
New Distance Lower Bounds for Efficient Proximity Searching

in Metric Spaces

Tao Ban and Youki Kadobayashi ∗

Abstract—The prune rules derived from the trian-
gle inequality has long been the most prevalent tech-
nique to avoid distance computations when fast near-
est neighbor (NN) searching is sought in a general
metric spaces. In this paper we introduce a group
of new lower bounds to estimate the unknown dis-
tances in a metric space. The new bounds are proven
to be tighter than the triangular inequality induced
lower bound and have better pruning performance.
The bounds take the assumption of positive semi-
definite metric space models and are adaptable to
most of the modern applications. In the simulations,
the new lower bounds have led to significant improve-
ment upon the search efficiency of AESA as well as
the Linear AESA algorithm, which are known as the
baseline of the known metric search algorithms.

Keywords: Metric Search, fast search, nearest neighbor

search, AESA

1 Introduction

Proximity searching consists in retrieving relevant infor-
mation satisfying user formulated query conditions from
a database. Since the evaluation of the similarity be-
tween queries and database items is computationally ex-
pensive, there have been many attempts to build indexing
structures using as few distance computations as possible
to answer the queries. In the framework of fast nearest
neighbor (NN) searching in general metric spaces, the
technique called Approximating and Eliminating Search
Algorithm (AESA) [13, 14] is probably the fastest one
in terms of distance computations required during NN
search. The AESA searches for the distance from a query
object to its NN prototype through the triangle inequality
based lower bound function, both for selecting prototypes
which are gradually closer to the query object (Approx-
imation), and for pruning out prototypes whose lower
bound estimates are no less than the smallest distance
found from the query object to the already examined pro-
totypes (Elimination). As a result, empirical tests have
shown that the AESA performs NN search in (approxi-
mately) constant average time [13].

∗The authors are with information Security Research Center,

National Institute of Information and Communications Technology,

Tokyo, 184-8795 Japan. Email: bantao@nict.go.jp, youki-k@is.aist-

nara.ac.jp.

AESA has been for 20 years the algorithm that requires
the least number of distance evaluations to answer prox-
imity queries. In fact, all the development on metric
indexes methods can be seen as attempts to simulate
the performance of AESA using less memory [4]. There
have been some algorithms aimed at reducing its pre-
processing time or employed storage space. LAESA [8]
chooses M elements from the dataset as potential piv-
ots, and reduces the storage cost to O(MN), where N
is the number of prototypes. An improved version of
LAESA is Tree LAESA [9] which achieves sublinear side
computations at query time at the expense of doubling
the number of distance computations on average. Re-
duced Overhead AESA [15] strictly calculates the same
distances as AESA but reduces the query processing time.
Recently, graph t-spanner indexes [10] were used to sim-
ulate AESA, obtaining almost the same number of dis-
tance calculations and using much less memory. In [5] a
new technique called iAESA is introduced to choose the
next pivot, which guesses better a close candidate and
yields some reductions in the number of distance evalua-
tions. In [6], the author suggests applying the technique
of AESA to most of the existing metric search structures
to efficiently reduce the number of distance computations
during search.

All of the above mentioned methods—in fact most of the
available metric search algorithms—are based on the dis-
tance lower bound derived from the triangular inequal-
ity (see Lemma 1 in Section 2.2). Although this lower
bound is computationally cheap, the accuracy degener-
ates quickly as the dimension of the data increases. It is
interesting to observe that, the triangular inequality is de-
fined in a 1D embedding space: all prototypes are embed-
ded in the space defined by the distance from the pivot.
Hence we call this lower bound as the 1D lower bound
hereafter. Assume that the set of prototypes can be em-
bedded into a Euclidean space with a finite dimension c.
It can be expected that more accurate lower bounds on
inter-prototype distances can be obtained in a higher di-
mensional embedding space: The higher the dimension of
the embedding space, the better the projected distance
approaches the metric distance. When the dimension of
the embedding space exceeds c, the projected distance
will be identical to the corresponding metric distance.
Following this idea, we propose two lower bounds to es-

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

timate the inter-prototype distances in the metric space.
For easy conceivability, the new lower bounds are defined
in the 2D and 3D embeddings of the metric space. With
the same storage cost, the novel lower bounds are both
experimentally proved to be tighter than the 1D lower
bound. Especially, the 3D lower bound is theoretically
proven to be tighter than the 1D counterpart. To evaluate
the efficiency of the proposed distance lower bounds, we
incorporate them in two search search algorithms. The
first one is an extension from classical AESA and aims
to estimate a new baseline for nearest neighbor search-
ing in metric spaces. The second algorithm is a mimic
of LAESA which requires much less storage than AESA
with the cost of a few increased distance computations.

