
 

 

 

 

Abstract—An eye detection algorithm based on Convolutional 

Neural Networks (CNN) architecture was developed. The 

algorithm was designed to detect eyes in video images from a 

remote gaze estimation system that is part of a gaze-controlled 

human-computer interface.  The CNN for eye detection has 

two stages of convolutional and sub-sampling layers followed 

by a fully connected feed forward neural network with a total 

of 1227 trainable parameters.  Experiments with 3 subjects 

showed that for the full range of expected head movements, the 

CNN achieved a detection rate of 100%, for images with fully 

opened eyes, and a false alarm rate of 2.65 X 10
-4 

%.  The CNN 

failed to detect eyes that were either partially or completely 

covered by the eyelids. The CNN for eye detection did not 

require pre-processing or normalization and was shown to be 

robust to changes in scale, rotation and illumination of the 

eyes.    

 

Index Terms—Convolutional Neural Networks, Remote Gaze 

Estimation, Eye Detection, Image Processing  

I. INTRODUCTION 

The point-of-gaze (POG) is the point within the visual 

field that is imaged on the fovea; the highest acuity region of 

the retina. Systems that estimate the POG are used in a 

variety of applications such as studies of mood disorders [1] 

and driver behavior [2]-[4], pilot training [5], ergonomics 

[6], human-computer interfaces [7] and assistive devices for 

motor-disabled persons [8], [9].   

Most modern remote gaze estimation systems are based on 

the analysis of specific eye features extracted from video 

images [10]. These specific eye features are the pupil center 

and a set of corneal reflections. The corneal reflections are 

virtual images of the light sources that illuminate the eyes.  

When the field of view of the eye tracker’s video camera is 

limited, it is relatively easy to determine the eye features  

(Figure 1a). But, when the field of view of the camera is 

increased to allow for a larger range of head movements, the 

detection of eye features becomes much more difficult  

(Figure 1b). With a larger field of view, the number of false 

detections increases and the performance of the remote gaze 

estimation system deteriorate.  It is therefore essential to 

develop algorithms that can detect reliably regions in the 

image that contain the eyes. 
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Figure 1: Eye Tracker’s Images a) small field of view, b) 

larger field of view 

Eye detection can be broadly classified into feature-based 

approaches and pattern-based approaches. Feature-based 

approaches explicitly model facial features to detect eye 

regions. In [11], dark regions are assumed to be associated 

with pupils and are searched within the face by iteratively 

thresholding the face image to locate eye candidates. Two 

eye candidates that satisfy certain anthropometric 

constraints are then identified as the detected eyes. This 

approach is reliable as long as subjects remain relatively 

frontal with respect to the camera and they don’t wear 

eyeglasses. In [12]-[14], deformable eye templates are 

designed to fit the best representation of eyes in images. In 

this technique, eyes are detected through a recursive process 

that minimizes a specific energy function. In [12], the 

energy function is designed such that the energy is 

minimized when the total brightness inside the pupil 

candidate is small. While this method can detect eyes 

accurately, it requires the eye model to be initialized in close 

proximity to the eyes. Furthermore, it is computationally 

expensive and requires good image contrast. Since facial 

features exhibit large variability among subjects and under 

different experimental conditions, feature-based approaches 

tend to work well with some subjects in some experiments 

but can fail completely with other subjects under the same 

experimental conditions.  Also, many feature-based 

techniques are limited to relatively frontal view of faces and 

therefore a more flexible and robust approach to eye 

detection is needed in order to cope with the expected 

variability of eye features for the full range of subjects’ head 

movements.  

Pattern-based approaches for eye detection are concerned 

with the automatic discovery of regularities in data through 

the use of computer algorithms and with the use of these 

regularities to detect the eyes.  In [15]-[17], Eigen-Eye is 

developed to detect eye regions. Eigen-Eye uses Principal 

Component Analysis (PCA) to compute a set of basis 

images that provides a low dimensional representation of all 

possible eye images. To classify an image pattern as an eye 

or a non-eye, the image pattern is mapped to the space 

formed by the basis images and a similarity measure is used 
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to classify this pattern as an eye or a non-eye. The 

Eigen-Eye approach can fail to detect eye images that 

cannot be described by a simple linear combination of the 

basis images.  

