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Abstract—Increased dependability of users, businesses and
government on computing systems for research and computa-
tions on sensitive data raises serious issues regarding security.
Operating systems conventionally provide Discretionary Access
Control (DAC, superuser logic) to maintain security. Malicious
users and applications are major threats to organizations and
DAC seriously fails to address the required level of security.
Former research has proven that enforcement of Mandatory
Access Control (MAC, security labels/contexts for subjects and
objects) restricts the malicious agents to their own domain, thus
eliminating risk of damage it can cause to rest of the system and
data.

MAC implementations depend upon access control mecha-
nisms. These mechanisms are added to operating systems as
kernel enhancements. There are four prominent kernel enhance-
ments: RSBAC, SELinux, GRSecurity and AppArmor. This pa-
per assesses and reviews the differences in their implementation
and enforcement techniques to achieve their similar goals and
then compares their effectiveness. We give special attention to
the implementation details and network labeling, in order to
evaluate and understand this underlying layer of security. Our
research objective is to propose a framework for Distributed
MAC (DMAC), which depends on a clear perception of the
architecture, internals and features of these enhancements.

Keywords: Security, Mandatory Access Control, Operating Sys-
tems, Network Security

I. INTRODUCTION

Nowadays, it is a common practice to manage and exchange
data electronically. Unfortunately, a significant amount of
presumably secure IT systems have proved to provide deficient
security measures. These systems have been compromized in
the past and they still have vulnerabilities, which are a serious
threat to the information societies. Efforts made in the past
suffer from the flawed assumption that security can adequately
be provided in application (user) space without certain security
support and features in the operating system [1].

Most operating systems today are based around discre-
tionary access control (DAC) mechanisms. These mechanisms
allow the ‘owner’ of an object to allow access to the object
on their discretion. These decisions by individuals may be in
contradiction to the organizational policy. Moreover, rights are
assigned based on ‘owner’, ‘group’ and ‘world’ previlidges.

1S. Khan is with Institute of Management Sciences, Peshawar, Pakistan.
(e-mail:shazalive@gmail.com phone no. +92 91 0300 5944647)

2M. Amin is with Institute of Management Sciences, Peshawar, Pakistan.
(e-mail:clickforamin@gmail.com)

3M. Nauman is with Institute of Management Sciences, Peshawar, Pakistan.
(e-mail:recluze@gmail.com)

4T. Ali is with International Islamic University, Islamabad, Pakistan and
on leave from Institute of Management Sciences, Peshawar, Pakistan. (e-
mail:tamleek@iiu.edu.pk)

This course-grained security may allow malicious software
access to many critical components of the system once an
individual user’s critical information has been compromised
[1].

Mandatory Access Control (MAC) mechanisms address
these deficiencies. MAC enforces a system-wide security,
which is a manifestation of the organization’s security policy.
In simple words MAC can be defined as “the definition
of policy logic and the assignment of security attributes or
labels to all resources of a system, tightly controlled by a
system security administrator [2].” From another perspective
we can also say that MAC is the dynamic or runtime secure
information flow, although, stable support is currently available
on operating system level i.e. considering processes and files.

Currently MAC controls are enforced at a single system i.e.
a computer node. There are security mechanisms like Kerberos
[3], LDAP [4] and NIS [5], that maintain centralized access
control logic for an organization’s complete system, but they
are limited by the flexibility and granularity of MAC. There is
a need for bringing coherence between these two mechanisms.
Extending current MAC, without considering such authoriza-
tion and authentication servers, to enforce security logic on
networked resources is also a possibility. Although it would
make a neat and consistent development cycle and end result
but will result in a great loss in current security infrastructures.
This issue is going to be considered in our future work and in
this paper our focus is on which kernel enhancement is most
suitable with respect to design, implementation, maintenance
and future support. The enhancements analysed in this paper
are RSBAC [6], SELinux [7], GrSecurity [8] and AppArmor
[9]. This evaluation will enable us to select an enhancement,
which is appropriate for leveraging DMAC[10]. The overall
approach is kept as general as possible but this paper aims
to cover all those aspects, which are necessary for our future
study. We have left out benchmarks and syntactical analysis
of policies because they are not significant for this evaluation.

