
Sequential Fixed-width Confidence Bands for

Kernel Regression Estimation

L. S. Dharmasena ∗ B. M. de Silva† P. Zeephongsekul‡

Abstract—We consider a random design model
based on independent and identically distributed (iid)
pairs of observations (Xi, Yi), where the regression
function m(x) is given by m(x) = E(Yi|Xi = x) with
one independent variable. In a nonparametric setting
the aim is to produce a reasonable approximation to
the unknown function m(x) when we have no precise
information about the form of the true density, f(x)
of X. We describe an estimation procedure of non-
parametric regression model at a given point by some
appropriately constructed fixed-width (2d) confidence
interval with the confidence coefficient of at least 1−α.
Here, d(> 0) and α ∈ (0, 1) are two preassigned values.
Fixed-width confidence intervals are developed using
both Nadaraya-Watson and local linear kernel esti-
mators of nonparametric regression with data-driven
bandwidths. The sample size was optimized using the
purely and two-stage sequential procedure together
with asymptotic properties of the Nadaraya-Watson
and local linear estimators. A large scale simulation
study was performed to compare their coverage accu-
racy. The numerical results indicate that the confi-
dence bands based on the local linear estimator have
the best performance than those constructed by using
Nadaraya-Watson estimator. However both estima-
tors are shown to have asymptotically correct cover-
age properties.
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1 Introduction

Suppose that (X1, Y1), ..., (Xn, Yn) is a sequence of iid
distributed (i.i.d.) bivariate random variables having an
unknown continuous pdf fXY (x, y) and for simplicity we
assume that Xi ∈ (0, 1) with an unknown pdf fX(x).
Consider the nonparametric regression model

Yi = m(Xi) + εi, i = 1, ..., n (1)

where εi is a sequence of iid random variables with
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E[εi] = 0, E[ε2
i ] = σ2 and m(·) is an unknown function.

The present article attempts to estimate fixed width con-
fidence bands for the unknown function m(x) at a given
point x = x0. Estimation is based on kernel type esti-
mators and consider two most popular kernel estimators
namely, Nadaraya-Watson estimator m̂hn,NW (x0) and lo-
cal linear estimator m̂hn,LL(x0) (Wand and Jones (1995))
which are defined respectively by

m̂hn,NW (x0) =

∑n
i=1 yiK(x0−xi

hn
)

∑n
j=1 K(

x0−xj

hn
)

(2)

and

m̂hn,LL(x0) =

∑n
i=1 wiYi
∑n

i=1 wi
(3)

where

wi = K

(

x0 − xi

hn

)

(sn,2 − (x0 − xi)sn,1) (4)

with

sn,l =
n
∑

i=1

K

(

x0 − xi

hn

)

(x0 − xi)
l, l = 1, 2 (5)

here K(·) is the kernel function and hn is the bandwidth.
In this paper, as in Isogai (1987), we take hn = n−r

for 0.2 < r < 1. Let K(·) satisfy
∫

uK(u)du = 0,
∫

u2K(u)du ≤ ∞, K(u) and |uK(u)| are bounded,
lim nh3

n = ∞ and limnh5
n = 0.

In general, local polynomial estimator (Fan and Gij-
bels, 1996) are superior to Nadaraya-Watson estimator
in some respects (Fan, 1993), but recent contributions by
Boularan et al. (1995), Einmahl and Mason (2000) as well
as Quian and Mammitzsch (2000), among others, have
given evidence of continuing interest in the Nadaraya-
Watson estimator. One of the strengths of this estima-
tor certainly consists in its automatic adaptation to de-
signs where the local polynomial estimator may not be
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performing reliably over all since its variance can fail to
exist in random designs. Also, the Nadaraya-Watson es-
timator retains some optimality properties as exposed in
Hardle and Marron (1985). Methods for obtaining con-
fidence bands for m(x) can be found in Hall and Titter-
ington (1988), Eubank and Speckman (1993) and Diebolt
(1995). The most widely used confidence band for m(x) is
based on the theorem of Bickel and Rosenblatt (1973) for
kernel estimation of a density function. Bias-corrected
confidence bands for general nonparametric regression
models are considered by Xia (1998). In principle, con-
fidence intervals can be obtained from asymptotic nor-
mality results for m̂(x). However, the limiting bias and
variance depend on unknown quantities which have to be
estimated consistently in order to construct asymptotic
confidence intervals.

