

2 	 ≥ −|If | − � |It|+|Jf |
2 	.

Thus, π(GB , TGB
) ≥

c∑
i=1

π(Gvi
, TGvi

) − |I ′| − |J ′| + κ ≥
c∑

i=1

π(Gvi
, TGvi

) − |If | − � |It|+|Jf |
2 	.

3.2 Cut Nodes

We then consider the cut nodes in block tree TB. Let υ
be a cut node with children block nodes B1, B2, · · · , Bb

in TB. By Lemma 5 and Definition 2, we should calculate
π(Gυ, TGυ

) and π(Gυ−υ, TGυ
−υ) if υ ∈ T ; and compute

π(Gυ, TGυ
), π(Gυ, TGυ

+υ), π(Gυ−υ, TGυ
) otherwise. For

υ ∈ T , we compute π(Gυ, TGυ
) and π(Gυ − υ, TGυ

− υ)
by Lemma 10 and Lemma 6, respectively. For υ �∈ T , we
compute π(Gυ, TGυ

), π(Gυ, TGυ
+υ), and π(Gυ −υ, TGυ

)
by Lemma 11, Lemma 12, and Lemma 6, respectively.
Since GB1 , GB2 , · · · , GBb

are pairwise disjoint, the fol-
lowing lemma is obvious:

Lemma 6. Assume that υ is a cut node with chil-
dren B1, B2, · · · , Bb in block tree TB. If υ ∈ T , then

π(Gυ−υ, TGυ
−υ) =

b∑
i=1

π(GBi
, TGBi

); otherwise, π(Gυ−

υ, TGυ
) =

b∑
i=1

π(GBi
, TGBi

).

Let B be a child of cut node υ in TB, and let v1, v2, · · · , vc

be the children of B in TB. Let GB +υ be the graph with
vertex set V (GB)∪{υ} and edge set E(GB)∪{(υ, vi)|c ≥
i ≥ 1}. Recall that It, Jt, If , Jf are subsets of children
of B that are defined in Definition 2. For graph GB + υ,
we can construct its block tree T υ

B from TB by setting υ
to be the child of B such that T υ

B is rooted at B, B has
children υ, v1, v2, · · · , vc, and υ has no child. Then, the
following two lemmas can be easily verified from Lemma
5.

Lemma 7. Assume that υ is a cut node, B is a child
of υ, and that v1, v2, · · · , vc are children of B in TB. If

υ ∈ T , then π(GB + υ, TGB
+ υ) =

c∑
i=1

π(Gvi
, TGvi

) −

|If | − � |It|+|Jf |
2 + 1.

Lemma 8. Assume that υ is a cut node, B is a child
of υ, and that v1, v2, · · · , vc are children of B in TB. If
υ �∈ T , then

π(GB+υ, TGB
) =

c∑
i=1

π(Gvi
, TGvi

) − |If | + 1

, if It ∪ Jf = ∅;
c∑

i=1

π(Gvi
, TGvi

) − |If | − � |It|+|Jf |
2 	

, otherwise.

Assume that υ �∈ T is a cut node with child B in
TB. By setting υ to be a terminal, we can calculate
π(GB + υ, TGB

+ υ) by Lemma 7. Thus the following
lemma immediately holds:

Lemma 9. Assume that υ is a cut node, B is a child
of υ, and that v1, v2, · · · , vc are children of B in TB. If

υ �∈ T , then π(GB + υ, TGB
+ υ) =

c∑
i=1

π(Gvi
, TGvi

) −

|If | − � |It|+|Jf |
2 + 1.

Let υ be a cut node with child node B in TB. We observe
that (1) if υ is a terminal then it must be an endpoint
of a path in a minimum terminal path cover of Gυ with
respect to TGυ

, and (2) if υ is a free vertex and π(GB +
υ, TGB

) = π(GB + υ, TGB
+ υ) then υ is an endpoint

of a path in a minimum terminal path cover of GB + υ
with respect to TGB

. Using Lemmas 7– 9, we have the
following two lemmas. Due to the space limitation, the
proofs of these two lemmas are omitted.

Lemma 10. Assume that υ ∈ T is a cut node with
children B1, B2, · · · , Bb in block tree TB. If there ex-
ists Bλ for b ≥ λ ≥ 1 such that π(GBλ

+ υ, TGBλ
+ υ) =

π(GBλ
, TGBλ

), then π(Gυ, TGυ
) =

b∑
i=1

π(GBi
, TBi

); other-

wise, π(Gυ, TGυ
) =

b∑
i=1

π(GBi
, TBi

) + 1.