The rest of the paper is organized as follows: Section II
gives a brief concept of access control. It is followed by an
overview of Linux Security Module (LSM) framework, which
is the standard facilitation mechanism for MAC enhancements
in the Linux kernel. In section III, we will give an overview
of frameworks and architectures of each kernel enhancements.
Section IV will present detailed analysis of their implemen-
tations. Section VI sums up the assessments. Future work is
given in section VII. Section VIII concludes this study with
the possibilities for the next phase of this research.
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II. RELATED CONCEPTS

A. Reference Monitor

A reference monitor implemented in an operating system. It
sets apart discrete resources objects into passive entities such
as files and active entities such as processes into subjects. The
reference validation mechanism would then validate access
between subjects and objects by applying a security policy.
Objects can be files, directories, named pipes, symbolic links,
devices, interprocess communication data, system control data,
users and processes, while subjects are processes. [11]

Subject ?
Reference validation 

mechanism

Object

Rules

Fig. 1. Reference Monitor Concept

B. Linux Security Module

Earlier projects resorted to system call interposition to
control kernel operations, which had serious limitations [12].
Secondly, there was lack for a standard mechanism and
enhancements hooked to the kernel in a manner that only
suited their own requirements. In addition, creating effective
security module was a problematic task because the kernel had
no infrastructure to mediate access of the security module to
kernel objects.

To facilitate these issues the LSM [13][14] project was
developed as a lightweight, general purpose, access control
framework for the Linux kernel. It enables many different
access control models to be implemented as loadable kernel
modules. Figure 2 is a visual representation. The LSM kernel
modifies the kernel in five primary ways.

1) It adds opaque security fields as void* pointers, which
enable security modules to associate security informa-
tion with kernel objects.

2) It inserts calls to security hook functions at various
points in kernel to mediate access to kernel objects.

3) It adds generic security system calls to implement new
calls for security aware applications.

4) It provides functions to allow kernel modules to register
and unregister themselves as security modules.

5) It moves most of the capability logic into an optional
security module.

LSM has an important feature that is module stacking but
it pushes most of the work to modules themselves. Our future
study may require this feature if we are to use integrity
measurements [15] for remote attestation.

LSM kernel control flow ,while assesing access control
rights, first checks the DAC decision and if it is positive then
LSM hook gives control to hook implementation, which me-
diates access between kernel data structures and the decision
module, else system call is returned an error code.
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Fig. 2. LSM Framework

III. OVERVIEW OF FRAMEWORKS AND ARCHITECTURES
BEHIND THESE ENAHANCEMENTS

In this section we give a brief overview of these enhance-
ments. In the next section we will discuss them in details.
Table I shows the general comparisons of these enhancements.

A. RSBAC and GFAC

Rule Set Based Access Control [6] is an open source
security extension for the Linux type kernels based on the
Generalized Framework for Access Control (GFAC) [16].

The GFAC framework targeted the integration of multiple
policy components. This was achieved by modularizing the
framework into access control enforcement, access control
decision and access control information (security attributes) fa-
cilities. Access Decision Facility (ADF) implements the MAC
security policies and a metapolicy to decide whether process’
requests satisfy those policies. Access Enforcement Facility
(AEF) uses the ADF decisions to enforce the operations at
system call level.

RSBAC [16] is a direct implementation of the GFAC
framework. It has been extended to supports more object types,
includes generic list management and network access control,
contains several additional security models and supports run-
time registration of decision modules and system calls for their
administration. The components ADF, AEF and ACI are hard-
linked into the kernel.

B. SELinux and Flask

SELinux’s origins are found in the research of an ac-
cess control framework based on Distributed Trusted Oper-
ating System (DTOS) [17] and Distributed Trusted MACH
(DTMACH)[18], two MACH [19] based kernels. The resulting
framework was named Flask [20], when ported to the Fluke
[18] operating system. The Flask security framework is similar
to GFAC where it separates the security policy decision from
the enforcement mechanism.

