Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

MKBOOL: A Multi-Completion System for Boolean
Constrained Reduction Orders

Haruhiko Sato and Masahito Kurihara *

Abstract—A multi-completion system MKB developed by
Kurihara and Kondo accepts as input a set of reduction orders
in addition to equations and efficiently simulates parallel pro-
cesses each of which executes the standard completion procedure
with one of the given orderings. In this paper, we describe a new
system MKBOOL, which is a refinement of MKB in the sense
that it restricts the reduction orders to those classes which can
be represented by boolean constraints on some domains. Such
classes include the recursive path orders (with status) for a finite
signature. Our implementation represents a conjunction of the
constraints by a binary decision diagram. The comprehensive
experiments with the implementation on a set of well-known test
problems show that in exchange for that restriction, MKBOOL
runs more efficiently than MKB for most of the problems.

Keywords: Term Rewriting System, Knuth-Bendix Completion,

Multi-Completion, Recursive Path Ordering

1 Introduction

Term rewriting systems [1, 10] play an important role in vari-
ous areas, such as automated theorem proving, functional and
logic programming languages, and algebraic specification of
abstract data types. In many applications, termination and
confluence are crucially important properties of term rewrit-
ing systems. A term rewriting system which has both of these
properties is said to be convergent.

In order to compute a convergent term rewriting system, the
standard completion procedure (KB) was proposed by Knuth
and Bendix [5] and has been widely improved since then.
Given a term rewriting system R (or a set of equations F) and
a reduction order which is used to check termination, the pro-
cedure verifies the convergence of R analytically. If R is not
convergent, the procedure tries to construct a convergent term
rewriting system which is equationally equivalent to R (or E)
by adding or modifying rewrite rules. The result of the com-
putation is either success, failure, or divergence [1, 2, 5, 10].
The existence of divergence implies that the procedure can be
non-terminating, thus the procedure is a semi-algorithm.

The success of the procedure heavily depends on the choice of
the appropriate reduction order to be supplied. Such a choise
is often difficult for general users unless they have good in-
sight in termination proof techniques. Unfortunately, one can-

*Graduate School of Information Science and Technology, Hokkaido Uni-
versity, Sapporo, 060-0814, Japan, haru@complex.eng.hokudai.ac.jp, kuri-
hara@ist.hokudai.ac.jp

ISBN: 978-988-98671-8-8

not try out potentially-appropriate reduction orders one by one
(sequentially), because one of those runs may lead to indefi-
nite, divergent computation and inhibit the exploration of the
remaining possibilities.

This means that we have to consider, more or less, parallel
execution of completion procedures each running with one of
the orders. When the number of those orderings is very large,
however, it is clear that the direct implementation of this idea
on a fixed number of workstations would end up with serious
inefficiently because of the large number of processes run on
each machine.

Kurihara and Kondo [6] partially solved this problem by de-
veloping a completion procedure called MKB, which, accept-
ing as input a set of reduction orders as well as equations,
efficiently simulates (in a single process) parallel execution of
KB procedures each working with one of those orders. The
key idea is the development of the data structure for storing
a pair s : t of terms associated with the information to show
which processes contain the rule s — ¢ (ort — s) and which
processes contain the equation s « t. This structure makes it
possible to define a meta-inference system for MKB that ef-
fectively simulates a lot of closely-related inferences made in
different processes all in a simgle operation. We call this type
of procedure a multi-completion procedure.

In order to orient an equation s < ¢, MKB needs to check s >
t for all orders > one by one. It causes a significant reduction
in performance when the number of orders is very large. To
settle this problem, the new system MKBOOL presented in
this paper represents a set of reduction orders by a boolean
constraint on the basic objects (such as a precedence and a
status) underlying the orders. Using this representation, the
system can compute directly the set of all reduction orders >
such that s > ¢ for a given equation s < t.

In this paper, we describe a general framework for MKBOOL,
followed by a particular boolean encoding for recursive path
orders (with status). The comprehensive experiments on a
set of well-known test problems show that MKBOOL with
this encoding runs more efficiently than MKB for most of the
problems.

The paper is organized as follows. In Section 2 we briefly re-
view the multi-completion procedure MKB. In Section 3 we
propose a general framework for MKBOOL. In Section 4 we
present a boolean encoding for recursive path orders, based on

IMECS 2008

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I

IMECS 2008, 19-21 March, 2008, Hong Kong

the encodings for the quasi-precedence and the status. In Sec-
tion 5 we evaluate the performance of MKBOOL by compar-
ing the experimental results with MKB. Finally, we conclude
with future work in Section 6.