Lemma 11. Assume that υ �∈ T is a cut node with chil-
dren B1, B2, · · · , Bb in block tree TB. Let τ = |{Bi|b ≥
i ≥ 1, π(GBi

+ υ, TGBi
) = π(GBi

+ υ, TGBi
+ υ) =

π(GBi
, TGBi

)}| and let η = |{Bi|b ≥ i ≥ 1, π(GBi
+

υ, TGBi
) = π(GBi

, TGBi
)}|. Then,

π(Gυ, TGυ
) =

b∑
i=1

π(GBi
, TGBi

) − 1 , if τ ≥ 2;

b∑
i=1

π(GBi
, TGBi

) , if τ ≤ 1 and η ≥ 1;

b∑
i=1

π(GBi
, TGBi

) + 1 , otherwise.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

The following lemma can be easily obtained from Lemma
10 by setting a free vertex υ to become a terminal.

Lemma 12. Assume that υ �∈ T is a cut node with
children B1, B2, · · · , Bb in block tree TB. If there exists
Bλ for b ≥ λ ≥ 1 such that π(GBλ

+ υ, TGBλ
+ υ) =

π(GBλ
, TGBλ

), then π(Gυ, TGυ
+ υ) =

b∑
i=1

π(GBi
, TGBi

);

otherwise, π(Gυ, TGυ
+ υ) =

b∑
i=1

π(GBi
, TGBi

) + 1.

3.3 The Algorithm

Based on Lemma 5, Lemmas 6–9, and Lemmas 10–12,
given a block tree TB with terminal set T , a linear
algorithm for computing π(GB, T) is sketched as fol-
lows: Initially, let π(Gv, ∅) = 1, π(Gv, {v}) = 1, and
π(Gv − v, ∅) = 0 for each end vertex v �∈ T ; and let
π(Gv, {v}) = 1 and π(Gv − v, ∅) = 0 for each end vertex
v ∈ T . Our algorithm then traverses the nodes of TB in
a bottom-up manner. For each block node B, it com-
putes π(GB , TGB

) using Lemma 5. If B is the root of TB,
then it outputs π(GB , TGB

); otherwise, let υ be the par-
ent of B, if υ �∈ T then it computes π(GB + υ, TGB

) and
π(GB +υ, TGB

+υ) using Lemmas 8–9, otherwise it com-
putes π(GB +υ, TB +υ) by Lemma 7. For each cut node
υ, the algorithm computes π(Gυ, TGυ

) using Lemmas 10–
11, π(Gυ−υ, TGυ

−υ) using Lemma 6, and π(Gυ, TGυ
+υ)

using Lemma 12 if υ �∈ T . After visiting each node of TB
once, π(GB, T) is calculated.

The correctness of the above algorithm follows from
Lemma 5, Lemmas 6–9, and Lemmas 10–12. Now, we
analyze its complexity. Let B be a block node with c chil-
dren and let υ be a cut node with b children in TB. Then,
processing block node B and cut node υ takes O(c) and
O(b) time, respectively. Let B1, B2, · · · , Bt be the block
nodes in TB and let δ(Bi) denote the number of chil-

dren of Bi for t ≥ i ≥ 1. Then,
t∑

i=1

δ(Bi) = |V (GB)|.

Thus, processing all block nodes requires O(|V (GB)|)
time. Since the number of block nodes in TB is bounded in
O(|V (GB)|) and processing all cut nodes takes O(t) time,
processing all cut nodes requires O(|V (GB)|) time. It fol-
lows immediately from the above analyses that π(GB, T)
can be calculated in O(|V (GB)|) time.

Though we only describe the algorithm to compute
π(GB, T) for a block graph GB with terminal set T , it
can be easily extended to find a minimum terminal path
cover of GB in the same time bound. Hence, we conclude
the following theorem.

Theorem 13. Given a block graph G = (V,E) with ter-
minal set T , the terminal path cover problem on G can be
solved in O(|V | + |E|)-linear time. Moreover, if its block
tree is given, then the terminal path cover problem on G
can be solved in O(|V |) time.

4 Concluding Remarks

The path cover problem on block graphs is linear solvable
in [23]. However, the path cover problem is a special
case of terminal path cover problem with terminal set
be empty. In this paper, we first construct a block tree
of a block graph. Based on the block tree, we solve the
terminal path cover problem on block graphs in linear
time. It is interesting to know whether the approach used
in this paper can be applied to design efficient algorithms
for the terminal path cover problem on the other classes of
graphs, such as Ptolemaic graphs and distance-hereditary
graphs that are the super-classes of block graphs.

