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Abstract—Recently, categorical data clustering has

been gaining significant attention from researchers,

because most of the real life data sets are categorical

in nature. In contrast to numerical domain, no nat-

ural ordering can be found among the elements of a

categorical domain. Hence no inherent distance mea-

sure, like the Euclidean distance, would work to com-

pute the distance between two categorical objects. In

this article, genetic algorithm and simulated anneal-

ing based categorical data clustering algorithms have

been proposed. The performances of the proposed al-

gorithms have been compared with that of different

well known categorical data clustering algorithms and

demonstrated for a variety of artificial and real life

categorical data sets. Keywords: Genetic Algorithm

based Clustering (GAC), Simulated Annealing based

Clustering (SAC), K-medoids Algorithm, Minkowski

score.

1 Introduction

Genetic algorithms (GA) [1, 2, 3] are randomized search
and optimization techniques guided by the principles of
evolution and natural genetics, having a large amount
of implicit parallelism. GAs perform search in com-
plex, large and multimodal landscapes, and provide near-
optimal solutions for objective or fitness function of an
optimization problem. The algorithm starts by initial-
izing a population of potential solutions encoded into
strings called chromosomes. Each solution has some
fitness value based on which the fittest parents that
would be used for reproduction are found (survival of
the fittest). The new generation is created by applying
genetic operators like crossover (exchange of information
among parents) and mutation (sudden small change in a
parent) on selected parents. Thus the quality of popula-
tion is improved as the number of generations increases.
The process continues until some specific criterion is met
or the solution converges to some optimized value. Sim-
ulated Annealing (SA) [4] is a popular search algorithm,
utilizes the principles of statistical mechanics regarding
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the behaviour of a large number of atom at low temper-
ature, for finding minimal cost solutions to large opti-
mization problems by minimizing the associated energy.
In statistical mechanics, investigating the ground states
or low-energy states of matter is of fundamental impor-
tance. These states are achieved at very low tempera-
tures. However, it is not sufficient to lower the temper-
ature alone since this results in unstable states. In the
annealing process, the temperature is first raised, then
decreased gradually to a very low value (Tmin), while
ensuring that one spends sufficient time at each temper-
ature value. This process yields stable low-energy states.
Geman and Geman [5] provided a proof that SA, if an-
nealed sufficiently slow, converges to the global optimum.
Being based on strong theory, SA has been applied in di-
verse areas by optimizing a single criterion. Clustering
[6, 7, 8, 9] is a useful unsupervised data mining technique
which partitions the input space into K regions depending
on some similarity/dissimilarity metric where the value of
K may or may not be known a priori. K-means [6] is a
traditional partitional clustering algorithm which starts
with K random cluster centroids and the centroids are
updated in successive iterations by computing the nu-
merical averages of the feature vectors in each cluster.
The objective of the K-means algorithm is to maximize
the global compactness of the clusters. K-means cluster-
ing algorithm cannot be applied for clustering categori-
cal data sets, where there is no natural ordering among
the elements of an attribute domain. Thus no inherent
distance measures, such as Euclidean distance, can be
used to compute the distance between two feature vectors
[10, 11, 12, 13, 14]. Hence it is not feasible to compute the
numerical average of a set of feature vectors. To handle
such categorical data sets, a variation of K-means algo-
rithm, namely K-medoids clustering has been proposed
in [15]. In K-medoids algorithm, instead of computing
the mean of feature vectors, a representative feature vec-
tor (cluster medoid) is selected for each cluster. A cluster
medoid is defined as the most centrally located element in
that cluster, i.e., it is the point from which the distance
of the other points of the cluster is the minimum. K-
medoids algorithm is also known as Partitioning Around
Medoids (PAM) [15]. A major disadvantage of K-means,
K-medoids clustering algorithms is that these algorithms
often tend to converge to local optimum solutions. They
optimize a single objective function. Motivated by this
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fact, here we are using a global optimization tool like
genetic algorithm and simulated annealing and try to op-
timize the objective function, the K-medoids error func-
tion by reducing the fact. The superiority of the proposed
method over hierarchical clustering [16] and K-medoids
clustering algorithm has been demonstrated on different
synthetic and real life data sets. The rest of the arti-
cle is organized as follows: Section 2 describes some well
known algorithms for categorical data clustering. In Sec-
tion 3, the distance metric used in this article to compute
the distance between two categorical objects has been de-
scribed. In section 4 and 5, a brief introduction to genetic
algorithm and simulated annealing have been presented
along with proposed genetic algorithm based clustering
and simulated annealing based clustering methods for
categorical attributes. Section 6 presents the experimen-
tal results conducted on several synthetic and real life
data sets. Finally, Section 7 concludes the article.

2 Categorical Data Clustering Algo-
rithms

This section describes some Hierarchical and Partitional
clustering algorithms used for categorical data.