The Security Server (SS), being the decision module,
separates the policy logic with well-defined interfaces for
obtaining security policy decisions. The object managers are
the enforcers for their specific objects (file system, process
management, IPC, sockets, e.t.c.). There is an Access Vector
Cache (AVC), which is present inside the object managers.
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RSBAC SELinux GrSecurity AppArmor
Origin GFAC DTOS, DTMACH,

Fluke
Openwall Immunix SubDomain

Framework GFAC FLASK N/A CHROOT Concept
Distributions Hardened Gentoo,

Mandriva, T2, Alt
Linux

Hardened Gentoo, Fe-
dora, RH Linux, De-
bian

Hardened Gentoo Suse

Contributors Five [6] Many [7] Brad Spendler Suse

TABLE I
GENERAL COMPARISONS

It caches access decisions for subsequent use by the object
managers.

Flask being implemented on Fluke, micro kernel archi-
tecture, had to be adjusted with the monolithic design of
Linux. Its implementation was a huge patch to the bare kernel,
explicitly extending a lot of data structures it used internally
to handle the operations concerning files, communication and
other I/O. The object managers were ported as additional func-
tionalities implemented inside the kernel subsystems. Security
server is also part of the kernel now, which was originally a
server in Flask.

After LSM became the standard access control farmework
for the Linux kernel, SELinux adapted. Now SS is located
as a LSM compliant module [21] and kernel subsystems use
the LSM features to communicate with the security server.
AVC has also become centralized but an interface is provided
in libselinux for user space object managers like the X server.
The LSM architecture has made the SELinux design to become
a bit scattered due to LSM’s coherence with the kernel.
Internal components, in addtion to SS, enforcement at kernel
subsystems and AVC are network interface table (mapping of
network interfaces to security contexts), network notification
code (keep libselinux consistent with kernel module), SELinux
pseudo file system (SS’s API to processes, selinuxfs) and hook
functions’ implementation. Figure 2 is a visual representation
of this enhancement.

User space object managers are suported by libselinux. X
server and Postgresql are already security enhanced servers.
Policy Management Server (PMS), a user space feature lately
added, can also be extended to a user space SS, which will
reduce burden on kernel SS [22]. Currently PMS only provides
policy management in an object oriented manner but it also
aims at handling a networked policy.

C. GrSecurity

GrSecurity is a suite of solutions that address different
shortcomings of the operating system security. Thus, it can be
stated that it does not implement any framework. It is a set of
patches knitted in harmony with each other. It was originally
a port of the security features of Openwall [23] but with time
it has grown.

Philosophy behind GrSeecurity is that currently operating
systems avoid, identify and fix software bugs. The history
of software development has proven that there are always
going to be bugs in the software no matter what security
measures are taken. GrSecurity as a solution detects, prevents
and contains. Detection of vulnerabilities is available through

auditing and logging of attacks, prevention by PaX (address
space protection) with a combination of additional techniques.
Containment is enabled through access control lists. The
ACL feature incorporates MAC into this enhancement and
encourages a modular design for future extensions.

GrSecurity [8] being a knit of patches does not have a
well defined kernel security module because it is inserted
into various parts of the kernel to address the lack of current
security mechanisms. Its ACL engine acts as the decision-
making facility and stores the ACL policy along with RBAC
extensions.

D. AppArmor and SubDomain

AppArmor previously know as SubDomain [24], is yet
another implementation, which is not derived from a formal
framework. It utilizes the concept of chroot jail with access
control functionality enabled through program profiles. It
provides a similar containment value to chroot, but without
the need to physically move the application and its required
resources into a separate container. AppArmor access control
concentrates on file system resources, which means process
transitions are not consider adequately.

AppArmor has an LSM compliant security module which is
similar to SELinux in this regard. It uses LSM to communicate
with securityfs, where it stores its security attributes and
configurations. It uses profiles for the containment.

Seperating decision module from enforcement mechanism
enables flexibility in the security by ensuring that the enforcing
subsystems always have a consistent view of policy decisions
irrespective of how these decisions are made or how they may
change over time. This approach can easily allow application
transparency and implementation of new policy models. Rsbac
and Flask truely follows this approach, while AppArmor and
GrSecurity to some extent.