2 Multi-Completion

Given a set F of equations and a reduction order >, the stan-
dard completion procedure KB tries to compute a convergent
set R of rewrite rules that is contained in > and that induces
the same equational theory as F.

Starting from the initial state (Eo; Ro) = (E;0), the proce-
dure obeys the inference system defined in Fig. 1 to generate
a ’fair’ sequence (Eg; Ro) F (E1;Ry) F ... of deduction,
where > in the COLLAPSE rule is a well-founded order on
terms such as the encompassment order. The result of the suc-
cessful sequence is the empty set F, of persisting equations
and the convergent set R, of rewrite rules.

A multi-completion procedure accepts as input a finite set
O = {>1,...,>m} of reduction orders as well as a set E
of equations. The mission of the procedure is basically the
same as KB: it tries to compute a convergent set 12 of rewrite
rules that is contained in some >; and that induces the same
equational theory as F.

DELETE: (EU{t—t};R)F (E;R)

ORIENT: (EU{t = u};R)F (E;RU{t — u})
ift>u

SIMPLIFY: (EU{t— ul R)F (EU{t < v};R)
ifu—pgov

CoMPOSE: (E;RU{t —u})F (E;RU{t — v})
ifu—pgo

COLLAPSE: (E;RU{u—t}H)F (EU{v—t};R)
ifl =re Ru—y_yv, andu >

DEDUCE: (EB;R)F (EU{t < ul;R)

ift—pv—pu

Figure 1: Standard completion

The multi-completion procedure MKB developed in [6] ex-
ploits the data structure called nodes. Let I = {1,2,...,m}
be the set of indexes for orders O = {>1,..., >, }. A node
is a tuple (¢ : u, L1, Lo, L3), where t : u (called a datum) is
an ordered pair of terms, and L1, L, and L3 (called labels) are
subsets of I such that

L] L1 n Lg

:LQOL;;:L;;DLl:@and

e ¢ € Ly impliest >; u, and ¢ € Lo implies u >; t.

The node (t : u, L1, Lo, L3) is considered to be identical with
<u . t, LQ, Ll, L3>

The MKB procedure is defined by the inference system work-
ing on a set N of nodes, as given in Fig.2. Starting from the

ISBN: 978-988-98671-8-8

initial set of nodes,
No=A{({t:u,0,0,I)|t - ueFE}

the procedure generates a fair sequence No - V7 F From
a successful sequence, the convergent set of rewrite rules can
be extracted by projecting N, onto a successful index <.

DELETE:
ORIENT:

NU{({t:t,0,0,L)} - Nif L#0
NU{<tZu,L1,L2,L3UL>}|_
NU{<tU,L1UL,L2,L3>}
lfL%w,Lgﬂsz,

andt >; uforallt € L

NU{<t : U,L]_,L2,L3>} -

NU{ <tIU,L1\L,L2,L3\L> }
<tZU,L1ﬂF,@,L3mL>
if<l:7‘,L,...,...>EN,U—>{l_,T}U,

Uil, and(LluLg)ﬂL#Q

NU{<t uLl,LQ,L3>}|—NU

{ (t: vLmLO) (LQUL3 mL> }

if<l.’1",L,...,...>ENU—>{Z_,T} R

w1, and (Ly ULy ULs)NL #0

NENU{{t:u,0,0,LNL)}

if(l:r,L,...,...) €N,

:r L' ...;...) e N,LNL # 0,

v =gy bt and v — gy u

N U{(t: u,0,0,00} - N
<t:u,L17L2,L3>,

NUC @ w1, I, 1) }F

NU{<tIU,,L1UL/1,L2UL/2,

(L3 U Lg) \ (L1 ULy ULy U L))}

ift:wandt : ' are the same

(up to renaming of variables).

REWRITE-1:

REWRITE-2:

DEDUCE:

Gc:

SUBSUME:

Figure 2: MKB inference rules

The semantics of MKB is based on the interpretation in which
MKB simulates the parallel processes P, ..., P, with P; ex-
ecuting the KB with the ordering >; and the common input
FE. The soundness, completeness, and fairness of MKB are
discussed in [6].

3 Multi-Completion for Boolean Constrained
Reduction Orders

In this section, we construct a general framework for a new
multi-completion system MKBOOL on top of the basic frame-
work of MKB by introducing boolean encoding for a set of
reduction orders. In 3.1 we establish an abstract setting for
boolean encoding for arbitrary sets. Then in 3.2 we use this
setting to define MKBOOL.