2.1 Complete-Linkage Clustering

The complete-linkage (CL) Algorithm is also called the
maximum method or the farthest neighbor method [16].
It is obtained by defining the distance between two clus-
ters to be the largest distance between a sample in one
cluster and a sample in the other cluster. If Ci and Cj

are clusters, we define

DCL(Ci, Cj) = max
a∈Ci,b∈Cj

d(a, b) (1)

2.2 Average-Linkage Clustering

The average-linkage (AL) clustering algorithm, also
known as the unweighted pair-group method using arith-
metic averages (UPGMA) [16], is one of the most widely
used hierarchical clustering algorithms. The average-
linkage algorithm is obtained by defining the distance
between two cluster to be the average distance between
a pont in one cluster and a point in the other cluster.
Formally, if Ci is a cluster with ni members and Cj is a
cluster with nj members, the distance between the clus-
ters is

DAL(Ci, Cj) =
1

ninj

∑
a∈Ci,b∈Cj

d(a, b). (2)

2.3 K-medoids Clustering

Partitioning around medoids (PAM), also called K-
medoids clustering [15], is a variation of K-means with the

objective to minimize the within cluster variance W(K).

W (K) =
K∑

i=1

∑
x∈Ci

D(x,mi) (3)

Here mi is the medoid of cluster Ci and D(x, mi) denotes
the distance between the point x and mi. K denotes the
number of clusters. The resulting clustering of the data
set X is usually only a local minimum of W (K). The idea
of PAM is to select K representative points, or medoids,
in X and assign the rest of the data points to the cluster
identified by the nearest medoid. Initial set of K medoids
are selected randomly. Subsequently, all the points in X
are assigned to the nearest medoid. In each iteration,
a new medoid is determined for each cluster by finding
the data point with minimum total distance to all other
points of the cluster. After that, all the points in X are
reassigned to their clusters in accordance with the new
set of medoids. The algorithm iterates until W (K) does
not change any more.

3 Distance Metric

As discussed earlier, absence of any natural ordering
among the elements of a categorical attribute domain
prevents us to apply any inherent distance measure like
Euclidean distance, to compute the distance between two
categorical objects [17]. In this article following distance
measure has been adopted for all the algorithms consid-
ered. Let xi = [xi1, xi2, ..., xip], and xj = [xj1, xj2, ..., xjp]
be two categorical objects described by p categorical at-
tributes. The distance measure between xi and xj ,
D(xi, xj), can be defined by the total number of mis-
matches of the corresponding attribute categories of the
two objects. Formally,

D(xi, xj) =
p∑

k=1

δ(xik, xjk) (4)

where

δ(xik, xjk) =
{

0 if xik = xjk

1 if xik 6= xjk
(5)

Note that D(xi, xj) gives equal importance to all the cate-
gories of an attribute. However, in most of the categorical
data sets, the distance between two data vectors depends
on the nature of the data sets. Thus, if a distance matrix
is precomputed for a given data set, the algorithms can
adopt this for computing the distances.

4 Genetic Algorithm based Clustering:
GAC

4.1 Basic Principle

The searching capability of GAs has been used in this
article for the purpose of appropriately determining a
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fixed number K of cluster centers in <n; thereby suit-
ably clustering the set of n unlabelled points. The clus-
tering metric that has been adopted is the sum of the
distances of the points from their respective cluster cen-
ters. Mathematically, the clustering metric ζ for the K
clusters C1, C2, ..., CK is given by

ζ(C1, C2, ..., CK) =
K∑

i=1

∑
xj∈Ci

D(xj , zi), (6)

where D is the distance metric. The task of the
GA is to search for the appropriate cluster centers
z1, z2, ..., zKsuch that the clustering metric ζ is mini-
mized. The basic steps of GAs, which are also followed
in the GA-clustering (GAC) algorithm. These are now
described in detail.

4.2 Chromosome representation

Each chromosome has K genes and each gene of the
chromosome has an allele value chosen randomly from
the set {1, 2, . . . , n}, where K is the number of clusters
and n is the number of points. Hence a chromosome is
represented as a vector of indices of the points in the
data set. Each point index in a chromosome implies that
the corresponding point is a cluster medoid.

Example 1. Let K = 6, i.e., Then the chromosome

51 72 18 15 29 32

represents the indices of six points qualified for cluster
medoids. A chromosome is valid if no point index occurs
more than once in the chromosome.

4.3 Population initialization

The K cluster medoids encoded in each chromosome are
initialized to K randomly chosen points from the data set.
This process is repeated for each of the P chromosomes
in the population, where P is the size of the population.