IV. IMPLEMENTATIONAL ANALYSIS

We formulated the following criteria based on the general
needs of a MAC security implementation and ISO10181-3. An
access decision technique, an access enforcement technique,
security attributes handling to leverage decision enforcement,
and a set of policy models/modules for policy granularity and
flexibility. The overall security modules have been discussed in
the previous section. Figure 4 & 5 are visual representations of
the security modules and flow control of RSBAC and SELinux
respectively. Table II, a modified version of [25], gives a
detailed comparison of these implementations.
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Fig. 3. RSBAC Framework and Control Flow

A. Access Decision Mechanism
RSBAC’s decision facility is ADF [16]. With every security

relevant system call, called by the subject to access an object,
the AEF is invoked by intercepting the call. AEF compiles a
request and sends it to the ADF for decision using an abstract
function with relevant request type. The request has certain
parameters; desired type of functionality is known from the
request type, identification of the subjects and possibly some
attributes of the object. These values are extracted by the AEF
from the ACI against the subject and object.

Security policies are evaluated with respect to the policy
rules for the request type by the ADF. ADF consults ACI for
policy rules. When these rules are determined the metapolicy
is evaluated to make the decision. Metapolicy uses the set of
results from different security policies present to build the final
result. Metapolicy is the union of the set of decision modules
present in ADF.

ADF can be split into two parts: the main part, which
handles the general work and the second part being the
installed modules. The general work mainly consists of han-
dling requests from AEF, dispatching it to the modules and
performing generic logging. The modules compute the actual
decisions against its policies and security attributes of the
subject and object.

SS is the decision facility for SELinux. It uses security
labels to compute an access decision comparing an object’s
label with the authorization level of a subject that attempts
to access the object. To handle this objective [26] there are
two data types to map an object with its access rights. The
security context is a string representation of the object’s rights
which is used by the SS to compute its decision against the
policy. A security identifier (SID), an integer value, is mapped
to the security context and is passed to the kernel subsystem
for labeling of objects. The kernel subsystems pass SIDs to
the SS so that it performs the translation to security context
and computes the decision.

The ACL core of GrSecurity is the decision making facility,
which gets requests from its enforcement mechanism. These
requests contain identity of the requesting subject and the
object being accessed. It utilizes hooks similar to what LSM

provides, but are much more in number as it uses access
control in multiple layers.

AppArmor’s decision facility is similar to SELinux as it
is also LSM compliant. AppArmor is itself the core module
[27], which handles most of the functionality. When a process
invokes a system call, LSM hook implementation hooks the
information from kernel data structures and provides it to
the AppArmor module. Kernel data structures and identity
of the subject and object, is checked against the profile of
the application and reply is sent back via the hook function’s
return to the system call.

In all these enhancements, the decision module is abstract
to the kernel, which enables extension to policy models. Gr-
Security’s ACL core being modular, still has interdependance
on non-MAC features for enforcement so it can be said that
it is not truely modularity.

B. Access Enforcement Mechanism

RSBAC’s AEF enforces the decision based on the decision
of ADF. Either the system call is permitted to do its function or
an error is returned to the process with associated control data
if necessary. In case of a positive result, ADF is notified so
that ACI can be updated, the ADF tells the decision modules
to update their attributes from the data structures, sends an
acknowledgement to AEF and then the object is accessed
normally.

As AEF is embedded in the kernel subsystems it is the
only RSBAC component, which cannot be modularized. It is
hooked into several locations of the existing kernel code. Every
security relevant system call and pseudo file handling function
is extended by two calls to ADF. One is made before the
original code, which requests for a decision and one after the
original code to send update information to ADF. These two
security-handling calls differ by functionality with the change
in request type. Thus, it cannot be ported to LSM activated
kernels. It would require a lot of change and loss in flexibility
to implement new policy models.

The enforcement of policy decisions in SELinux, is accom-
plished in the kernel subsystems [2][21]. When the SS returns
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the decision as a return to the hook function, the enforcement
code either allows by letting the system call to continue or
denies by returning an error code to it.

The kernel subsystems have the duty to label its objects with
the SIDs passed from the security server. In case of subjects,
they are non-persistent so these SIDs work fine for their data
structures. But file system objects are persistent and labeling
them means to release SIDs to user space. SELinux does not
allow this. This problem is addressed in the next subsection.

