
 

 

 

 

Abstract—Typically, before association rules are mined, a 

user needs to determine a support threshold in order to obtain 

only the frequent item sets. Having users to determine a support 

threshold attracts a number of issues. We propose an 

association rule mining framework that does not require a 

pre-set support threshold. The framework is developed based 

on implication of propositional logic. The experiments show 

that our approach is able to identify meaningful association 

rules within an acceptable execution time.  

 
Index Terms—association rule mining, propositional logic, 

implication, threshold free.  

 

I. INTRODUCTION 

Association Rule Mining (ARM) is a unique technique. It 

has the advantage to discover knowledge without the need to 

undergo a training process. It discovers rules from a dataset, 

and each rule discovered has its importance measured against 

interesting measures such as support and confidence.  

Although ARM technique does not involve model 

selection, it necessitates a cut-off support threshold to be 

predefined to separate frequent patterns from the infrequent 

ones. Two item sets are said to be associated if they 

co-occurred together frequently, and only the frequent ones 

are reported. There are major disadvantages to having a 

predefined threshold. Firstly, some rules are inevitably loss if 

the support threshold is set inaccurately. In addition, it is 

usually not possible to remove the support threshold in order 

to find infrequent items because ARM relies on a downward 

closure property of support, which necessitates a threshold to 

search for frequent item sets. That is, if an item set passes a 

minimum support requirement then all its sub sets also passes 

this requirement. If this threshold is waived then there will be 

no pruning opportunity, which results in an exponential 

search space. As a result, search could not be completed 

within feasible time. In summary in the traditional 

association rule mining, a minimum support threshold is 

needed, and should be determined accurately in order to 

produce useful rules for users. 

Based on the above limitations, we investigate the 

possibility of developing a new association rule mining 

framework that work without having to determine a support 

threshold. We based our framework on the notion of 

implication of propositional logic. We explain in details our 

proposed model in section 3 after discussion of previous 

work is presented in section 2. Several experiments and 

discussion on the results are presented in section 4. Finally, 
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conclusion is made in section 5.   

II. PREVIOUS WORK 

More recently, it is accepted that infrequent rules are also 

important because it represents knowledge not found in 

frequent rules, and these infrequent rules are often interesting 

[1],[2],[3],[4],[5]. In addition to missing infrequent item rules, 

the traditional algorithm such as apropri [6] also does not 

report the existence of negative associations. 

Association among infrequent items and negative 

associations have been relatively ignored by association 

mining algorithm mainly due to the problem of large search 

space and the explosion of total number of association rules 

reported [1],[2],[3],[4],[5],[7],[8]. Some of these rules may in 

fact are noise in the data. There are some attempts to find 

infrequent association such as that of [9].  This work 

proposed a generalise association using correlation. 

Correlation is measured by chi-square. However, at small 

expected values, the measure of chi-square has limitation of 

measuring the association accurately and, hence, results may 

be inaccurate. In addition, the authors‟ algorithm relies on a 

modified support hence, is not really suitable to find 

infrequent rules except the ones that are above a threshold. 

[10] finds independent rules measured by interest (leverage) 

and below a minimum support threshold. Authors in [10] also 

use [11] measure, which is derived from correlation, and 

necessitates a minimum confidence threshold. Mining below 

a minimum support threshold is similar to having a maximum 

support threshold. In addition, measure used in [11] will 

inherit the drawbacks of a correlation measure in [9],[12]. [13] 

filters uninteresting rules using leverage as a measure. 

[14],[15] finds rules using measure such as leverage or lift; 

these can be performed without other thresholds in place. 

Since rules found are independent from a minimum support 

threshold, theoretically it could find all infrequent rules. 

Rules found using leverage however measures co-occurrence 

but not the real implication [23].  

     There is relatively little research to find infrequent and 

interesting association rules. Two fundamental constraints 

are (i) selection of measure used and (ii) use of this measure 

to search for infrequent and interesting rule directly without 

post-processing the found rules. The measure should justify 

the search time in discovering rules. This new measure must 

contain properties that can be used to search for infrequent 

association rules directly. Otherwise it is meaningless to have 

a measure but not the rules.  