The rest of the paper is organized as follows. In Sec-
tion 2, we briefly review the problem of metric search to-
gether with the classical AESA and LAESA algorithms.
Section 3 introduces two novel distance lower bounds on
inter-prototypes distances in general metric spaces. Sec-
tion 4 specifies the detailed implementation of the search
algorithms adopting these lower bounds. In the experi-
ment section, numerical results on a series of simulations
are reported. Section 6 concludes the paper. Because of
space limitation, proofs of the lemmas and some detailed
discussions are put in the appendix.

2 Related Works

Before specifying the AESA search strategies, we first
review the properties of a metric space model and com-
monly used metric queries.

2.1 Similarity Search in Metric Spaces

Let D be the domain of prototypes, d : D × D → R a
distance measure on D, the tuple M = (D, d) is called
a metric space, if ∀u,v,z ∈ D, the following conditions
hold [2].

d(u,v) ≥ 0 non − negativity (1)

d(u,v) = 0 ⇔ u = v identity (2)

d(u,v) = d(v,u) symmetry (3)

d(u,v) + d(v,z) ≥ d(u,z) triangular inequality (4)

A metric query is generally defined by a query object q

and a proximity condition. For a nearest-neighbor search,
the algorithm retrieves the closest prototype to q as the
result. The concept can be generalized to search for the
k nearest neighbors, thus the result set of a kNN search
Qk = (q, k, S) is

K(q, k, S) = R : {R ⊆ S, |R| = k,

∀ui ∈ R,v ∈ S \ R, d(q,ui) ≤ d(q,v)}. (5)

For simplicity, we confine our discussion on the nearest
neighbor query which is the most widely explored metric
search type. All the discussions can be easily extended to

a k-nearest neighbor algorithm by maintaining a list of
the k candidates seen so far and using the largest distance
among the k candidates for the elimination. Refer to [11]
for detailed discussions on other kinds of queries.

2.2 AESA

Following [13, 14], the key to the use of AESA in per-
forming nearest neighbor search is the following property
directly derived from the triangular inequality in (4).

Lemma 1 (1D lower and upper bounds) Let M = (D, d)
be a metric space, u,p, q ∈ D. The following inequalities
holds:

d1D(q,u|p) = |d(q,p) − d(u,p)| ≤ d(q,u), (6)

D1D(q,u|p) = |d(q,p) + d(p,u)| ≥ d(q,u). (7)

Thus if P is the set of prototypes whose distances from
q and u are known, the greatest lower bound d1D(q,u|P)
on d(q,u) for any prototype u ∈ D is

d1D(q,u|P) = max
p

i
∈P

|d(q,pi) − d(u,pi)|. (8)

AESA uses this lower bound during search to eliminate
prototypes u ∈ S \ P whose lower bounds of distance
from q are greater than the distance from q to the near-
est neighbor candidate un. The algorithm first initializes
P to the empty set, U = S \ P, and d1D(q,u) to 0 for all
u ∈ U. At each search step, the next pivot p is select
as the one with the minimal lower bound from U and its
distance from q is computed. The algorithm then up-
dates the distance lower bounds for the remaining proto-
types in U and eliminates the ones with the distance lower
bounds greater than d(q,un). The algorithm terminates
once there is no more prototype left in U. Note that the
nearest neighbor candidate, un, is updated if necessary
when distance computation is invoked.

2.3 LAESA

The main drawback of the AESA approach is the
quadratic storage requirement and large preprocessing
cost. LAESA alleviates this drawback by choosing a fixed
number, M , of pivots whose distances from all other pro-
totypes are computed and stored in advance. Thus, for
a dataset consisted of N prototypes, the distance matrix
contains N × M entries rather than O(N2) for AESA.
The search algorithm of LAESA is very similar to that
of AESA, especially when the distance from q to the se-
lected pivots are preferentially computed.

In particular, let P be the set of selected pivots from S,
U = S \ P be the rest of the prototypes. To implement
the approximating and eliminating strategy, LAESA first
computes the distances between q and all pivots p ∈ P

and then estimates the distance lower bounds for all the
prototypes in U applying (8). These lower bounds allow

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

eliminating prototypes from U whose lower bound esti-
mates from q are greater than the distance from q to the
current nearest neighbor candidate. The remaining pro-
totypes are sequentially compared with q in ascending
order of the distance lower bound. Note that in the case
of a distance computation the nearest neighbor candidate
is updated if necessary.

3 Proposed Lower and Upper Bounds

It is interesting to ask that with a fixed set of pivots,
can we obtain lower bound on the distance between two
prototypes q and u tighter than that produced by (8). As
suggested in [1], with a slightly more strict assumption
of the metric space model, we can effectively tighten the
lower bound. In the following, we first discuss a Euclidean
case and then generalize the discussions to metric spaces.