3.1 Abstract Boolean Encoding

Let X be a set of logical variables and Ax be the set of all
assignments (or interpretations) for X. A constraint F' on X

IMECS 2008

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I

IMECS 2008, 19-21 March, 2008, Hong Kong

is a restriction on the combinations of the values taken by the
logical variables in X. Let C'x be the set of all constraints on
X. The constraint ' may be represented by a propositional
formula (using the connectives such as —, A, V) or a boolean
function F'(X) (in an expression using the operators such as
the negation (7), product(-), and sum(+)). We use these repre-
sentations interchangeably in this paper.

Definition 3.1 Let A be a set and X be a set of logical vari-
ables. An encoding function for A in X is a mapping enc:
A — Cx such that

o forall a € A, enc(a) is satisfiable and

o forall a,a’ € A, if a # d then enc(a) N enc(a’) is

unsatisfiable.

The decoding function dec: Ax — A is derived as follows:

dec(a) = {j_

Definition 3.2 Let B be a subset of A. We extend the defini-
tion of the encoding function as follows:

enc(B) = \/ enc(b)

beB

ifaEencla),a € A
otherwise

Let F' be a constraint on X. We extend the definition of the
decoding function as follows:

dec(F) = {dec(a)|a € Ax,aF F}

Definition 3.3 Anencoding for a set A is a pair (X, enc) con-
sisting of a set of logical variables X and an encoding func-
tion enc for A in X.

Definition 3.4 The base constraint of an encoding (X, enc)
for a set A is defined by enc(A).

Lemma 3.1 If (X1, ency) is an encoding for A, (Xa, encs)
is an encoding for As, and (X1 N X3) = 0 then (X, enc) is an
encoding for A1 x A where

X=XUXy
enc((a1,az)) = enci(ar) A enca(asz)
enc(A; X As) = ency (A1) A enca(As).

3.2 MKBOOL

In the following, we consider encodings for a set of reduction
orders. Let O be a set of reduction orders, O; , = {> | =€
O,t > u}, and (X, enc) be an encoding for O. We put some

ISBN: 978-988-98671-8-8

constraint F; € C'x in each label field of the node structure of
MKB. In this way, we define a new node structure

(t:u, Fy, Fs, F3)

with constraint labels Fy, F, and Fj3, in place of the MKB
node structure (¢t : u, L1, Lo, L3) with set labels, where F; =
enc(L;), (i = 1,2,3). The constraint labels of a node n is
denoted by Fi[n], Fx[n] and F3[n], respectively. The labels
must satisfy the following conditions.

o Iy N Fy, I A F3, F3 A\ F are unsatisfiable.

e Fy implies enc(Oy) and Fy implies enc(O, ;).

Clearly, the union and intersection of set labels are represented
by the sum and product of the corresponding constraint labels,
respectively; and the set difference L; \ Lo is represented by
Iy - F5. With these transformation in mind, we can rewrite
MKB to the new system MKBOOL given in Fig. 3. Note that
enc(Oy) is used in ORIENT to encode the set of reduction
orders > in which ¢ > w.

DELETE:
ORIENT:

NU{(t:4,0,0,F)} F Nif F #0
N U {(t : U,Fl,FQ,F3>} =
NU{({t:u,F\ +F5-F,F5,F5-F)}
if = enc(Osy) #0
NU {<t : ’U,,Fl,FQ,F3>} =
<t2’u,,F1'F,F2,F3'F>
NU{ (t:v,F - F,0,F; - F) }
if{(l:r,Fyoo,) € Nyu—py v,
w=1, and (Fy + F5)- F #0
NU{<tZu,F1,F2,F3>}|—NU
<t2u,F1-F,F2~F,F3'F>
{ <t’U,F1F,O,(F2+F3)F> }
if(lor Fyo..,...) € Nyu—ppy v,
urt>l, and (Fy + Fo + F3) - F #0
NFNU{{t:u0,0,F-F)}
if(l:r,F,...,...) €N,
e F',...,...\ EN,F-F #0,
U=} and v U} U
NU{{(t:u,0,0,0)} F N
(t u, Fy, By, Fy),
NU{ ol L),) }F
NU{<tZu,F1+F1/,F2+F2/,
(Fs+F3)- Fy- F{ - Fy - Fj)}
ift : wand ¢’ : u are the same
(up to renaming of variables).