III. ASSOCIATION RULE PAIRS 

We study the frequency of occurrences between two item 

sets and proposed our approach that association rules can be 

mined without a minimum support threshold.  

In our study of the definition on association, we found that 
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association is defined in many ways of which can be referred 

to a number and different types of relationships among item 

sets. A typical definition of association is co-occurrence [17]. 

Association can also be generalized into correlation [9] or 

dependence rule [12]. Each has their merits. For the purpose 

of our model, we define association using implication of 

propositional logic in that an implication must be supported 

by its contrapositive. Such association rules mined has 

implications stronger than the typical associations based on 

co-occurrences.  

To illustrate our proposed framework, consider table 1 that 

contains relations between a rule antecedent (LHS), X and a 

rule consequence (RHS), Y as an association rule. The rule 

antecedent X consists of a combination of items, called an 

antecedent item set A. An antecedent item set A may exist, 

represented by A, or absence, represented by ¬A. Similarly, 

the rule consequence Y may contain existence or absence of 

consequence item set C. They are represented as C and ¬C. 

The frequency of occurrence of A and C is represented by Q1, 

A and ¬C by Q2, ¬A and C by Q3, finally, ¬A and ¬C by Q4.  

The total of occurrence of C is represented by covC, the 

occurrence of ¬C is given by m-covC. The same 

representations applied to A and ¬A. 

 

Table 1: Frequency of occurrences among antecedent and 

consequence item set 

 A rule consequence (RHS), Y 

C ¬C Total 

A rule 

antecedent 

(LHS), X 

A Q1 Q2 covA 

¬A Q3 Q4 m-covA 

Total covC m-covC m 

 

We now present the principle behind the pairing of the 

rules used in our mining algorithm. We consider an 

implicational association exists when the contrapositive of a 

positive rule does not contradict the positive rule. This 

definition of a strong association is based on the logic 

definition in [19] that states, if a statement is true then its 

contrapositive is always true (and vice versa). If a statement 

is false then its contrapositive is always false (and vice versa).  

Hence we should only report on positive association when the 

statistics of its contrapositive support the positive association. 

It follows, a contrapositive is the inverse and converse of an 

association, which has the same frequency of occurrence with 

only the inverse of an association. To show the distinct 

differences between an implication, its inverse, and its 

contrapositive, we list their forms and names according to 

propositional logic as follows.  

i) 𝐴 ⇒ 𝐶; an implication (a association rule) 

ii) ¬𝐴 ⇒ ¬𝐶; inverse of an implication 

iii) ¬𝐶 ⇒ ¬𝐴; contrapositive of an implication 

 

With referring to table 1, the statistics of the frequency of 

occurrence of an implication is shown in Q1, which is the 

total occurrences of A and C together. Similarly, the 

frequency of occurrence of an inverse or a contrapositive is 

shown in Q4; both have the same value. 

This pairing opportunity arises when Q3 and Q2 are 

smaller than Q1 and Q4. That is, frequency of occurrences 

from other forms of relationships does not overpower (i) and 

(iii). For example, if we found that Q3 has a higher frequency 

than Q1 and Q4 then the rule 𝐴 ⇒ 𝐶 should not be reported 

because the absence of A has a stronger association to C than 

existence of A. As a result, the frequency of occurrence of 

associations between item sets in rules (i) and (iii) are lower 

than other negative associations, such as “¬𝐴 ⇒ 𝐶” and 

“ 𝐴 ⇒ ¬𝐶 ”, which weaken the associations between a 

positive rule and its contrapositive.  