GrSecurity enforcement being similar to SELinux and Ap-
pArmor as it has hook functions to mediate the control flow
but it also has additional functionality. It has to manage the
various security mechanism. These are address space layout
randomization, extensive auditing capabilities, netfilter mod-
ule, stealth netfilter module, enhanced trusted path execution,
OpenBSD randomness features at multiple layers, enhanced
chroot jail, ptrace and Glibc restriction and various others [8].
These require lots of hooks and other mechanisms. This is the
reason why it can’t be ported to LSM activated kernels.

AppArmor earlier used system call modifications to check
the confinement of processes[24]. Now it uses the LSM
module to perform these tasks[27]. LSM is the leveraging
medium between AppArmor module, system calls and kernel
data structures.

In all these enforcement facilities, we could not find any
modularity. The reason was the underlying implementation
of a monolithic kernel. They all use some form of abstract
functions to escape the problems of system call interposition-
ing. SELinux and AppArmor implements LSM hooks, while
RSBAC and GrSecurity have developed their own abstract
functions (hooks). They did this in the interest of greater
control, which RSBAC strictly utilized for MAC and GrSe-
curity to gain access to different layers of the security in
the operating system. LSM has been tuned for performance
so the compliant enhancements have gained complications to
facilitate the required controls.

C. Security Attributes and Policy Storage

RSBAC’s ACI [6] is used to store and maintain system
values and data structures (for policy modules). System values
portion stores and maintains label information for subjects
and objects. It implements and store the contexts and data

structures that are not handled by the kernel data structures.
Persistent attributes are additionally saved in the secondary
storage. Dynamic, module specific data, like roles, user groups,
access control lists and other relevant information are handled
separately in the data structure portion. A file descriptor cache,
fdcache, is used to reduce the performance hit because of the
storage on secondary storage.

SELinux is straight forward in labeling non-persistent ob-
jects but allowing the labeling of persistent objects needs a
solution. This is enabled by storing the security context in
extended file system attributes (EA) [28]. These attributes are
special settings stored in the vnode of the file, which is more
efficient by storing security attributes in an inode, for each file
(an earlier solution), more localized manner. Although it is a
logical solution but it has the limitation of which file systems
can be used with SELinux. Currently ext2, ext3, ReiserFS and
XFS file systems supports extended attributes.

                             Kernel

/etc/apparmor.d/*

AppArmor
Module

Parser

Subject

Object

securityfs

Profile Loading Access Control

Fig. 5. AppArmor Architecture

The policy configurations are stored in selinuxfs, the pseudo
file system. This is the binary policy, while the readable
version is stored on secondary storage. It can be found in
/etc/selinux/policy.conf . The generation of this file is a
complex and long process. A generous detail can be found in
[22].

GrSecurity attribute management for ACL module, is sim-
ilar to LSM in that it does not centralize them. This was
necessary for the various security features it supports. It
extends various kernel data structures in order to facilitate all
the patches it makes to the kernel.
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AppArmor uses securityfs, normally mounted on
/sys/kernel/security to store its binary profile. The text files
that make up the profile are parsed by apparmor_parse()
called by the user space /ets/apparmor.d. The parser loads
the binary policy onto securityfs via a sysctl() call
from where AppArmor module loads it [29]. By convention
/etc/apparmor.d/hello_world will confine hello world.

Using centralized and generic data structures facilitate ab-
straction and portability, although it affects performance. RS-
BAC is LSM independent so it has such facilitation. SELinux
and AppArmor being LSM compliant have to use LSM
mediation to interact with kernel data structures. GrSecurity
implementing hooks to extended kernel data structures has lots
of portability issues.

D. Policy Models

RSBAC uses multiple modules and almost all research
modules are implemented in it [6]. In this section we describe
those that are essential to system security.

The Authentication (AUTH) module controls which process
can change to which user id (UID). A range or list of UIDs
is given for a process, which the process can change to. All
other modules depend on this identification scheme.

The Role Compatibility (RC) module is a role based model.
Every user has a default role, which is inherited by all his
processes. This role defines which objects of certain type can
be granted accessed or denied.