3.1 Embedding of the Metric Space

In a multi-dimensional Euclidean space, a 2D embedding
space can be decided by a triple of non-identical points
o, p and u, as shown in Figure 1. Let −→op be a coordinate
axis, with o being the origin and p defining the positive
direction. Let the projection of u on the axis be u′. Then
by the law of cosines, the projected distance between o

and u along −→op is:

d̄(o,p;u) = d(o,u′) = cos θd(o,u)

=
1

2d(o,p)

(
d2(o,u) + d2(o,p) − d2(u,p)

)
. (9)

We can see that the projected distance d(o,p;u) can
be computed using only the inter-prototype distances,
thus lower bound derived from (9) can be possibly ap-
plied to the metric space models. Then it is natural to
ask that under what circumstance can a metric space
model give rise to a configuration of points, {xi}, in a
Euclidean space, so that the associated Euclidean dis-
tance L2(xi,xj) ≡ d(ui,uj) for all ui,uj ∈ S. We have
the following lemma to the answer of this question.

Lemma 2 Let M = (D, d) be a metric space, S = {ui, i =
1, · · · , N} ⊂ D. Define the inter-prototype squared dis-
tance matrix as BN×N , where [B]ij = d2(ui,uj), i, j =
1, · · · , N and the gram matrix G as

G = −
1

2
(I −

1

N
11T)B(I −

1

N
11T), (10)

where 1 = {1, 1, · · · , 1} is the n-ary all ones vector and
I the identity matrix. If G is positive semi-definite, then
there exists a configuration xi, i = 1, · · · , N in a Eu-
clidean space with a dimension up to N which satisfies

L2(xi,xj) ≡ d(ui,uj), (i, j = 1, · · · , N). (11)

Proof of Lemma 2 and the way to find the configuration is
discussed in the appendix. We call a metric space model

Figure 1: Distances in the 2D Euclidean embedding.

which can always produce a positive semi-definite gram
matrix as positive semi-definite. Fortunately, most of the
commonly used metric space models are positive semi-
definite so that the lower bounds derived from this prop-
erty are applicable for most metric search problems. Note
that a positive semi-definite metric space is in accordance
with the positive semi-definite kernels [12] which is exten-
sively studied recently in the field of machine learning. In
fact, a positive semi-definite kernel always corresponds to
a positive semi-definite metric space. Hence, the tech-
niques explored here are readily adaptable to most of the
modern applications.

3.2 New Bounds on the Distances

By Lemma 2, we have the following lemma which defines
a novel lower bound on the distance between two proto-
types, given their distances to two pivots are known.

Lemma 3 (2D lower bound) Let M = (D, d) be a positive
semi-definite metric space. o,p,u ∈ D, o 6= p. Then for
any q ∈ D, the following inequality holds:

d2D(p,u|o,p) = |d̄(o,p; q) − d̄(o,p;u)| ≤ d(q,u). (12)

In Lemma 3, only the projected distance along −→op is
considered. The following lemma employs the distance
perpendicular to −→op for a tighter lower bound.

Lemma 4 (3D lower and upper bounds) Let M = (D, d)
be a positive semi-definite metric space, o,p,u, q ∈ D,
o 6= p. Let u′ and q′ be the projections of u and q on −→op

respectively. Then the following inequality holds:

d(q,u) ≥ d3D(p,u|o,p)

=
√

d2(u, q|o,p) + (d(q, q′) − d(u,u′))2. (13)

Similarly d(q,u) is upper bounded by

d(q,u) ≤ D3D(p,u|o,p)

=
√

d2(u, q|o,p) + (d(q, q′) + d(u,u′))2. (14)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Generally, when incorporated in a metric search algo-
rithm, the tighter the distance lower bound the better the
elimination performance of the algorithm to prune out
unnecessary distance computations. It is obvious that
the 3D lower bound is tighter its the 2D counterpart.
For positive semi-definite metric spaces, given more than
two nonidentical pivots, we can prove that the 3D lower
bound is also tighter than the 1D lower bound defined in
Lemma 1, as stated in the following lemma.

Lemma 5, Let M = (D, d) be a positive semi-definite
metric space, o,p ∈ D, (o 6= p) are pivots. The following
inequalities hold:

d3D(q,u|o,p) ≥ max
(
d1D(q,u|o), d1D(q,u|p)

)
, (15)

D3D(q,u|o,p) ≤ max
(
D1D(q,u|o), D1D(q,u|p)

)
. (16)

See the proof of the lemmas in the appendix A.