In [18] and [19], a large database of eye and non-eye 

images is used to train a Support Vector Machine (SVM) to 

detect eyes. One of the disadvantages of SVM is that the 

model designer has to make subjective decisions about the 

type of kernel to be used before the training procedure. This 

might not be ideal because it is difficult to justify 

quantitatively the choice of a specific kernel for a specific 

application.  

In [20] and [21], Multi-Layer Feed forward Neural 

Networks are used to detect eye regions. Unlike Eigen-Eye 

and SVM, Neural Networks learn discriminative features 

about the eye from the training data. Since Neural Networks 

provide the best detection performance when the input data 

set exhibits large variability [22], a specific configuration of 

Neural Networks, Convolutional Neural Networks (CNN), 

was developed and optimized for the detection of eye 

regions in video images from the eye-tracker’s camera.  

II. CONVOLUTIONAL NEURAL NETWORKS OVERVIEW 

Convolutional Neural Networks was introduced by [23] 

and was specifically designed for adaptive image 

processing.  It has been successfully applied in many 

practical applications [24]-[26]. CNN has three properties 

that are important for eye detection. Firstly, CNN is 

invariant to translation and robust to changes in scale and 

rotation [23].  Secondly, CNN emphasizes a key property of 

images which is that nearby pixels are much more likely to 

be correlated than more distant pixels. It achieves this 

property by extracting features that depend only on small 

sub-regions of the image. Information from such features is 

merged in later stages of processing in order to detect more 

complex features, and ultimately to yield information about 

the image as a whole.  Lastly, in many applications that use 

Neural Networks [27]-[29], the original image is first 

preprocessed and the processed image is then fed into the 

Neural Networks for classification. This preprocessing step 

is essential, for example, for image intensity normalization. 

CNN does not require any preprocessing steps. It learns to 

build the preprocessing module and the classification 

module in a single integrated scheme. 

A typical CNN is shown in Figure 2. It consists of a set of 

layers.  Each layer contains one or more planes.  A unit in 

each plane receives inputs from a small neighborhood in 

planes of the previous layer. Each plane can be considered 

as a feature map with a fixed feature detector that is 

convolved with a local window that is scanned over the 

planes of the previous layer.  Multiple planes are usually 

used in each layer so that multiple features can be detected. 

Theses layers are called convolutional layers. Once a feature 

has been detected, its exact location is less important. Hence, 

the convolutional layers are typically followed by another 

layer, which does a local averaging and sub-sampling 

operation. These layers are called sub-sampling layers. 

Finally, the network has a fully connected feed forward 

Neural Network that carries out the classification task using 

the features extracted in the previous layers. The network is 

usually trained by a backpropogation gradient descent 

algorithm.  

 

 
Figure 2: A Typical Convolutional Neural Network [23] 

 

Three mechanisms that are unique to CNN are: (i) local 

receptive fields (sub-region connection), (ii) weight sharing, 

and (iii) sub-sampling. 

In CNN, each unit in a feature map computes a weighted 

sum of inputs only from a small sub-region of the previous 

layer, and all the units in the feature map are constrained to 

share the same weight values as shown in Figure 3. Units in 

the feature map can be regarded as feature detectors and 

therefore all the units in a feature map detect the same 

pattern but at different locations in the input image. Due to 

the weight sharing, the operation of these units is equivalent 

to a convolution of a kernel comprising the weight 

parameters with the input image. This provides the basis for 

the invariance of the network outputs to translations of the 

input image. Since most often multiple features are needed 

for effective classification and detection, there are generally 

multiple feature maps in the convolutional layer, each 

having its own set of weights and bias parameters.  