4.4 Fitness computation

The fitness computation process consists of two phases.
In the first phase, the clusters are formed according to the
centers encoded in the chromosome under consideration.
This is done by assigning each point xi, i = 1, 2, ..., n to
one of the clusters Cj with center zj such that

D(xi, zj) < D(xi, zp), p = 1, 2, ..,K, and p 6= j, (7)

where D is the distance metric. All ties are resolved arbi-
trarily. After the clustering is done, the cluster medoids
encoded in the chromosome are replaced by the points
having minimum total distance to the points of the re-
spective clusters. In other words, for cluster Ci, the new

medoid is point xt where,

xt = arg min
xj∈Ci

∑
xk∈Ci

D(xj , xk). (8)

Hence the ith gene in the chromosome is replaced by t.
Subsequently, the clustering metric ζ computed as fol-
lows:

ζ =
K∑

i=1

ζi, (9)

where,
ζi =

∑
xj∈Ci

D(xj , zi). (10)

The fitness function is defined as f = ζ, so that mini-
mization of the fitness function leads to minimization of
ζ.

4.5 Selection

The selection process selects chromosomes from the mat-
ing pool directed by the survival of the fittest concept
of natural genetic systems. In the proportional selec-
tion strategy adopted in this article, a chromosome is
assigned a number of copies, which is proportional to its
fitness in the population, that go into the mating pool
for further genetic operations. Tournament selection is
one common technique that implements the proportional
selection strategy.

4.6 Crossover

Crossover is a probabilistic process that exchanges in-
formation between two parent chromosomes for generat-
ing two child chromosomes. In this article single point
crossover with a fixed crossover probability of µc is used.
For chromosomes of length l, a random integer, called the
crossover point, is generated in the range [1, l-1]. The
portions of the chromosomes lying to the right of the
crossover point are exchanged to produce two offspring
chromosomes.

4.7 Mutation

Each chromosome undergoes mutation with a fixed prob-
ability µm. The mutation operation has been defined as
following: From the string to be mutated, a random el-
ement is chosen and it is replaced by a different index
of point in the range {1, . . . , n} such that no element is
duplicated in the string.

4.8 Termination criterion

In this article the processes of fitness computation, se-
lection, crossover, and mutation are executed for a fixed
number of iterations. The best string seen upto the last
generation provides the solution to the clustering prob-
lem. We have implemented elitism at each generation by
preserving the best string seen upto that generation in
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a location outside the population. Thus on termination,
this location contains the centers of the final clusters.

4.9 GAC Algorithm.

1) Encoding
Generation=100
while( i<Generation)
2) Initial population creation of size 20.
3) Fitness value calculation.
4) Selection.
5) Crossover with probability = 0.8.
6) Mutation with probability = 0.1.
i=i+1;
End while

5 Simulated Annealing based Clustering:
SAC

Simulated annealing (SA) [4] is an optimization tool
which has successful applications in a wide range of com-
binatorial optimization problems. This fact has moti-
vated researchers to use SA in simulation optimization.
However SA still needs to evaluate the objective function
values accurately, and there have been few theoretical
studies for the SA algorithm when the objective function
is estimated through simulation. There are some appli-
cations of SA in clustering [18, 19]. In this article, we
have used SA for designing a categorical data clustering
method. The algorithm is named as simulated annealing
clustering (SAC). This algorithm is described below.

5.1 String representation

In this article, a configuration (string) is represented in
similar way a chromosome is represented in GAC, i.e.,
the string has length K and Each element of the string
is chosen randomly from the set {1, 2, . . . , n}, where K
is the number of clusters and n is the number of points.
Hence a string is represented as a vector of indices of the
points in the data set. Each point index in a string in-
dicates that the corresponding point is a cluster medoid.
A string is valid if no point index occurs more than once
in it.

5.2 Fitness computation

The fitness of a string is computed similarly as in GAC,
i.e., first the encoded medoids are used for cluster as-
signments and the string is updated using new medoids.
Thereafter the fitness (K-medoid error function) is com-
puted as per Eqn. 6.

5.3 Perturbation

The current string undergoes perturbation as follows: the
position of perturbation is chosen randomly and the value
of that position is replaced by some other value chosen

randomly from the set {1, 2, . . . , n}. This way, perturba-
tion of a string yields a new string.

5.4 SAC Algorithm

1) Generation of initial String Randomly = q.
T = T_{max}.
2) E(q,T) = Fitness of q.
while( T >= T_{min} )
for i = 1 to k
3) s = Perturb ( q ).
4) E(s,T) = Fitness of s.
if (E(s,T) - E(q,T) < 0 )
5) Set q = s and E(q,T) = E(s,T) .
else
6) Set q = s and E(q,T) = E(s,T) with
probability exp-( E(s,T) - E(q,T) )/T
End for
T= T*r. /* 0 < r < 1 */
End while

6 Experimental Results

The performance of the proposed algorithm has been
evaluated on two synthetic data sets (Cat01 and Cat02)
and three real life data sets (Tic-tac-toe, Zoo and Soy-
bean). The proposed SAC scheme has been com-
pared with different algorithms, viz., Complete-linkage,
Average-linkage and K-medoids. Each algorithm has
been run for 20 times. The average of Minkowski score
(described later) has been reported.