REWRITE-1:

REWRITE-2:

DEDUCE:

Gc:

SUBSUME:

Figure 3: MKBOOL inference rules

Given a set of equations F, we start from the initial set of
nodes

No = {{t : u,0,0,enc(O))|t < u € E}.

IMECS 2008

Given o € Ax, we define E- and R-projection from N to E
and R as follows.

E[N,a] = U En,a]. R[N,a] =J,cn Rln,al.
neN
E[n, o] = {t & u}, ifal=%"3
0, otherwise.
{t = u}, ifak F
Rn,al =< {u—t}, ifakF F
0, otherwise.

where n = (t : u, Fy, Fs, F3).

In order to check the success of the multi-completion, we in-
troduce the following boolean constraint.

NoE[N] = enc(O) - H Fs[n).

Suppose that the deduction is fair in the sence defined in [6].
If NoE[N] # 0, there exists & € Ax such that « F NoE[N].
Since this assignment satisfies E[N, «] = (), the KB process
working with the reduction order given by dec(«x) has no equa-
tions. In this case, MKBOOL terminates and returns the con-
vergent set of rewrite rules R[N, a].

MKBOOL can be more efficient than MKB for two rea-
sons. First, in ORIENT rule MKB needs to repeat orientation
check for each reduction order. Instead, MKBOOL calculates
enc(Oy). If the set of reduction orders O is defined induc-
tively on the structure of terms (like the recursive path orders),
enc(Oy ,,) can be also calculated inductively without enumer-
ating the entire set O. Therefore, the computation time for
ORIENT rule of MKBOOL only depends on the structure of
the datum ¢ : wu, independent of the number of reduction or-
ders. Second, the binary operations on two labels (such as
Ly N L or Fy - F) can be more efficient for a similar reason.
The time required for the operation depends on the structure
of the constraint labels in MKBOOL. In practice, the amount
of time for MKBOOL is far smaller than that for MKB, when
the sizes of terms are small and the number of reduction orders
to be considered is very large.

4 Encoding for Recursive Path Orders

The abstract framework for Boolean encoding for reduction
orders given in the previous section is a generalization of
Boolean encodings known in the literature, such as the atom-
based encoding [7] and the symbol-based encoding [4] for the
lexicographic path orders (LPO). The encoding for the Knuth-
Bendix orders given in [11] is also seen as an instance of this
framework.

In this section, we present an encoding for recursive path or-
ders (RPO) [8] with quasi-precedence and status. First, we
recall the definition of RPO.

ISBN: 978-988-98671-8-8

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

Throughout the section, we let F = {f1,..., fo }, V,T(F,V)
be a finite set of function symbols, a set of variables, and the
set of terms constructed from F and V, respectively.

4.1 Basic Definitions

Definition 4.1 The set of permutations of {1,...,n} is de-
noted by Per(n) = {n},...,m"}. (The superscript n is
omitted if n is clear from the context.) The set of lexico-
graphic statuses for function symbols with arity n is denoted
by Lex(n) = {lex,|m € Per(n)}. The multiset status is de-
noted by mul. The set of all statuses for function symbols with
arity n is denoted by Status(n):

Lez(n)
Lex(n) U {mul}

ifn<1

Status(n) = { ifn>2

Definition 4.2 For a quasi-order 7~ on terms, the quasi-order
75052 g defined on sequences of terms as follows:

<t1, o atm> zmul,mul <U1, s Un>
— {th e 7tm} ,>:,mul {uh ceey un}
<t1, Ce ,tm> tlem"l dewny <’U,17 ey un>

<~ <t71'1(1)a e 'atTrl(m)> EJEI <u71'2(1)? ER) 7u772(n)>

Definition 4.3 A quasi-precedence 77, is a quasi-order on F.
A status function T maps every f € F to Status(n) where n
is the arity of f. Let t,u be terms. We writet = f(t1,...,tm),
u = g(uy,...,uy,) when they are not variables. We define the
quasi-recursive path order 7T and the recursive path order

~TPO
T .
= po as follows:

t b,fpo u if and only if at least one of the following four con-

ditions are satisfied:

e t=u

o t; ™7

i ~TPO

uforl <Ji<m

o f>~gandt -]

rpo

ujforl1 <vj<n

o fr~gandt ~7,, ujforl <Vj<n,

and ((7(f) = mul and 7(g) = mul) or
(7(f) € Lex(m) and 7(g) € Lex(n)))

and (t1, ... tw) =it ™9 (g, uy)

~TDO

t-T

PO

w if and only if (t T

~TPO

w) A =(u 2zl t).