Sequential analysis, in general, comes in handy when the
experimenter’s objective is to control the error of estima-
tion at some preassigned level. Whether one wants to
estimate m(x) at one single point x0 or for all x ∈ R,
depending on the specific goal and error criterion, one
would like to determine the sample size n in an opti-
mal fashion. That is in order to have the error con-
trolled at a preassigned level, sample size has to be
adaptively estimated in the process by a positive inte-
ger valued random variable N where the event [N = n]
will depend only on (X1, Y1), ..., (Xn, Yn) for all n ≥ 1.
Finally m(x) is estimated by ˆmhN

(x) constructed from
(X1, Y1), ..., (XN , YN ).

2 Nonparametric Kernel Regression

Throughout the present work, we will consider the fol-
lowing regression model with a random design. Let

m(x) = E[Y |X = x] (6)

be the unknown regression function which describes the
dependance of the so-called response variable Y on the
value of X . The following assumptions are used in this
study (Wand and Jones (1995)):

(i) m′′(x) is continuous for all x ∈ [0, 1].
(ii) K(x) is symmetric about x = 0 and supported on
[−1, 1].
(iii) hn → 0 and nhn → ∞ as n → ∞.
(iv) The given point x = x0 must satisfy hn < x0 < 1−hn

for all n ≥ n0 where n0 is a fixed number.

The obvious problem that occurs when using (2) and (3)
is the choice of bandwidth, hn. Since hn = n−r for 0.2 <
r < 1 using the property hn < x0 < 1−hn one can prove
that r ∈ (rmin, 1) where rmin = max(0.20, r0) and

r0 =

{− ln [min(x0, 1 − x0)]

ln(n)

}

(7)

A natural way of constructing a confidence band for m(x)
is follows. Suppose that m̂hn

(x) is an estimator of m(x)
then 100(1− α)% confidence band is of the form

Pr {|m̂hn
(x) − m(x)| ≤ d} ≥ 1 − α ∀x ∈ [0, 1] (8)

There are many difficulties with finding a good solution to
(8). Firstly, we must derive the asymptotic distribution of
m̂(x)−m(x); secondly the estimation of residual variance
and distribution function of X . Consequently, a good
estimator of bandwidth hn is needed.

The kernel estimators are asymptotically normal, as was
first shown in Schuster (1972).

Theorem 1. Let K(·) satisfy
∫

uK(u)du = 0,
∫

u2K(u)du ≤ ∞, K(u) and |uK(u)| are bounded, hn

is such that lim nh3
n = ∞ and lim nh5

n = 0. Sup-

pose x1, ..., xk are distinct points and g(xi) > 0 for

i = 1, 2, ..., k. If E[Y 3] is finite and if g′, w′, v′, g′′

and w′′ exist and bounded where g(x) =
∫

f(x, y)dy,

w(x) =
∫

yf(x, y)dy and v(x) =
∫

y2f(x, y)dy respec-

tively, then

√

nhn (mhn
(x1) − m(x1), ..., mhn

(xk) − m(xk))
d→ Z∗

(9)
where Z∗ is multivariate normal with mean vector 0

and diagonal covariance matrix C = [Cii] where Cii =
V [Y |X = xi]

∫

K2(u)du/g(xi) (i = 1, ..., k).

In general the bias of the m̂q,ll(x) estimator is smaller
than m̂q,nw(x) estimator (11).

E[m̂q,hn
(x0)] = m(x0) + Biasq (10)

and

Var[m̂q,hn
(x0)] =

Bσ2

nhnf(x)
+ o

{

(nhn)−1
}

where q = nw for (2) estimator, q = ll for (3) estimator,

Biasq =

{

A +
h2

nµ2(K)m′(x)f ′(x)
f(x) + o(h2

n) if q=nw

A + o(h2
n) if q=ll

(11)

A =
h2

n

2 m′′(x)µ2(K), µ2(K) =
∫∞
∞ u2K(u)du and B =

∫∞
∞ K2(u)du.

3 Sequential Fixed-Width Confidence

Interval

Given d(> 0) and α ∈ (0, 1) with hn = n−r for r ∈
(rmin, 1), suppose we wish to cliam
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Pr {m(x) ∈ In = [m̂q,hn
(x) ± d]} ≈ 1 − α (12)

for large n where x is fixed. Using Theorem 1 one can see
that the probability requirement (12) leads to the implicit
solution-equation

n ≥ nopt =

{

BZ2
α/2σ

2

d2f(x)

}
1

1−r

(13)

where Zα/2 is the 50%α upper percentile of the standard
normal distribution.