Linux Capabilities (CAP) defines a group of all root priv-
ileges into a POSIX Capabilities list. It enables a set of
minimum and maximum capabilities set for both users and
processes. It is used to handle root privileges for a user or a
process when it needs root privileges to accomplish a task. It
restricts privileges to the extent of accomplishing that certain
function.

Jail: All Linux kernels provide the chroot() system call to
confine a process in a subdirectory. However there are no
restrictions on the usual privileges so several ways can be used
to achieve root access and break out. RSBAC’s Jail module
provides a superset of the FreeBSD jail functionality by adding
more restrictions. This model is used for service encapsulation
and objects still need to be protected with the use of other
modules.

SELinux has three mandatory policy models, which work
together to formulate a flexible and complete MAC policy.
There are two optional models: Multi Level Security (MLS)
and Multi Category Security (MCS).

Identity Based Access Control (IBAC) is used to identify
the subject, with the right to use some system identity,
during login. SELinux identities are orthogonal to Linux UIDs.
Whenever a UID of a process is changed, its SELinux identity
component will be preserved.

Role Based Access Control (RBAC) [30] restricts the actions
of a user according to a set of roles allotted to the user. The
transition between roles is controlled by the policy.

Type Enforcement, a simplified version of [31], associates a
type with every subject and object i.e. it binds program/code
with a type. It is useful in terms of integrity, separation and

containment. Nothing can escape this granularity if the policy
is properly constructed. This constitutes most of the SELinux
policy.

AppArmor does not use any sophisticated policy models but
a straightforward profile for the subdomained application. It
restricts the resources that a process can access. The profile
lists the resources with their respective UNIX permissions and
POSIX capability.

GrSecurity uses its ACLs as a policy model to handle MAC.
It has included the use of RBAC to assign roles to users. This
has added flexibility to it. The ACL system is not orthogonal
to standard DAC of Linux as it uses DAC identities with its
ACLs. Its maintainer is considering this limitation.

V. NETWORK CONTROLS

RSBAC provides network templates to describe a set of
connection end points, which shall be controlled in a mutu-
ally configuration [16]. This eases administration as network
connections normally have a short life span. Each endpoint
inherits the access control settings of the first template that
matches it. To set up access control for network connections,
to or from a network area, requires definition of a matching
template and set the desired attribute values of the network
area in the template. Template attribute values are only default
values. This enables to configure individual object values.

SELinux provides labeling of network interfaces [32], IP
addresses, sockets and ports. These labels can then be used
in normal SELinux rules. Additionally, iptables can be used
to label packets with SECMARK (Red Hat server) extension
to Netfilter and then use these labels with SELinux rules. A
recent extension to LSM enables labeled network communi-
cation via IPSEC [33]. The functionality [34] is leveraged by
assigning labels to IPSEC associations for subjects. Work is
under progress to include object labels as well.

Following is an example of SECMARK, which labels HTTP
packets:
[root@some1]\# iptables -t mangle -p tcp -dport 80
-t eth0 -s 192.168.0.1/24 -j SECMARK -sectx
system\_u:object\_r:http\_packet\_t

This will label packets on eth0, coming from 192.168.0.1 and
on tcp port 80 as http packet t. Another rule can be added:
[root@some1]\# iptables -t mangle -m state -status
RELATED, ESTABLISHED -j CONNSECMARK -restore

This will copy the label for related packets so when an http
client uses a related port (dynamically assigned) will receive
the same label. This takes advantage of netfilter’s connection
tracking features.

For labeling IPSEC associations we need to add a -ctx
statements to the setkey files:
[root@some1]\# cat dev/ipsec/setkey/some1.tst
spdflush;
flush
spdadd 192.168.0.1 192.168.0.2 any
-ctx 1 1 "system\_u:object\_r:default\_t:s0"
-P in ipsec esp/transport//require;
spdadd 192.168.0.2 192.168.0.1 any
-ctx 1 1 "system\_u:object\_r:default\_t:s0"
-P out ipsec esp/transport//require;