6.1 Synthetic Data Sets

Cat01: The ‘Cat01’ is a synthetic data set which con-
sists of 20 instances with 5 features. The data set has 2
clusters. Cat02: The ‘Cat02’ data is also a synthetic
data set which consists of 132 instances with 5 features.
This data set has 3 clusters. The synthetic data sets are
generated using a web based data generation tool1.

6.2 Real Life Data Sets

Zoo: The Zoo data consists of 101 instances of ani-
mals in a zoo with 17 features. The name of the ani-
mal constitutes the first attribute. This attribute is ne-
glected. There are 15 boolean attributes corresponding to
the presence of hair, feathers, eggs, milk, backbone, fins,
tail; and whether airborne, aquatic, predator, toothed,
breathes, venomous, domestic and catsize. The charac-
ter attribute corresponds to the number of legs lying in
the set 0, 2, 4, 5, 6, 8. The data set consists of 7 different
classes of animals.This is a categorical pattern. Soybean:
The Soybean data set contains 47 data points on dis-
eases in soybeans. Each data point has 35 categorical at-
tributes and is classified as one of the four diseases, i.e.,

1http://www.datgen.com
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number of clusters in the data set is 4.This is a categori-
cal pattern. Tic-tac-toe: The Tic-tac-toe data consists
of 958 instances of legal tic-tac-toe endgame boards with
10 features where each corresponding to one tic-tac-toe
square. Out of this 10 features last one is a class iden-
tifier. Others are corresponding to the top-left-square,
top-middle-square, top-right-square, middle-left-square,
middle-middle-square, middle-right-square, bottom-left-
square, bottom-middle-square and bottom-right-square.
Those squares are identified by x = player x has taken
or o = player o has taken or b = blank. The real life
data sets mentioned above were obtained from the UCI
Machine Learning Repository2.

6.3 Input Parameters

The GAC algorithm is run for 100 generations with pop-
ulation size=20. The crossover and mutation probabili-
ties are taken to be 0.8 and 0.1, respectively. The para-
meters of the SAC algorithm are as follows: Tmax=100,
Tmin=0.01, r=0.9 and k=100. The K-medoids algorithm
is run for 100 iterations unless it converges before that.

6.4 Performance Metric

Here, the performances of the clustering algorithms are
evaluated in terms of the Minkowski score(MS). A clus-
tering solution for a set of n elements can be represented
by an n × n matrix C, where Ci,j = 1 if point i and
j are in the same cluster according to the solution, and
Ci,j = 0 otherwise. The Minkowski score of a clustering
result C with reference to T , the matrix corresponding
to the true clustering, is defined as

MS(T,C) =
‖ T − C ‖
‖ T ‖

(11)

where

‖ T ‖=
√∑

i

∑
j

Ti,j

The Minkowski score is the normalized distance between
the two matrices. Lower Minkowski score implies bet-
ter clustering solution, and a perfect solution will have a
score zero.

6.5 Results

The Tables 1 and 2 report the average values for
Minkowski scores obtained by different algorithms over 20
runs on synthetic and real life data sets, respectively. It is
evident from the tables that both the GAC and SAC clus-
tering methods consistently outperform the hierarchical
clustering and K-medoids algorithms. The performances
of GAC and SAC are comparable to each other.

2http://www.ics.uci.edu/∼ mlearn/MLRepository.html

Table 1: Average minkowski score for synthetic data sets.
Algorithm Cat01 Cat02
CL 0.9953 1.3520
AL 0.9492 1.1384
K-medoids 0.6617 0.9425
GAC 0.0000 0.4522
SAC 0.0000 0.4922

Table 2: Average minkowski score for real life data sets.
Algorithm Zoo Soybean Tic-tac-toe
CL 1.1642 1.3954 1.4503
AL 1.1262 1.2432 1.0520
K-medoids 0.6920 0.7851 0.6372
GAC 0.4832 0.2522 0.4512
SAC 0.5340 0.2982 0.5001

7 Conclusions

In this article, genetic algorithm based clustering and
simulated annealing based clustering algorithms for clus-
tering categorical data around medoids, have been pro-
posed. The proposed algorithms effectively optimizes
the K-medoids error function globally. the performance
of the proposed algorithms have been demonstrated for
different synthetic and real life data sets and also com-
pared with that of other well-known clustering algorithms
used for categorical data clustering. The results indicate
the proposed genetic algorithm and simulated annealing
based algorithms can be efficiently used for clustering dif-
ferent categorical data sets.
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