4 Searching Algorithms

In this section we specify the searching algorithms with
the new lower bounds incorporated with the search strat-
egy of AESA and LAESA. We term the new distance
bound as projection based distance bound, so that the fol-
lowing algorithms are dubbed PAESA (the Projection-
based AESA) and LPAESA.

4.1 PAESA

As specified in Table 1, PAESA basically follows the al-
gorithm of AESA [13, 14]. The major difference between
PAESA and AESA is the application of the new dis-
tance lower bound for approximation and elimination.
In AESA, for each pivot p selected from the dataset,
Lemma 1 is applied only once to update the associated
lower bound d1D(q,ui) on d(q,ui). However, for PAESA,
when a pivot is added to the pivot set, multiple lower
bounds of d(q,ui) can be computed according to Lemma
3 or Lemma 4. Thus, with m pivots selected, the lower
bound d2D(q,ui) for d(q,ui), or d3D(q,ui) for d(q,ui),
is selected as the maximum from the m(m+1)/2 approx-
imations. Hence the lower bound produced by PAESA
will generally be much tighter than that of AESA and
hence more distance computations can be saved. Note
that, on line 13 of Table 1, in the case Lemma 3 is ap-
plied to get the lower bound, we term the algorithm as
PAESA2D, otherwise it is dubbed PAESA3D if Lemma
4 is employed.

4.2 LPAESA

Like AESA, PAESA also requires a distance matrix
storing O(N2) inter-prototype distances, which becomes
impractical for large datasets. Following the idea of
LPAESA, we can alleviate this drawback by choose a
fixed number of M pivots, whose distances from all the
prototypes are computed and stored beforehand.

0 Inputs: q, S = {si|i = 1, · · · , N};
1 P ← P; // set of pivots
2 U ← S; // set of non-pivots
3 D(ui) ← 0, for ui ∈ U; // lower bound
4 dn ← ∞; // distance to the nearest neighbor
5 while U 6= ∅
6 p ← arg minui∈U D(ui);
7 U ← U \ {p};
8 if d(q,p) < dn then // distance evaluation
9 dn ← d(q,p);
10 b ← p; // update the nearest neighbor
11 for ui ∈ U do

12 Dlow(ui) ← max
p

j
∈P

appro(q,ui,p,pj);

13 D(ui) ← max(D(ui), Dlow(ui));
14 if (D(ui) ≥ dn) then

15 U ← U \ {ui}; // elimination
16 P ← P ∪ {p};
17 return b; // Output: the nearest neighbor

Table 1: The PAESA metric search algorithm.

Table 2 specifies the search algorithm of LPAESA when
a set of M pivots, P, are previously selected from the
dataset. During the search, the query object is first com-
pared against the pivots and then the distances from the
pivots are used to compute the lower bounds of the non-
pivots. After that, the non-pivots are visited in ascend-
ing order of the lower bound until no prototype in the
set can be nearest neighbor of the query object. Note
that the distance to the current nearest neighbor candi-
date is updated when a distance computation is invoked.
The LPAESA is termed as LPAESA2D or LPAESA3D
according to the employed lower bound.

4.3 Pivot Selection

To speed up the search, LPAESA requires a distance ma-
trix consisting the computed distances between pivots in
the pivot set and all the prototypes in the dataset. Note
that the number of selected pivots as M , the storage cost
of LPAESA is O(MN).

As pointed out in [3], the way pivots are selected af-
fects the search performance of a metric search algorithm.
Among the pivot selection heuristics studied in [3], the in-
cremental selection strategy shows the best performance
for real world metric spaces both in terms of approximat-
ing accuracy and computation cost. In the experiment,
we employ an incremental selection algorithm, as speci-
fied in Table 3. to select the pivot set. By defining the
distance from a prototype u to a set of prototypes P as
the minimum from u to pi ∈ P, the idea can be easily
stated as: first initialize the pivot set with a randomly se-
lected prototype, then sequentially select the next pivot
as the most separated prototype from the pivot set.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

0 Inputs: q, S = {si|i = 1, · · · , N − M},
P = {pi|i = 1, · · · ,M};

1 U ← S; // set of non-pivots
2 dn ← ∞; // distance to the nearest neighbor
3 for pi ∈ P do

4 if d(q,pi) < dn then // distance evaluation
5 dn ← d(q,pi);
6 b ← pi; // update the nearest neighbor
7 for ui ∈ U do

8 Dlow(ui) ← max
p

j
,p

k
∈P

appro(q,ui,pj ,pk);

9 if (Dlow(ui) ≥ dn) then

10 U ← U \ {ui}; // elimination
11 Us ← sort(U, {Dlow(ui)}); // ascending order
12 for ui ∈ Us do

13 if (Dlow(ui) ≥ dn) then

14 break;
15 if d(q,ui) < dn then // distance evaluation
16 dn ← d(q,ui);
17 b ← ui; // update the nearest neighbor
18 return b; // Output: the nearest neighbor

Table 2: The LPAESA metric search algorithm.