Since we choose to report 𝐴 ⇒ 𝐶 only if Q3 and Q2 are 

smaller than Q1 and Q4, we write these two conditions being 

(Q1,Q4) > Q2 and (Q1,Q4) > Q3. Based on these 

enforcements, our model will only report rules that have the 

highest statistics value in Q1 and Q4. There are many 

advantages in associated with these enforcements. Among 

these, the model enforces that a positive rule will always be 

supported by its contrapositive statistics, and will not be 

contradicted by other forms of negative association. That is 

positive rules found are mathematically true. In addition, 

positive rules are also supported by its inverses, which 

according to proportional error reduction [16], [24] are 

associations that may further improve prediction error on a 

consequence. Besides, such a rule also meets both the 

necessary and sufficient conditions of another rule in logic. 

Hence, following propositional logic and proportional 

error reduction, we could mine rules, which is strong in 

implication. While an implication is true, the strength of its 

ability to improve prediction on a targeted item (a 

consequence item set) is given by interestingness measure, H 

denoted as follows, 

 

𝐻

=  
𝑙𝑎𝑚𝑏𝑑𝑎, 𝑖𝑓 𝑄1 >  𝑄2, 𝑄3 , 𝑄4 > (𝑄2, 𝑄3)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

(2) 

 

where, lambda  = ( min(covC, m – covC) – min(Q1, 

Q2) – min(Q3, Q4) ) / min(covC, m – covC) 

(3) 

We call these association rule pairs, coherent rules, and its 

measure, a coherent rule measure. 

It is interesting to highlight here that although we have 

only shown the work based on positive association as a 

starting point, the model will be able to report negative 

association such as the association “¬A ⟹ ¬C”,  and consider 

the positive association “A ⟹ C” as its „inverse‟. This means, 

negative association rules may be found, and is supported by 

positive rules.  

IV. SEARCH FOR COHERENT RULES 

Our introduction has mentioned that removing support 

threshold and finding negative associations requires 

searching in large data space. In order to reduce the search 

space, we introduce two possible pruning opportunities in the 

search algorithm. 

A. First Pruning Opportunity 

We use the statistical conditions (Q1 > Q3) within property 

of coherent rule measure H, to prune away super item sets, 

which does not meet the condition. It follows, this statistical 

condition has a downward closure property. When use in a 

depth manner of search, any item set, which does not meet the 

condition will have its super sets also not meeting the 

condition.  
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Theoretically, a depth search will result in a reduce value 

in Q1, and an increase value in Q3. As a result, search will 

stop at some depth level following a parent item set. For 

example, we label attributes from 1 to 100, if a combination 

of [1, 2, 10, 20] has Q1 ≤ Q3 then further search on [1, 2, 10, 

20, *] can be pruned. 

B. Second Pruning Opportunity 

We also use a moving window and forecast to prune item 

sets. It follows if an item set does not have forecast strength at 

least a moving window value, its super item set will also not.  

A moving window (mw) of size w% is calculated using a 

momentary maximum strength (tp) of rule pairs searched, 

where 𝑚𝑤 = 𝑡𝑝 − 𝑡𝑝 × 𝑤𝑜% . For example, if maximum 

strength searched, tp is at 1, and an opening, w% allowed is at 

5%, then any item set with strength value between 0.95 to 

1.00 is included. Item set with strength value outside this 

range are discarded following a downward closure property 

of the forecast measure of H. This concept is practical 

following 20-80 rule of thumb that a smaller percentage of 

knowledge or rules such as 20% may closely represent a 

larger 80% of knowledge.  

We use this approach to find all strongest rule pairs within 

a top percentage because we do not trade expensive 

computational cost for weaker rule pairs, which fall outside 

this opening window. We give another example that if a 

dataset contains a rule pair that have the strongest measure H 

= 0.6, and we just want to have all other rules that have 

strength close to this strength value for example within 5%. 

Using this forecast-to-prune technique, rule pairs with 

strength within a vicinity of 0.6 ± 0.6×5% (i.e. 0.58 to 0.60) 

will be printed but others pruned. It is important to state here, 

we do not know how many rules will be reported because it is 

determined by algorithm accordingly. This is in contrast to 

technique such as [15] where a user need to specify the 

number of rules needed, and it is possible that some rules 

with the same strength will be lost [18]. A smaller opening 

window will produce a smaller number of rules, hence 

require a shorter time to search for it comprehensively.  