 
Figure 3: Each unit in layer H is connected by the same 

three weights to three units in the previous layer (V) 

 

The outputs of the convolutional units are transformed by 

a sigmoidal non-linear activation function and are fed to a 

sub-sampling layer of the network. For each feature map in 

the convolutional layer, there is a plane of units in the 

sub-sampling layer. Each unit in the sub-sampling layer 

averages inputs from a region (for eye detection the region 

size is 2X2) in the corresponding feature map. This average 

is multiplied by an adaptive weight followed by the addition 

of a bias. The results are then transformed using a sigmoidal 

non-linear activation function. For eye detection the 

receptive fields in the sub-sampling layer were chosen to be 

contiguous and non-overlapping so that the number of rows 

and columns in the subsampling layer was half of the 

number of rows and columns in the convolutional layer. 

III. CNN ARCHITECTURE FOR EYE DETECTION 

The CNN architecture for eye detection is shown in 
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Figure 4. To limit the complexity of the architecture, the 

CNN for eye detection uses only 2 stages of convolutional 

(C1, C2) and sub-sampling (S1, S2) layers. The first stage 

generally implements non-linear template-matching 

operation at a relatively fine spatial resolution, extracting 

basic features of the input image [23]. The second stage 

learns to recognize particular spatial combinations of 

previous features, generating complex features in a 

hierarchical manner. 

In order to force different feature maps to extract different 

features in layer C2, each of the feature maps in layer C2 

receives a different set of inputs from layer S1. It is 

expected that layer S2 will be able to extract a series of 

disjoint features of low-dimensionality that can be used for 

classification. Therefore, layer C3 is a fully connected layer 

where each unit is connected to all units of a single 

corresponding map in layer S2. Finally, all units in C3 are 

fully connected to form two outputs with softmax activation 

function 

                                    yk =
eak

ea j

j=1

2  (1) 

where k=0 for eye images, k=1 for non-eye images and ak is 

the output unit activation k: 

                             ak = wkjz j + wk0
j=1

M

 (2) 

where wkj andwk0are network adjustable parameters for the 

output unit k and z j is the output of the hidden unit j in layer 

C3, and M is the number of units in layer C3. 

In the proposed architecture for eye detection, layer C1 is 

a convolutional layer with 4 feature maps. Each unit in each 

feature map is connected to a 5X5 neighborhood of the input 

image (size 36X36 pixels). The size of each feature map is 

32X32 pixels, which is the result of the convolution of the 

5X5 kernel (no zero-padding) with the input image. Each 

feature map has 26 adaptive parameters and the total number 

of parameters in layer C1 is 104. 

Layer S1 is composed of four feature maps, one for each 

feature map in C1, and the size of each feature map in layer 

S1 is half the size of feature maps in layer C1 (16X16 

pixels). Each feature map has 2 adaptive parameters and the 

total number of the parameters in layer S1 is 8.  

Layer C2 is a convolutional layer with 15 feature maps.  

Each feature map receives inputs from a different subset of 

feature maps in layer S1.  Each unit in each feature map is 

connected to a 3X3 neighborhood, at identical locations, in 

feature maps of layer S1.  In total, the size of each feature 

map in layer C2 is 14X14 pixels and the total number of 

parameters in layer C2 is 303. 

Layer S2 is composed of 15 feature maps. The size of 

each feature map is 7X7 and there are 30 adaptive 

parameters in this layer. Layer C3 has 15 units with each 

unit fully connected to all units of a single feature map in 

layer S2. Therefore, there are 750 adaptive parameters in 

this layer. Finally, all units in layer C3 are fully connected to 

form two outputs and there are 32 adaptive parameters in the 

final layer. In total, this architecture has 1227 parameters. 

C1

S1

C2

S2 C3

Outputs

Input Image

Convolution

Subsampling

Convolution

Convolution

Subsampling

 
Figure 4: CNN Architecture for Eye Detection 

 

IV. TRAINING METHODOLOGY 

The training and validation dataset was built by manually 

cropping eye images from face images of 10 subjects. For 

each subject, 150 images of different head poses and face 

illuminations were collected. For each image, the portions of 

the image that contained the left and/or right eyes were 

cropped to fit an image size of 36X36 pixels. The total 

number of cropped eye images was 3000 images. 