0 Inputs: S, M ;
1 P ← {p1 ∈ S}; // random select the first pivot
2 for i = 2 to M do

3 di(uj , P) = min
p

k
∈P

d(uj ,pk), for uj ∈ S;

4 pi ← arg max
uj∈S−P

di(uj , P);

5 P ← P ∪ {pi} ;
6 return P; // return the pivot set

Table 3: Incremental pivot selection algorithm.

5 Experiments

In this section we present the experimental results of the
proposed PAESA and LPAESA algorithms. Numerical
results on a series of simulations are reported. The perfor-
mance of the indexing structures is measured by the cut-
off of distance calculations. Because AESA and LAESA,
which provide the best effectivity in distance computa-
tion reduction, have long been the baseline of metric
search algorithms, we only compare the proposed algo-
rithms with these two algorithms. Other metric search
algorithms—typically with less storage cost—will gener-
ally require more distance computations.

In the experiments, the indexed prototypes and the query
objects are independently drawn from uniform distri-
butions in c-dimensional unit hypercubes. The coordi-
nates of the data points are never used directly and only
the inter-prototype distances are employed in the algo-
rithms. We set the number of prototypes in the datasets

Figure 2: Search performance with varying pivot set size
in 10D.

Figure 3: Pivot selection results for different dimensional
datasets.

to 10,000, and the number of queries to 100. Reported
results are averaged over 10 runs.

Before the performance evaluation of the algorithms, we
first show the results of the pivot selection algorithms
for LAESA, LPAESA2D and LPAESA3D. The curves
of number distance calculations vs. pivot set size for
a 10D dataset are shown in Figure 2. We can find ev-
ident saddle points in all the curves. That is, the number
of distance calculations first drops because the approxi-
mation accuracy increases as pivots are added, however,
after a certain threshold, the distance calculations go up
since the computations against the pivots considerably
increase. Experiments show that, for independently gen-
erated datasets with the same distribution, the optimal
number of pivots is quite stable. We can also see that the
curves for LPAESA2D and LPAESA3D are very close to
the dashed line which stands for the number of pivots.
This is because that the distance lower bounds given by
LPAESA2D and LPAESA3D are very tight so that most
of the non-pivot prototypes are pruned without distance
computations. In Figure 3, the results of pivot selec-
tion for datasets up to dimension 20 are reported. It can

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

be learn from the figure that, the number of pivots se-
lected by LAESA is exponential in the dimension of the
dataset. LPAESA2D and and LPAESA3D need compa-
rable numbers of pivots for all the cases. For datasets
with dimension over 5 LPAESAs select much fewer num-
bers of pivots than LAESA. In dimension 10, the three
algorithms select 44, 15, and 12 pivots respectively, and
in dimension 20, they select 1002, 132, and 118 pivots
respectively.

The aim of the second experiment is to compare the per-
formance of the referred metric search algorithms in dif-
ferent dimensions. The algorithms are tested on datasets
up to dimension 20. The curves of distance calculations
for the nearest neighbor queries are shown in Figure 4.
From the curves we can see that the search difficulty in-
creases exponentially in the dimension because of the so
called curse of dimensionality. The performance compar-
ison is clear enough: for datasets with lower dimension,
since the selected pivots can produce very tight lower
bounds, the pivot set based methods are more preferable
than the full matrix based methods. When the search dif-
ficulty increase as the dimension goes up, accurate enough
lower bound can only achieved by extensive usage of pre-
stored distances. For dimension up to 8, we have the
following performance order:

LAESA l AESA l LPAESA2D

lLPAESA3D l PAESA2D l PAESA3D, (17)

where ‘l’ stands for an ascending order in terms of the
saved distance computations. Since lemma 4 produces
tighter lower bounds than lemma 3, PAESA3D needs
slightly less distance computations than PAESA2D, and
LPAESA3D needs less than LPAESA2D. However, the
differences are not so prominent. If the computation cost
to estimate the distance lower bounds is also taken into
account—note that lemma 4 costs two or three times
more than lemma 3—better choice can be made based on
the nature of the application. Another thing to note is the
effectiveness of the application of pivot sets. With much
less storage cost than PAESAs, LPAESAs need no more
than two times distance computations than PAESAs. For
the most intensive case in dimension 20, LPAESAs re-
quires about 1% of the space of PAESAs with about 50%
more distance computations. So for large scale applica-
tions or for systems short on storage resources, LPAESAs
are better choices.