3.1 Purely Sequential Procedure

In general σ2 in (13) is unknown and purely sequen-
tial procedure suggest to substitute the variance pa-
rameter by a estimator σ̂2

n0
based on a small sample

(X1, Y1), ..., (Xn0
, Yn0

) of size n0 < nopt. Here we use
the estimate of σ2 proposed by Ursula etal. (2003) based
on covariate matched U-statistics, that is

σ̂2 =

∑∑

i6=j
1
2 (Yi − Yj)

2 1
2

(

1
ĝi−ĝj

)

K
(

Xi−Xj

hn

)

n(n − 1)
(14)

where

ĝi =
1

n − 1

∑

i6=j

K

(

Xi − Xj

hn

)

(15)

and

σ̂2 =
1

n

n
∑

i=1

ε2
i + op(n

− 1

2 ) (16)

In purely sequential procedure we take one observation at
time until the condition given in (17) is satisfied. Since
we already have a sample of size n0, the stopping rule for
purely sequential procedure is given by

N = max

{

n0,

⌊

{

Z2α/2

B
σ̂2

n0
d2f(x)

}

1

1−r1

⌋

+ 1

}

(17)

where ⌊n⌋ refers to the floor function, r1 ∈ (rmin, 1) and
from (7) rmin = max (0.20,− ln [min(x0, 1 − x0)] / lnn0).

3.2 Two-stage Sequential Procedure

The above purely sequential procedure involves a lot of
computational effort. Stein (1945) introduced a sampling
procedure which requires only two sampling operations.
However, it turned out that this two-stage procedure is

less efficient than the purely sequential procedure. Using
the asymptotic normality results in the Theorem 1 for
univariate random design case we can write

√
nhn {m̂q,hn

(x) − m(x)}
σ
√

B(f(x))−1
→ N(0, 1) (18)

From (24) for a random sample of normally distributed
residuals {εi}n

i=1 with mean 0 and variance σ2

nσ̂2

σ2
∼ χ2

(n) (19)

where χ2
(n) is the chi-squared distribution with n degrees

of freedom. Hence we combine (18) and (19) to claim
that √

nhn{m̂q,hn (x)−m(x)}
σ̂
√

B(f(x))−1

√

σ̂2

σ2

∼ tn (20)

The following statement (21) is obviously equivalent to
(12)

Pr {m(x) ∈ In} ≈ t

( √
nhnd

√

B(f(x))−1σ̂

)

− t

(

−
√

nhnd
√

B(f(x))−1σ̂

)

= 2t

( √
nhnd

√

B(f(x))

)

− 1 (21)

where t() is the cumulative student-t distribution and
an approximate solution to the problem is provided by
taking the smallest integer n ≥ 1 such that

2t

( √
nhnd

√

B(f(x))−1σ̂

)

− 1 ≥ 1 − α (22)

and since hn = n−r

n ≥
(

t2α/2,nBσ̂2

d2f(x)

)
1

1−r

(23)

where tα/2,n = t−1(1 − α/2) the (1 − α/2)th quantile of
the student-t distribution function t(·).

Two-stage sampling procedure is started by taking a pilot
bi-variate sample {Xi, Yi}n0

i=1 and then estimate the re-
quired final sample size by N . Now using (23) we propose
the following stopping rule for a two-stage procedure

N ≡ N(d) = max







n0,









(

t2n0,α/2Bσ̂2
n0

d2f(x)

)
1

1−r1







+ 1







(24)
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If N = n0 then we need no more observations in the
second stage. But if N > n0 then we take additional bi-
variate sample {Xi, Yi}N

i=n0+1 of size N−n0 in the second
stage. Finally we use the sample {(X1, Y1), ..., (XN , YN )}
to compute Nadaraya-Watson (2) and local linear (3) esti-
mates for m(x0) and construct the confidence band given
in (12). In an application of the stopping rule (24), it is
important to select the best available values for the de-
sign constants r and n0 for fixed predesigned values of d
and α.

4 Simulation Results

We use the following two models to assess the perfor-
mance of the confidence bands developed in Section 3:
Model I : Y =

√
4x + 3 + ǫ

Model II: Y = 2 exp{−x2

0.18} + 3 exp{− (x−1)2

0.98 } + ǫ
where ǫ ∼ N(0, σ2) .
Widths of the interval d = 0.05, 0.07, 0.09, 0.11, 0.13 were
used. The initial sample size n0 and σ were chosen to be
25 and 0.5 respectively. The confidence bands were inves-
tigated for α = 0.05 . For all the data analysed, we used
standard normal kernel K(u) = (2π)−1/2 exp(−u2/2) and
hence B = 2

√
π. In both models 15000 replicate sam-

ples for each experimental setting were carried out to ob-
tain the final sample sizes required to estimate m(x) at
x0 = 0.306 given fixed-width, 2d .