5 Acknowledgements

This research was partly supported by the National Sci-
ence Council of Taiwan under grant no. NSC96-2221-
E324-024. The author would like to thank anonymous
referee for many useful comments and suggestions which
have improved the presentation of this paper.

References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The De-
sign and Analysis of Computer Algorithms, Reading,
MA, 1974.

[2] S.R. Arikati, C.P. Rangan, “Linear algorithm for op-
timal path cover problem on interval graphs,” In-
form. Process. Lett., vol. 35, 1990, pp. 149–153.

[3] A.A. Bertossi, M.A. Bonuccelli, “Hamiltonian cir-
cuits in interval graph generalizations,” Inform. Pro-
cess. Lett., vol. 23, 1986, pp. 195–200.

[4] F.T. Boesch, J.F. Gimpel, “Covering the points a
digraph with point-disjoint paths and its application
to code optimization,” J. ACM, vol. 24, 1977, pp.
192–198.

[5] M.S. Chang, S.L. Peng, and J.L. Liaw, “Deferred-
query: an efficient approach for some problems on
interval graphs,” Networks, vol. 34, 1999, pp. 1–10.

[6] G.J. Chang, “Corrigendum to: The path-partition
problem in block graphs,” Inform. Process. Lett.,
vol. 83, 2002, pp. 293–293.

[7] P. Damaschke, J.S. Deogun, D. Kratsch, and G.
Steiner, “Finding Hamiltonian paths in cocompara-
bility graphs using the bump number algorithm,”
Order, vol. 8, 1992, pp. 383–391.

[8] M.R. Garey, D.S. Johnson, Computers and In-
tractability: A Guide to the Theory of NP-
Completeness, Freeman, San Francisco, CA, 1979.

[9] S. Goodman, S. Hedetniemi, “On the Hamiltonian
completion problem,” in: Proc. 1973 Capital Conf.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

on Graph Theory and Combinatorics, Lecture Notes
in Math., Springer, Berlin, vol. 406, 1974, pp. 262–
272.

[10] R.W. Hung, M.S. Chang, “Finding a minimum path
cover of a distance-hereditary graph in polynomial
time,” Discrete Appl. Math., vol. 155, 2007, pp.
2242–2256.

[11] R.W. Hung, M.S. Chang, “Solving the path cover
problem on circular-arc graphs by using an approx-
imation algorithm,” Discrete Appl. Math., vol. 154,
2006, pp. 76–105.

[12] L.T. Quoc Hung, M.M. Sys�lo, M.L. Weaver, and
D.B. West, “Bandwidth and density for block
graphs,” Discrete Math., vol. 189, 1998, pp. 163–176.

[13] M.S. Krishnamoorthy, “An NP-hard problem in bi-
partite graphs,” SIGACT News, vol. 7, 1976, pp.
26–26.

[14] S. Moran, Y. Wolfstahl, “Optimal covering of cacti
by vertex disjoint paths,” Theoret. Comput. Sci., vol.
84, 1991, pp. 179–197.

[15] H. Müller, “Hamiltonian circuits in chordal bipartite
graphs,” Discrete Math., vol. 156, 1996, pp. 291–298.

[16] G. Narasimhan, “A Note on the Hamiltonian circuit
problem on directed path graphs,” Inform. Process.
Lett., vol. 32, 1989 pp. 167–170.

[17] S.C. Ntafos, S. Louis Hakimi, “On path cover prob-
lems in digraphs and applications to program test-
ing,” IEEE Trans. Software Engrg., vol. 5, 1979, pp.
520–529.

[18] S. Pinter, Y. Wolfstahl, “On mapping processes to
processors,” Internat. J. Parallel Programming, vol.
16, 1987, pp. 1–15.

[19] J.W. Robert E., “Complexity and block graphs,”
Congr. Numer., vol. 33, 1981, pp. 129–142.

[20] R. Srikant, R. Sundaram, K.S. Singh, and C.P. Ran-
gan, “Optimal path cover problem on block graphs
and bipartite permutation graphs,” Theoret. Com-
put. Sci., vol. 115, 1993, pp. 351–357.

[21] A.S. Tanenbaum, Computer Networks, Prentice-
Hall, Englewood Cliffs, 1981.

[22] P.K. Wong, “Optimal path cover problem on block
graphs,” Theoret. Comput. Sci., vol. 225, 1999, pp.
163–169.

[23] J.H. Yan,G.J. Chang, , “The path-partition prob-
lem in block graphs,” Inform. Process. Lett., vol. 52,
1994, pp. 317–322.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