In the third experiment we evaluate the algorithms
against 10D datasets with sample size, N , varying from
1,000 to 1,3000. The required distance calculations are
reported in Figure 5. It is interesting to find that for
all these algorithms fewer objects in the dataset does not
mean fewer number of distance computations required
to retrieve the nearest neighbor. On the contrary, each
of the algorithms maintains a stable number of distance
computations as the sample size varies. Note that for

Figure 4: Experiments on varying dimension.

Figure 5: Experiments on varying sample size.

AESA and PAESAs, there is no influence from the se-
lected number of pivots. This property is especially useful
for large scale datasets. For all the cases, the performance
order in (17) is preserved.

In the fourth experiment, we extend the algorithms to
find the k nearest neighbors by introducing an ordered
list of the k nearest prototypes to the query object and
updating it when distance computation is invoked. The
number of pivots are fixed for LAESA and LPAESAs.
Figure 6 shows the curves of the distance calculations
against k, which changes from 1 to 100. The experiments
are done on a 10D dataset with 10,000 prototypes. We
can learn from the figure that as k increases, the search
difficulty increases quickly. For each of the algorithms,
the number of distance calculations is in linear relation
to the retrieved number of nearest neighbors. We have
to note that this linearity in increased distance compu-
tations is only applicable for small k values. Since the
number of pivots are fixed for LAESA and LPAESAs
in the experiments, the results are in favor of PAESA
and AESA. Better results can be produced by LAESA

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Figure 6: Experiments on varying sample size.

and LPAESAs if more pivots are selected for large k val-
ues. A more adaptive strategy could be: suppose a large
enough pivot set is selected beforehand, selectively use a
proportion of the pivot set according to the user defined
k parameter.

From the experiments with different dimensions, sample
sizes, and k parameters, we find the following rules. PAE-
SAs have better search efficiency than AESA in all cases
in terms of the reduction of distance computations. Simi-
larly, LPAESAs always need fewer distance computations
than LAESA. Finally, 3D lower bound imposed search al-
gorithms always invoke fewer distance computations than
their 2D lower bound imposed counterparts.

6 Conclusion

In this paper, we have proposed two novel lower bounds
for distances in the metric space. The new lower bounds
are derived from the geometrical properties in the em-
bedding space and is applicable to positive semi-definite
metric space models. When the proposed distance lower
bounds are incorporated with the AESA search algo-
rithm, experiments show that when the full distance ma-
trix is employed, the search efficiency of the proposed
PAEASAs is much better than AESA especially for high
dimensional datasets. For better storage efficiency, we
have also applied the new lower bounds following the idea
of LAESA. In the experiments, the proposed LPAESAs
show not only better performance than LAESA in reduc-
tion of distance computations but also lower storage cost
in terms of the size of the inter-pivot distance matrix.

For most of the experiments, we have discovered a per-
formance order as shown in (17). Hence we can have
the conclusion that, for applications where the metric
distance computations are the most essential computa-
tional cost, we suggest the application of PAESA. When
storage cost are considered, LPAESAs are better choices.
Whether apply the 3D lower bound or 2D lower bound

depends on the comparative cost of side computations
and distance evaluations.

References

[1] Ban, T. and Kadobayashi, Y., New prune rules for
similarity search, in The 11th IASTED International
Conference on Artificial Intelligence and Soft Com-
puting, Palma de Mallorca, Spain, 2007.

[2] Brin S., Near neighbor search in large metric spaces,
in The 21th International Conference on Very Large
Data Bases, pp. 574–584, 1995.

[3] Bustos, B., Navarro, G., and Chávez, E., Pivot se-
lection techniques for proximity searching in metric
spaces, Pattern Recognition Letters, 24:2357–2366,
2003.

[4] Chávez, E., Navarro, G., and Marroqúın, J. L.,
Searching in Metric Spaces, ACM Computing Sur-
veys, 33(3), 273–321, 2001.

[5] Figueroa, K., Chávez, E., Navarro, G., and Pare-
des, G., On the least cost for proximity searching
in metric spaces, in Workshop on Experimental and
Efficient Algorithms, pp. 279–290, 2006.

[6] Fredriksson, K., Engineering efficient metric indexes,
Pattern Recognition Letters, 28(1), 75–84, 2007.

[7] Mardia, K. V., Kent, J. T., and Bibby, J. M., Mul-
tivariate Analysis, London: Academic Press, 1979.

[8] Micó, M. L., Oncina, J., and Vidal, E., A new
version of the nearest-neighbor approximating and
eliminating search algorithm (AESA) with linear
preprocessing time and memory requirements, Pat-
tern Recognition Letters, 15(1), 9–17, 1994.