To forecast the strength of a rule pairs rule, we calculate 

the highest possible measure value by simulating the lowest 

value on min(Q1,Q2). As a result, H’ gives us the highest and 

potential strength value that may be attended by an item set 

and its super item set. It follows if maximum of forecast 

measure value on item set [1, 2, 10, 20] is lower than the 

lowest value of a moving window then this combination 

together with all its child item set can be pruned. These 

prunings reduce the exponential search space. Our search and 

forecasting procedures is further explained in a following 

algorithm in pseudo-language format. 

 

Algorithm CRS(〈L,C,D,wo%〉,〈covC,szD〉,A,mw,tp,CR) 

 

Inputs:  

1. L: super item set 

2. C: a target; a consequence item set, C∈L 

3. D: a database of transaction records, tr⊆L 

4. wo%: an opening of a moving window, 0≤wo≤100 

 

Optional Recursive Inputs*: 

5. covC: a coverage value on C 

6. szD: total number of transactions 

7. A: an antecedent item sets from L, A⊂L 

8. mw: a dynamic lowest opening window value, 0≤mw≤1 

9. tp: a momentary maximum strength 

10. CR: a dynamic database of rule pairs rules with its 

coherent measure value, CR⊆L, H 

 

* These recursive inputs may be optional if declared as 

„global‟. 

 

Output: CR 

 

//function CRVal(Q1, Q2, covC, szD) 

//1.  Q3 := covC - Q1 

//2.  Q4 := H – covC 

//3.  if Q3 < 0 //occur only in forecast 

//     3.1  H := 1  

//4.  else if (Q1>Q3) && (Q4>Q2) &&  

//                (Q1>Q2) && (Q4>Q3), then 

//     4.1 cov := min(covC, H - covC) 

//     4.2 H := (cov - min(Q1, Q2) - min(Q3, Q4)) / cov 

//4.  end 

//5.  return Q3, H 

 

1. A ⟵ get_a_combination(L) // any depth search algorithm 

or its variations // 

2. Q1 := covA := coverage(A, C, D) 

//1st forecast below // 

3. (Q3, H) := CRVal(Q1, 0, covC, szD) 

4. if (H≥mw) and (Q1>Q3), then 

4.1 Q1 := support(A, C, D) 

//2nd  forecast below // 

4.2 (Q3, H) := CRVal(Q1, 0, covC, szD)  

4.3 if (H≥mw) and (Q1>Q3), then 

  4.3.1 Q2 = covA - Q1  

       //Get real measure value // 

  4.3.2 (Q3, H) := CRVal(Q1, Q2, covC, szD) 

  4.3.3 if (Q1>Q3), then 

   4.3.3.1 if tp < H, then 

    4.3.3.1.1 tp := H 

   4.3.3.2 end 

   4.3.3.3 mw := tp × (100 - wo)% 

   4.3.3.4 CR := CR ∪ (A, C, H) 

   4.3.3.5 remove cr ∈ CR, where H ∈ cr < mw 

   4.3.3.6 CRS(〈L,C,D,wo%〉,A,mw,tp,CR) 

  4.3.4 end 

4.4 end 

5. end 

6. return CR 

V. EXPERIMENTS AND DISCUSSIONS 

We have conducted a number of experiments. In this paper, 

we report the results of three main categories of experiment. 

In the first category, we want to show that our association 

rule mining framework can find infrequent association that 

may be difficult to find in traditional association rule mining. 

The zoo data set is used in this experiment. The second 

experiment shows that our proposed framework requires less 

post-processing in generating the rule compared to the 
traditional association mining algorithm. That is, instead of 

finding too many rules, our algorithm finds smaller number 
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of rules. The experiment for this purpose is conducted in the 

mushroom data set. Lastly, we measure the performance of 

our framework by testing its scalability. For this performance 

test, we created three sparse artificial datasets, and another 

three dense artificial datasets. In both zoo and mushroom 

dataset, we use the classes as the consequences in order to 
find association rules directly from data. On artificially 

generated datasets we use the last items as consequences.  