~TPO

We will leave out the superscript 7, if it is understood. Let
Prec” be the set of all total quasi-precedences on F. Let
Stat” = Status(arity(fi)) x - -+ x Status(arity(f,)) and
RPO” = Prec” x Stat”. Anelement (=7, (s1,...,5,)) €
RPOY corresponds to an RPO such that its quasi-precedence
is =7 and its status function maps f; to s;. In the following,
we present encodings for Prec” and Stat” .

IMECS 2008

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I

IMECS 2008, 19-21 March, 2008, Hong Kong

4.2 Encoding for Precendence and Status

We present an encoding for Prec” by following the approach
of Codish et al. [4] who have proposed to assign an inte-
ger value to function symbols for representing the priority.
A quasi-precedence - is defined in terms of the priority by
f 7 g if and only if priority(f) > priority(g).

Definition 4.4 Let p = |F| and k = [log,(p)]. Then k is the
number of bits required for encoding the priority per function
symbol. Let X},,. = {bzf|1 < i < k} be the set of logi-
cal variables for encoding the priority of a function symbol
f. The variable b£ represents the most significant bit. The
set of variables for encoding the precedence is denoted by
Xpree = U,fe F prrec- We define the encoding function for
the precedence as follows.
11

[9E€F, [#9,f 79

encprec(Z) =

k
~Y Pf)g,
P9 = ofbf + (0[] + bl60) - PEY ifk >0

Note that Pﬁg = lif and only if priority(f) > priority(g).

Lemma 4.1 (X, cc, €nCprec) is an encoding for Prec” and
encprec(Prec”) = 1.

Let us proceed to an encoding of Status(n). If n < 1 then
the encoding is trivial (X =) and enc(s) = 1). From here,
we assume n > 2.

Definition 4.5 We introduce the set of variables X !

stat*

Xﬁfmt = {x{nuz} U {xlj,|1 <i<j<n}

f

Intuitively, a variable x;

, means that we use multiset com-

parison for arguments of f and xz’;(z < j)or i{l (j < 7) means
that the i-th argument is compared before the j-th argument in
the lexicographical comparison of the arguments of f. We de-
fine the encoding function for the set Status(arity(f)) of the

statuses of f as follows:
f

I N A if s = mul
enc s) =
stat(5) { J’UfnulRf if s = lex,
where
Pf_ﬁﬁLf Lf_{l‘z;c] 1fZ<]
T w(k),m(l)’ iy = e .
Pt el zy; ifj <i

By Proposition 1, the encoding for Stat” is derived from
(Xsftlat, encgat), cey (Xsft”at, encicfat). We denote it by
(Xstatvencstat)’ where Xstat = Ufe]: Xsftataencstat =

f
er}' ENCsiat -

Lemma 4.2 (X,iq1, €ncCstar) is an encoding for Stat”.

ISBN: 978-988-98671-8-8

4.3 Encoding for RPO

Finally, we present the inductive definition of enc(RPOZ,).
Let (X,enc) be the encoding for RPO” derived from
(Xpree, €ncprec) and (Xgiqr, €ncsiqr) defined in the previous
section, i.e., X = Xpree U Xgtat, ENC = €NCprec * ENCstat-
In the following definition, the constraint RPOy ,, is true iff
t >rpo u for some RPO >,,,, and QRPO;, is true iff
t Zrpo u for some quasi-RPO 7.

Definition 4.6 Let t,u be terms such that t =
fltr, .. oytm),u = g(uy,...,u,) when t and u are not
variables and let k = [log,(|F|)]. We define the following
constraints.

RPOt,u = QRPOt,u : QRPOu,t

QRPO;y =
Oif(teV, t#u)orV dudVar(t)
lift=worV > u e Var(t)
:'il QRPOti,u + Pﬁg : H;‘L=1 RPOt,uj : (ng’f. .
+ Zs1€Sta,tus(arity(f)) Z) EXt\S,}u,bQ)
ift#uandt,u &V

so€Status(arity(g)

where
LEX (1t Gur o) =
lifn=20

0Oifm=0andn >0
RPOy, uy, + QRPOy, u, - LEX 4,
ifn>0andm >0

mul,lex,
EXt,'u, -

lexr, lexnq,
EXt,u -

lexy,mul __
EX; . =0

encztut (lexx,) - encgtat (lewy,)
‘LEX

e (1) -,-“7t7rt(m,)>7<u7ru(1) -m“vu'rru(rz))

EXZ;ul’m“l = enc;sfmt(mul)~enc§tut(mul)

II > erro,,
yeEN—M zeM—N

where M and N are multiset: M = {ti,..
{Ul, v ,’U,n}.