[9] Micó, M. L., Oncina, J., and Carrasco, R. C., A fast
branch & bound nearest neighbour classifier in met-
ric spaces, Pattern Recognition Letters, 17(7), 731–
739, 1996.

[10] Navarro, G., Paredes, R., and Chávez, E., t-spanners
as a data structure for metric space searching, LNCS
2476, pp. 298–309, 2002.

[11] Samet, H., Foundations of Multidimensional and
Metric Data Structures, Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 2005.

[12] Shawe-Taylor, J, and Cristianini, N., Kernel Meth-
ods for Pattern Analysis, Cambridge University
Press, Cambridge, England, 2004.

[13] Vidal, E., An algorithm for finding nearest neighbors
in (approximately) constant average time, Pattern
Recognition Letters 4:145–157, 1986.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

[14] Vidal, E., New formulation and improvements of
the nearest-neighbor approximating and eliminating
search algorithm (AESA), Pattern Recognition Let-
ters 15(1), 1–7, 1994.

[15] Vilar, J., Reducing the overhead of the AESA
metric-space nearest neighbor searching algorithm,
Information Processing Letters 56:256–271, 1995.

A Proof of the Lemmas

Proof of Lemma 2: Let the coordinates of N points in
a c dimensional Euclidean space be given by xi (i =
1, · · · , n), where xi = (xi1, · · · , xic)

T . Then the Eu-
clidean distance between the ith and the j th points is
given by

d2

ij = (xi−xj)
T (xi−xj) = xT

i xi +xT
j xj −2xT

i xj . (18)

Let the gram matrix be G = {gij}, where

gij = xT
i xj . (19)

Here we show how to find G from dij .

Firstly, to overcome the indeterminacy of the solution
resulting from translation, we require the centroid of the
configuration of points be placed at the origin. That is

N∑

i=1

xil = 0, l = 1, · · · , c. (20)

From (18) and (20), we have

1

N

N∑

i=1

d2

ij = xT
j xj +

1

N

N∑

i=1

xT
i xi,

1

N

N∑

j=1

d2

ij = xT
i xi +

1

N

N∑

j=1

xT
j xj ,

1

N2

N∑

i=1

N∑

j=1

d2

ij =
2

N

N∑

i=1

xT
i xi. (21)

Substituting (21) to (18) gives

gij = −
1

2

(

d2

ij −
1

N

N∑

i=1

d2

ij −
1

N

N∑

j=1

d2

ij

+
1

N2

N∑

i=1

N∑

j=1

d2

ij

)

. (22)

Define matrix A as aij = −1

2
d2

ij , then the gram matrix
G can be computed from

G = HAH, (23)

where H is the centering matrix,

H = I −
1

N
11T . (24)

Figure 7: Distances in the 3D Euclidean embedding.

Following [7], Suppose dissimilarities δij = δ(ui,uj),
where δ(·, ·) is a metric distance function, are used in-
stead of dij to define matrix A, which is then centered
to produce the gram matrix G. Note that from the def-
inition of metric space model and (23), both A and G

are real valued symmetric matrices. Then it is guaran-
teed that G can be diagonalized whilst its eigenvalues
λi (i = 1, · · · , c) and their associated eigenvectors vi are
real. Thus we have

G = V ΛV T , (25)

where Λ = diag(λ1, · · · , λc),V = v1, · · · ,vc.

Equation (25) can also be rewritten as

G = XXT (26)

where X = [xi]
T , xi = λ

1

2 vi. If G is positive semi-
definite, then xi are real valued vectors.

Now the distance between the ith and jth points of the
configuration is given by (xi − xj)

T (xi − xj), and hence

(xi − xj)
T (xi − xj) = xT

i xi + xT
j xj − 2xT

i xj

= gii + gjj − gij

= aii + ajj − 2aij

= −2aij = d2

ij , (27)

by substituting for gij using (22). Hence the distance
between the xi and xj in the Euclidean space is equal to
the dissimilarity δ(ui,uj).¥

Proof of Lemma 3: Lemma 3 follows directly from the

basic properties of the Euclidean space. Because
−−→
q′u′ is

the projection of −→qu along −→op, the equation holds if and
only if −→qu parallels −→op.¥ Proof of Lemma 4: In Figure 7,
the prototypes are shown in the 3D space defined by o,
p, u, and q. The projection of q onto axis −→op is marked
as q′ and its projection onto the plane decided by o,p,u

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

is marked as q′′. Line −→uv is parallel to −→op and cuts the

extension line of
−−→
q′′q′ at point v. Then we have

d̄(o,p;u) − d̄(o,p; q) = d(u′, q′) = d(u,v). (28)