A. Zoo dataset 

Zoo dataset [20] is a collection of animal characteristics 

and their categories in a zoo. This dataset is chosen because 

animal characteristics in each category are very well known. 

As a result, it is easier to verify the correctness and 

interestingness of rules mined. Zoo dataset contains seven 

categories of animals including mammalia and amphibian. 

While mammalia type of animal such as elephants, buffalos, 

and goats are frequently observed in this zoo, amphibian type 

of animal such as frog and toad are relatively rare. We run our 

search algorithm without setting a minimum support 

threshold to obtain all rules within a window of a top 5%, and 

each rule contains not more than five items. We report the 

results as follows, 

A total of 16 rules are found on mammalia type of animals. 

All rules have strength of 1.0 out of 1.0. We verify the 

correctness of these rules based on known knowledge on this 

category of animal. For example, all mammalia such as goat 

has no feather but has milk and backbone therefore 

feather(0), milk(1), and backbone(1) are reported associated 

with mammalia(1). We list all rules contains not more than 

four items (due to length of paper) in table 2.  

 

Table 2: Rules describe mammalia 

Antecedent 

Item Set 

 Conseq. 

Item Set 

milk(1) ⇒ mam.(1) 

feathers(0),milk(1) ⇒ mam.(1) 

milk(1),backbone(1) ⇒ mam.(1) 

feathers(0),milk(1),backbone(1) ⇒ mam.(1) 

milk(1),breathes(1) ⇒ mam.(1) 

feathers(0),milk(1),breathes(1) ⇒ mam.(1) 

milk(1),backbone(1),breathes(1) ⇒ mam.(1) 

milk(1),venomous(0) ⇒ mam.(1) 

feathers(0),milk(1),venomous(0) ⇒ mam.(1) 

milk(1),backbone(1),venomous(0) ⇒ mam.(1) 

milk(1),breathes(1),venomous(0) ⇒ mam.(1) 

 

We found these rules describe mammalia correctly. In fact, 

the first and the shortest rule  
𝑚𝑖𝑙𝑘 ⇒ 𝑚𝑎𝑚𝑚𝑎𝑙𝑖𝑎  describe a fundamental characteristic 

of a mammalia explicitly. From literature review, the second 

rule may be deemed redundant in comparison with the first 

rule because inclusion of an additional item set, feather(0), 

which cannot further increase the strength of rule. The 

strength of the first rule is already at its maximum at 1.0; any 

further inclusion of items may be redundant. Such a 

consideration however is application dependent. We could 

use both items, feathers(0) and milk(1) to describe mammalia 

more comprehensively at the same strength of 1.0. That is, an 

animal of mammalia does not have feather but milk. If we 

discard feather(0), we loss this item as a descriptive. 

We run the search for amphibian, and found a total of 136 

rules. Again, we could not find any incorrect rules. These 

rules have strength 1.0. While studying at these rules, we are 

surprised by the fact that amphibian like frog is toothed! We 

confirm this via answer.com, and this is indeed correct. That 

is, frog in this zoo is toothed. 

Comparing the two experiments, there is a large difference 

in their total number of occurrence in the overall transaction 

records. 41% of transaction records contain mammalia, in 

comparison, only 4% of transaction records contains 

amphibian. That is, search for amphibian is a search for 

infrequent association rules, which is often missed by most 

association rule mining technique that demands a minimum 

support threshold. If we set minimum support threshold to be 

higher than 4% and use a typical association rule mining 

technique, we loss rules describing amphibian. In 

comparison, our technique does not necessitate a minimum 

support threshold, it finds all necessary rules.  