Stmb, N =

Based on Lemmas 1, 2, and 3, we can define an encoding func-
tion for the recursive path order by enc(-7,,) = encprec(Z
) A encsiar(T) where - and 7 are the quasi-precedence and
status function of -7 . respectively. In order to execute
the ORIENT rule of MKBOOL, however, we need to com-
pute RPOf «» Which is the set of all RPOs >7, such that
t >, u. We also need to compute enc(RPO”), for start-
ing MKBOOL. The following theorem gives the results. The

proof is omitted.

Theorem 4.1 enc(RPO{,) = RPO,,, and enc(RPO”) =
encsiar (Stat”)

IMECS 2008

Table 1: Computation time of MKB and MKBOOL

Problem 3-1 3-3 34 3-5 3-6
of orders 675 675 225 39 14607
MKB(sec) 20.7 1677 4350 39 88.0
MKBOOL(sec) 8.1 6.7 3313 36 3.7
3-7 3-20 3-28 3-29
34083 1722204423 4683 545835
188.6 >3600 47.9 359.3
3.2 2.8 6.8 1.4

5 Implementation and Experiments

We have implemented MKBOOL and experimented on a set
of the standard benchmark problems [9]. For example, the
problem 3-1 is the most well-known problem from the group
theory. For efficiency, we have used binary decision diagrams
(BDDs) [3] as a representation for boolean constraints. The
results are summarized in Table 1. The problems selected are
all the problems that could be solved by the systems. We have
considered all the RPOs with total quasi-precedence and sta-
tus. The table gives the numbers of such orders and CPU times
(in seconds) run on a PC with Pentium 4 CPU and 512MB
main memory. Clearly, MKBOOL is more efficient than MKB
in all the problems examined.

6 Conclusion

We have presented a new multi-completion system MK-
BOOL, based on the abstract framework for boolean con-
straints on reduction orders. In particular, we have pre-
sented an encoding for the recursive path orders with quasi-
precedence and status. The experiments show that MKBOOL
is more efficient than MKB in all the problems examined.
As future work, we plan to incorporate the dependency pair
method into multi-completion. We also plan to support more
classes of reduction orders in addition to RPO.

References

[1] F. Baader and T. Nipkow. Term Rewriting and All That.
Cambridge University Press, 1998.

[2] L. Bachmair. Canonical Equational Proofs. Birkhduser,
1991.

[3] R. E. Bryant. Graph-based algorithms for boolean func-
tion manipulation. IEEE Trans. Comput., Vol.C-35,
No.8, pages 677-691, 1986.

[4] M. Codish, V. Lagoon and P. Stuckey. Solving partial or-
der constraints for LPO termination. In Proc. 17th RTA,
volume 4098 of LNCS, pages 4-18, 2006.

[5] D. E. Knuth and P. B. Bendix. Simple word problems
in universal algebras. in J. Leech(ed.), Computational

ISBN: 978-988-98671-8-8

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

Problems in Abstract Algebra, pages 263-297, Pergamon
Press, 1970.

[6] M. Kurihara and H. Kondo. Completion for multiple
reduction orderings. Journal of Automated Reasoning,
Vol.23, No.1, pages 25-42, 1999.

[7] M. Kurihara and H. Kondo. BDD encoding for partial
order constraints and its application to expert systems
in software verification domains. In Proc. IEEE Inter-

national Conference on Systems, Man and Cybernetics,
pages 2062-2067, 2000.

[8] J. Steinbach. Extensions and comparison of simplifica-
tion orderings. in N. Dershowitz(ed.), Proc. 3rd RTA,
volume 355 of LNCS, pages 434-448, 1989.

[9] J. Steinbach and U. Kiihler. Check your ordering - termi-
nation proofs and problems. Technical Report SR-90-25,
Universitiat Kaiserslautern, 1990.

[10] Terese. Term rewriting systems. Cambridge University
Press, 2003.

[11] H.Zankl and A. Middeldorp. KBO as a satisaction prob-
lem. Technical Report, University of Innsbruck, 2006.

IMECS 2008