Since 4uvp is a right-angled triangle, by the
Pythagorean theorem, we have

d(q,u) =
√

d2(u,v) + d2(q,v) (29)

In 4qq′v, from the triangular inequality,

d(q,v) ≥ |d(q, q′ − d(q′,v)|. (30)

Substituting (28) and (30) to (29) and replacing d(q′,v)
with d(u,u′) gives (13). Similarly, we have (14).¥

Proof of Lemma 5: Here, we use two consequent proto-
types to denote the distance between them. Then, follow-
ing the denotations in Lemma 4 and Figure 7, we have

d2

3D
(q,u|o,p) = (u′o − q′o)2 + (uu′ − qq′)2

= u′o2 − 2u′o · q′o2 + q′o2

+uu′2 − 2uu′ · qq′ + qq′2

= u′o2 + uu′2 + q′o2 + qq′2

−2(cos θ cos γ + sin θ sin γ)uo · qo

= uo2 + qo2 − 2 cos(θ − γ)uo · qo

≥ d2

1D
(q,u|o). (31)

In the fourth line of the deduction, we have made use of
the product-to-sum trigonometric identities. Similarly,
we have

d2

3D
(q,u|o,p) ≥ d2

1D
(q,u|p). (32)

(15) follows from (31) and (32). Similarly we have (16).
¥

B Analysis of Computational Cost

For applications with computationally intensive metric
distances, side computation other than the distance com-
putation are simply ignored for easy evaluation of various
metric search methods. However, as suggested in [15], the
search performance of AESA like algorithms can be still
improved by carefully designed search procedures. Al-
though how to minimize the side computations is beyond
the scope of this paper, in this subsection, we give some
discussions on the implementation details of the evalua-
tion of the lower bounds.

As we have mentioned, to apply Lemma 1, we have
to know d(u,p) and d(q,p), with d(u,p) stored within
the indexing structure and d(q,p) computed during the
search. Evaluation of the 1D lower bound is costless: 1
addition and 1 fabs() function call are needed. At each
search step,

(
|P||U|

)
lower bounds are evaluated, where

|P| is the number of selected pivots and |U| the number
of remaining prototypes.

Applying Lemma 3 generally needs more side com-
putations. From (??) we can see that d2

2D
(p,u|o,p)

can be computed from d(u,o), d(u,p), d(q,o), d(q,p),
and d(p,o). For computational efficiency, we evaluate
d2

2D
(p,u|o,p) instead of d2D(p,u|o,p). Accordingly, the

squared inter-prototype distances are stored in the dis-
tance matrix. We compute d2

2D
(p,u|o,p) in two steps:

t = d2(u,o) − d2(u,p) − d2(q,o) + d2(q,p), (33)

d2

2D
(p,u|o,p) =

0.25

d2(o,p)
t · t. (34)

Hence, to evaluate the 2D lower bound, 3 additions, 2
multiplications, 1 division, and 1 assignments are in-
voked.

Things become a little complicated to compute the
squared 3D lower bound. From (31) we have

d2

3D
(q,u|o,p) = uo2 + qo2 −

T1

︷ ︸︸ ︷

2uo · qo cos θ cos γ

− 2uo · qo sin θ sin γ
︸ ︷︷ ︸

T2

. (35)

From the law of cosines, we have

cos θ =
uo2 + op2 − up2

2uo · op
, (36)

cos γ =
qo2 + op2 − qp2

2qo · op
. (37)

For fast evaluation, define two temporary variables

t1 = uo2 + op2 − up2, (38)

t2 = qo2 + op2 − qp2. (39)

So the term T1 in (35) can be computed as

T1 =
0.5

op2
t1 · t2, (40)

and term T2 can be computed as

T2 = 2uo · qo
√

(1 − cos2 θ)(1 − cos2 γ)

= 2uo · qo

√

(1 −
t2
1

4uo2 · op2
)(1 −

t2
2

4qo2 · op2
)

=
0.5

op2

√

(4uo2 · op2 − t2
1
)(4qo2 · op2 − t2

2
). (41)

Substituting (40) and (41) to (35) gives

d2

3D
(q,u|o,p) = uo2 + qo2

−
0.5

op2

(
t1t2 +

(
(4uo2 · op2 − t2

1
)(4qo2 · op2 − t2

2
)
) 1

2

)
.

(42)

Hence, to evaluate the 3D lower bound, 9 additions, 9
multiplications, 1 division, 2 assignments, and 1 sqrt()
function call will be invoked.

At each search step, PAESA and LPAESA need to eval-
uate

(
1

2
|P|(|P| + 1)|U|

)
lower bounds.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