We obtained 15000 random samples of {Xi}25
i=1 from uni-

form distribution and then calculate corresponding yi for
each stated relation (Models I and II). Random errors
ǫ were generated from N(0, .52) distribution and added
to the above yi to obtained Yi. First we consider two-
stage sequential procedure for α = 0.05 and then purely
sequential procedure. The average final sample size n̄, av-

erage residual variance estimate σ̂2 , average local linear
m̂LL, average Nadaraya-Watson m̂NW estimates and cov-
erage probability p̃ which is the proportion of the confi-
dence intervals that contains the theoretical value, m(x0)
estimated at the point x0 = 0.306 are reported in Ta-
bles 1 and 2 for α = 0.05. Here (.) in the tables gives
the standard error of the estimated value.

Coverage probabilities of both Nadaraya-Watson (p̃NW )
and local linear estimators (p̃LL) have achieved preset
confidence coefficient 95% at x0 = .306 in Model II ex-
cept when d = .13. But the coverage probabilities for
Model I shows a different picture as Nadaraya-watson
estimator fails to achieve required coverage probabili-
ties except when d = .05 where as local linear method
does. This noticeable difference is mainly due to struc-
tural differences in the selected models. And also due
to the bias terms which heavily depend on derivatives
of the unknown function m(·) associated with each es-
timator. (p̃NW ) for Model I is increasing with decreas-
ing d due to large sample sizes resulted in increase in
sample sizes. This is consistent with both procedures

Table 1: Empirical coverage of LL and NW for Model I
α = .05; m(x0) = 2.055

d nopt n̄ p̃LL p̃NW m̂LL m̂NW σ̂2

Two − stage Procedure

.13 81.8 109.3 .947 .902 2.046 2.108 .265
(.40) (.00) (.00) (.001) (.001) (.001)

.11 139.0 185.9 .965 .912 2.048 2.105 .262
(.69) (.00) (.00) (.000) (.000) (.001)

.09 262.8 340.0 .978 .921 2.048 2.099 .260
(1.28) (.00) (.00) (.000) (.000) (.000)

.07 583.6 776.7 .989 .932 2.047 2.091 .265
(2.83) (.00) (.00) (.000) (.000) (.000)

.05 1698.2 2259.7 .996 .958 2.048 2.076 .265
(8.34) (.00) (.00) (.000) (.000) (.000)

Purely Sequential Procedure

.13 81.8 80.1 .918 .869 2.046 2.219 .242
(.00) (.00) (.00) (.001) (.001) (.001)

.11 139.0 137.6 .954 .901 2.046 2.189 .246
(.00) (.00) (.00) (.001) (.001) (.001)

.09 262.8 261.1 .980 .914 2.047 2.109 .248
(.00) (.00) (.00) (.000) (.000) (.000)

.07 583.6 581.7 .991 .926 2.047 2.097 .249
(.00) (.00) (.00) (.000) (.000) (.000)

.05 1698.2 1695.6 .998 .947 2.051 2.081 .250
(.00) (.00) (.00) (.000) (.000) (.000)

i.e. two-stage and purely sequential. The performance
of Nadraya-Watson estimator worsens as x increases as
its bias highly depends on derivatives of m(·). For the
interior point x0 = .306, the Nadraya-Watson estimator
assigns symmetric weights to both sides of x0 = .306. For
a random design this will overweigh the points on right
hand side and hence create large bias. In other words
Nadaraya-Watson estimator is not design-adaptive. How-
ever local linear method assigns asymmetrical weight-
ing scheme while maintaining the same type of smooth
weighting scheme as Nadaraya-Watson estimator. Hence
local linear method adapts automatically to this random
design.