The generalization performance of the CNN depends 

strongly on the quality and the quantity of the training data 

[30]. To include large variety of experimental conditions (i.e. 

different face illuminations and different head poses), 

simulated images were created and were added to the 

original 3,000 images. To train the network with larger head 

rotations in the roll direction, rotated versions of the eye 

images were added to the training data. The degree of 

rotation was randomly selected between -30° to 30°. To 

train the network with larger variations in eye illumination, 

contrast and intensity transformations were applied to the 

original set of eye images. Using this strategy, the number 

of images in the dataset was expanded to 30,000 eye images. 

Some examples are shown in the first row of Figure 5. 

To collect a representative set of non-eye images, a 

method described in [30] was adopted. Any portion of the 

cropped image obtained by the remote gaze estimation 

system that does not include an eye can be used as a non-eye 

image. The method aims to collect only non-eye images 

with high information value. The procedure stops when a 

total of 30,000 cropped (36X36 pixels) non-eye images were 

collected. Some examples of the collected non-eye images 

are shown in second row of Figure 5. The size of the dataset 

for eye and non-eye cropped images were 60,000. 

 

 

   
Figure 5: Samples of eye and non-eye images 

 

The training of CNN involves adjusting the network’s 
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parameters, w, by fitting the network function yk (equation 

1) to the training data. This is done by minimizing an error 

function that measures the error between the network 

function, for any given value of w, and the training dataset. 

For the softmax activation function (Equation 1), the 

cross-entropy penalty function was used as the error 

function. 

                      

E(w) = En (w)
n=1

N

En (w) = tkn ln yk (xn,w)

 (3) 

where n=1,…,N indicates the cropped images, tk 0,1{ } 

indicates the 2 classes of images (eye or non eye), and 

yk are the network outputs.  

The 1227 parameters of the CNN were trained by using 

the Stochastic Diagonal Levenberg Marquardt method 

(SDLM) [31].  SDLM attempts to estimate the learning rate 

for each network parameter so as to allow the network to 

converge faster.  

To predict the generalization performance of the CNN, 

the “Early Stopping” procedure was used [32]. For the 

implementation of the “Early Stopping” procedure, the 

dataset was divided into a training dataset and a validation 

dataset. The training dataset included 50,000 images (25,000 

eye and 25,000 non-eye) and the validation dataset included 

10,000 images (5,000 eye and 5,000 non-eye). The 

performance of the CNN during the training session for both 

the training dataset and the validation dataset is illustrated in 

Figure 6. The training was stopped when the minimum error 

for the validation dataset was achieved (epoch 56, average 

cross entropy error of 0.024). 

  

 
Figure 6: Training Session 

 

V. SYSTEM PERFORMANCE 

In the remote gaze estimation system, the regions of the 

image that were classified by the CNN as eye-regions are 

searched for specific eye features. If a non-eye region is 

classified as an eye-region these algorithms will fail to find 

the appropriate eye features and no point-of-gaze estimation 

would be generated for this region. Since false detection of 

eye regions by the CNN is rejected by the algorithms that 

search for specific eye features the point-of-gaze estimation 

system can tolerate high false alarm rate from the CNN. 

Based on experiments with 10 subjects the false alarm rate 

of the CNN can be as high as 10% without apparent 

degradation in the overall performance of the gaze 

estimation system. To determine the classification criteria 

for the CNN so that a false alarm rate of 10% is achieved, 

the Receiver Operating Characteristic curve (ROC) of the 

CNN classifier was constructed. Each point on the ROC was 

determined by applying a different threshold to the output of 

the CNN for the entire validation dataset. The result is 

plotted in Figure 7. As shown in Figure 7, a false alarm rate 

of 10% corresponds to a true positive rate (detection rate) of 

99.3% (the actual network threshold is 0.45). 

 

Figure 7: ROC Curve Used to Determine the Threshold 

VI. EYE LOCALIZATION METHODOLOGY 

For each image from the remote gaze estimation system, 

the CNN generates a corresponding network response image. 

The value at each pixel in the network response image 

corresponds to the confidence of the network that the eye is 

present at this pixel location. The network response image is 

then compared with a specific threshold (0.45). Note that 

because the architecture of the CNN contains 2 

sub-sampling layers (each sub-samples the image by a factor 

of 2), the number of pixels in the network response image is 

approximately 16 times smaller than the number of pixels in 

the input image. Pixels in the network response image that 

have values below the threshold are set to zero (Figure 8b).  