On execution time wise, each running time takes less than 

3 seconds on a notebook computer Pentium Centrino 1GHz 

with 1.5G of main memory and running Windows XP Home 

Edition. Zoo dataset contains 101 transactions and 43 item 

sets. The search space on a target is 22(n-1)  -  ( 2(n-1) - 1 ) where 

22(n-1)  is the total number of both positive and negative rules, 

and ( 2(n-1) - 1 ) is the total number of positive rules using a 

single consequence item set as a target. In this case, zoo 

dataset contains 2E+25 combinations of item sets. We use an 

optimistic assumption to grasp the size of the search space; 

we assume only one computation cycle time (1 / 1GHz) is 

needed to form and to validate a combination of item set in a 

single transaction. Based on this optimistic assumption, it 

follows that a search without pruning would require at least 

6E+10 years to complete. In comparison, our search time is 

feasible. From these two experiments, we conclude that 

association rule pairs are useful to discover knowledge (both 

frequent and infrequent) from dataset.  

B. Mushroom dataset 

In our next experiment, we run our search algorithm on 

mushroom dataset [21] which contains 8124 transactions and 

119 items. To grasp the search space, if one computation 

cycle time is needed to form a combination, it takes at least 

3E+58 years to complete. Our search for both poisonous and 

edible mushrooms is completed within 17 seconds with 6 

rules found. We list these rules in Table 3(a) and Table 3(b).  

 

Table 3(a): Rules describe edible mushroom 

Antecedent 

Item Set 

 Conseq. 

Item Set 

odor.almond  Edible 

odor.almond, 
stalk-color-below-ring.orange 

 Edible 
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Table 3(b): Rules describe poisonous mushroom 

Antecedent 

Item Set 

 Conseq. 

Item Set 

cap-color.green, 
odor.spicy, 

gill-attachment.free 

 Poisonous 

cap-color.green,  
odor.spicy, 

gill-attachment.free, 
stalk-color-below-ring.orange 

 Poisonous 

cap-color.green, 
gill-attachment.free, 

stalk-color-below-ring.cinnamon 

 Poisonous 

cap-color.green, 
gill-attachment.free, 

stalk-color-below-ring.orange,
 stalk-color-below-ring.cinnamon 

 Poisonous 

 

We leave the correctness of these results to domain experts 

since we are no expert. The strengths of these rules are 

around 0.77 out of 1.0, this suggests that there may exist 

some exceptional cases besides these strongest rules.  

In comparison, a typical association rule mining technique 

such as apriori reports more than 100 thousands of rules with 

confidence value at 100%. Some of these rules are not 

interesting, and one way to filter these are to select high 

confidence rules with positive leverage values. Rules with 

positive leverage are rules that are dependent to each other. 

However, after filtering high confident rules with positive 

leverage, it still left us more than 100 thousands of rules for 

this dataset. Among these rules, it contains our six rules. We 

conclude from these observations that our approach produces 

rules that are concise and easier to apply. 

C. Artificial datasets 

We follow to generate a following three dense artificial 

datasets with an increase in complexity using the IBM 

synthetic data generator [22]. The symbols used in 

representing a dataset are explained below,  

D: number of transactions in 000s 

T: average items per transaction 

N: number of items 

L: number of patterns 

I: average length of maxima pattern 

 

The dense datasets have an average length of maxima 

pattern (I) close to average items per transaction (T), besides 

having a low number of patterns (L). These dense datasets 

have an increase number of items as follows, 

i) D100T10N100L50I9,    

ii) D100T10N500L50I9,  

iii) D100T10N1000L50I9 

 

We generate also sparse dataset with an increase in its 

number of items hence complexity,  

i) D100T10N100L10000I4,  

ii) D100T10N500L10000I4,  

iii) D100T10N1000L10000I4 

 

The results from experiments suggest that our search for 

association rule pairs is feasible within a linear or polynomial 

search time over an increase of complexity or items. 

 

 
Fig 1: Search time on an increase complexity on dense and 

sparse dataset 

VI. CONCLUSION 

We conclude from our design of a threshold free 

association rule mining technique that a minimum support 

threshold may be waived. We may trade a heuristic minimum 

support threshold by employing other definition on 

association to avoid using a cut-off support threshold. 

Implication of propositional logic is a good alternative on the 

definition on association. Rules based on this definition may 

be searched and discovered within feasible time.  
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