This simulation analysis clearly shows that the average
sample sizes in two-stage procedure is much larger than
corresponding values in the purely sequential procedure
for both models. This evidence clearly implies that the
two-stage procedure is less efficient compared to purely
sequential procedure but at the same time one should
note that it is also associated with the highest cover-
age probability which exceeds the target confidence co-
efficient 95%. Further note that advantage of using a
two-stage procedure is reflected in computational time.
The purely sequential procedure needs substantially more
computations and hence during simulations it needs sig-
nificantly more computational times than the two-stage
procedure, particularly for small d. However purely se-
quential procedure at times fall somewhat short of the
optimal sample size. Hence the coverage probability falls
short of the target especially when half width of the in-
terval d becomes larger as it result in small sample sizes.
But achieved target coverage probability for smaller d due
to larger sample sizes.
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Table 2: Empirical coverage of LL and NW for Model II
α = .05; m(x0) = 3.024

d nopt n̄ p̃LL p̃NW m̂LL m̂NW σ̂2

Two − stage Procedure

.13 81.8 105.1 .946 .956 3.038 3.011 .258
(.40) (.00) (.00) (.001) (.001) (.001)

.11 139.0 180.5 .959 .967 3.037 3.004 .260
(.68) (.00) (.00) (.000) (.000) (.001)

.09 262.8 337.0 .973 .954 3.031 2.993 .258
(1.27) (.00) (.00) (.000) (.000) (.000)

.07 583.6 759.8 .989 .976 3.032 3.003 .261
(2.91) (.00) (.00) (.000) (.000) (.000)

.05 1698.2 2149.4 .994 .954 3.027 3.001 .256
(8.25) (.00) (.00) (.000) (.000) (.000)

Purely Sequential Procedure

.13 81.8 79.6 .916 .901 3.021 2.983 .241
(.40) (.00) (.00) (.001) (.001) (.000)

.11 139.0 137.9 .959 .946 3.031 2.995 .246
(.68) (.00) (.00) (.001) (.001) (.001)

.09 262.8 261.7 .977 .964 3.033 2.999 .248
(1.27) (.00) (.00) (.000) (.001) (.000)

.07 583.6 581.5 .992 .956 3.029 2.997 .249
(2.91) (.00) (.00) (.000) (.000) (.000)

.05 1698.2 1695.6 .998 .974 3.025 3.004 .250
(8.25) (.00) (.00) (.000) (.000) (.000)

5 Conclusions

In this paper we have studied data-driven fixed-width
confidence bands for nonparametric regression curve es-
timation using local linear and Nadaraya-Watson esti-
mators. Both procedures have been produced the correct
asymptotic coverage probabilities. The coverage proba-
bility of Nadaraya-Watson method was found to be gen-
erally below the preset confidence coefficients. On the
other hand local linear method had near-nominal cover-
age probabilities in most of the cases. The performance
of the purely sequential procedure is better than that
of the two-stage procedure. However operationally, two-
stage procedure reduces computational costs associated
with the corresponding purely sequential schemes by a
substantial margin. The σ̂2 appeared to be very close to
it’s actual value even for small sample size cases.
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[1] Boularan, J. and Ferré, L. and Vieu P., “Location of
particular points in nonparametric regression analy-
sis,” Australian Journal of Statistics, V37, pp. 161-
168, 1995.

[2] Bickel, P. L. and Rosenblatt, M., “On some global
measures of the deviations of density function es-
timates.,” Annals of Statistics, V1, pp. 1071-1095,
1973.

[3] Diebolt, J., “A nonparametric test for the regression
function: asymptotic theory,” Journal of Statistical

Planning Inference, V44, pp. 1-17, 1995.

[4] Einmahl, U. and Mason, D. M., “An emperical pro-
cess approach to the uniform consistency of kernel-

type function estimators,” Journal of Theoretical

Probability, V13, pp. 1-37, 2000.

[5] Eubank, R. L. and Speckman, P. L., “Confidence
bands in nonparametric regression,” Journal of the

American Statistical Association, V88, N424, pp.
1287-1301, 1993.

[6] Fan, J., “Local linear regression smoothers and their
minimax efficiency,” Annals of Statistics, V21, pp.
196-216, 1993.

[7] Fan, J. and Gijbels, I., Local polynomial modelling

and its applications, Chapman and Hall, London,
1996.

[8] Ghosh, M., Mukhopadhyay, N. and Sen, P.K., Se-

quential Estimation, Wiley, New York, 1997.

[9] Hall P. and Marron, J. S., “On variance estimation
in nonparametric regression,” Biometrika, V77, N2,
pp. 415-419, 1990.

[10] Hall P. and Titterington, D. M., “On confidence
bands in nonparametric density estimation and re-
gression,” Journal of Multivariate Analysis, V27, pp.
228-254, 1988.
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