All network responses that are 4 pixels apart are clustered 

together to represent an eye candidate (Figure 8c) and the 

average CNN's network response for each cluster is 

computed. Finally, the center of each cluster is computed as 

the center of gravity of the position of pixels in the cluster 

weighted by the magnitude of their network response. The 

size of each eye window is similar to the size of the cropped 

images used for the training of the CNN (36X36 pixels). 

Since each image of the eye tracker's camera includes only 

one face (at most two eyes), only the eye windows that are 

associated with the two clusters with the highest network 

output are searched by the eye features algorithms (Figure 

8d). 
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Figure 8: Eye Localization Algorithm (a) original image, (b) 

network response, (c) clustered network response, (d) eye 

windows 

 

Based on the set of lenses and camera sensors that are 

used by the remote gaze estimation system, the pixel density 

can be changed by a factor of 2. This implies that in some 

optical configurations, the eye image can be as large as 

72X72 pixels. To cope with different configurations without 

retraining the network for each specific optical configuration, 

images from the remote gaze estimation system are 

sub-sampled recursively 4 times (each time by a factor of 

0.8) to generate 5 scaled images (including the original 

image) so that at least in one of the images, the eyes can fit 

within a window of 36X36 pixels (Figure 9). Each scaled 

image is then processed by the CNN and an image 

containing the network response is obtained. Pixels in each 

network response image with values lower than the specific 

threshold (0.45) are set to zero and the network response 

image of each scaled image is mapped back to the original 

image space. All network responses that belong to the same 

eye are clustered together. The center of the eye window for 

each eye candidate is then computed as the center of gravity 

of the position of pixels in the cluster, weighted by the 

magnitude of the network response at each pixel. The size of 

the eye window for each eye candidate is computed as the 

average of the eye-window-size that is associated with each 

pixel in the cluster and weighted by the magnitude of the 

network response at each pixel. Finally, the two clusters 

with the highest network output are considered by the 

eye-tracker’s feature detector. 

 
Figure 9: CNN Multiscale Analysis 

VII. EXPERIMENTAL RESULTS AND CONCLUSIONS 

The performance of the CNN for eye detection was tested 

in experiments with three subjects. Subjects were asked to 

move their heads within a volume of 20 x 20 x 20 cm
3
 so as 

to simulate the expected range of head movements for a 

typical computer user.  For each subject, 126 images at 

different head positions were collected. A total of 378 

images were used for a test dataset. 

To determine the performance of the CNN, the number of 

eyes that have been correctly detected and the number of 

false alarms were determined. An eye was correctly detected 

if and only if the detected window contained the full eye 

image. If the detected eye window only contained a partial 

or no region of the eye, it was counted as a false alarm. 

For the test dataset the detection rate of the CNN was 

100% for fully opened eyes.  4.8% of the eyes were either 

completely or partially covered by the subject’s eyelids (i.e. 

due to eye blinks) and the CNN failed to detect those eyes.  

Since the training dataset had only eye images of fully 

opened eyes, the CNN had difficulty to detect eyes that were 

partially occluded. The false alarm rate of the CNN was 

2.65X10
-4

 % for the test dataset. The low false alarm rate 

(even before the rejection of non-eye windows by the 

eye-feature algorithms) can be explained by the fact that in 

each image, the detector selected only the two eye-regions 

with the highest network response (i.e. maximum number of 

false alarms per image is 2).  If one takes into account that: a) 

in each image from the remote gaze estimation system 

(1280X1024 pixels) there are approximately 81839 non-eye 

regions, and b) regions that include eyes have higher 

network output than non-eye regions, the number of false 

alarms per image is much smaller then the expected false 

alarm rate when all the sub-regions with outputs greater than 

the threshold (0.45) are selected.  

Figure 10 and 11 show that the CNN is robust for large 

head movements (changes in scale and orientation) and 

changes in face illumination. The experimental data 

suggested that the CNN could detect eyes for head 

movements that span the expected range of head movements 

when subjects use a computer system. 
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Figure 10: Experimental Results A 

 

 
Figure 11: Experimental Results B 
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