GrSecurity uses its ACL to control access of subjects on the
bases of IP addresses and ports. It has other features inherited
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RSBAC SELinux GrSecurity AppArmor
Kernel support Patch Mainline kernel Patch Patch
Hook type Abstract function + request

type
LSM GrSecurity LSM

Label storage rsbac.dat, file system inde-
pendant

EA/metadata (file system
dependant)

Extending data structures internal-only (file system
independant)

Policy Learning Built-in for non-critical
modules

audit2allow Extensive, built-in Initial policy generation and
incremental updates

Optimization Hashed list lookups 0(1),
ordered generic lists, at-
tributes inheritance

AVC Hashed lookups 0(1) Access granted once and
rechecked only on change
in rights

Buffer overflow protection PaX Exec-Shield PaX N/A
Policy Models AUTH, RC, CAP,

JAIL,ACL,FF, UM, PM,
DAZ, MLS

IBAC, TE, RBAC, MLS,
MCS

ACL, RBAC Profiles

Additional features Secure delete, process
hiding, file system hiding,
symlink redirection, in-
kernel usermanagement,
on-access virus scan

N/A Random IPID, process hid-
ing, modified chroot, TPE,
symlink restrictions

N/A

Portability Yes Yes N/A N/A

TABLE II
DETAILED COMPARISON

from OpenBSD and association with Netfilter but they are
mechanisms to defend against common exploits. [8]

AppArmor [9]access controls are limited to confining net-
work agents by inspecting open ports using netstat -inet
-n -p. It is on its way to integrate SECMARK functionality
in its profiles.

There are user space mechanisms to handle labels for remote
resources as well. These labels can be passed in headers
of RPC [35] in RPC based servers like NFS and messages
in message passing clusters and grids. These labels need to
be interpreted meaningfully, which is not possible without
keeping policy copies on all systems. Label understanding
remotely and policy distribution are being researched [36]
extensively. We are not satisfied with current efforts and our
future work will exhaustively consider these issues.

VI. RELATIVE STRENTHS AND WEAKNESSES

RSBAC has the best modular design, which has been taken
care of during implementation. It provides fine grained and
flexible MAC. It’s a perfect toolkit for implementing new
security models and it has adequate network controls, which
are also extendable.

SELinux is also suitable for implementing new policy
models. Being part of the mainline kernel gives it an edge
for mass testing, development and acceptance. A lot of work
has been done to implement usable network controls. SELinux
enforcement support has also been extended to application
space for complex servers, while others lag behind in this
aspect.

AppArmor lacks true MAC implementation due to its
application-oriented approach but it attracts administrators due
to easy management of policy. It lacks granularity and flexibil-
ity. Network controls are adequate and it is following SELinux
for more usable controls. Yast [29], the profile builder and
manager, is a GUI based application that eases management
of AppArmor.

GrSecurity has a moderate design but addresses vast threat
models. It’s ACL and RBAC provides a flexible MAC but
cannot achieve the granularity of RC and TE policy models. It
is administrator friendly because of its user space tools that can
automate policy development by its learning mode. Network
controls are adequate and extendable.

VII. FUTURE DIRECTIONS

It is necessary to determine all the possible ways in which
network labels can be distributed and all needs of network
security are to be considered. Current policies are not appro-
priate to handle the complexity of networked resources so a re-
mote resource aware policy model or a translation/equivalence
mechanism needs to be devised. We have already identified
some solutions and work is in progress.

Individual nodes might need to establish trust before releas-
ing their information based upon the access control policies
of other nodes. This trust can be concretely established using
remote attestation techniques. We will be considering the
integeration of Integrity Measurement Architecture [37] or an
equivalent approach for remote attestaion and use TCG’s TPM
[38] as a root of trust in the attestation process.

VIII. CONLUSION

We have learned from this study that RSBAC is the tool,
which is most suitable for the development of new policy
models for security. On the other hand, SELinux is the en-
hancement, which is more practical in terms of its integration
in mainline kernel. SELinux also provides the set of latest
network controls. These can also be implemented in other
enhancements with some effort.

It would be better to prototype the design on RSBAC and
then port a working model to SELinux. The learning curve
for this approach would be very steep because its not easy
adjusting to such complex enhancements. Thus it will be
sensible to use SELinux as a security enhanced kernel for
the design and development of DMAC framework.
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