

Abstract—With the development of e-commerce, the

client-side security becomes more and more important. In order
to assure that the transactions behave as what users expect, be
aware of and approved, a trusted e-commerce user agent based
on USB Key and Java Card platform is designed and
implemented in this paper. E-commerce providers can develop
and load user agent applets on this framework to execute
authentication and establish secure channel between server and
client, etc. At fist, design principles are given based on analysis
of known attacks today. Secondly, the software architecture
and security features of this user agent are discussed in detail,
which includes how to implement HTTP server, CGI, security
agent framework and applet load on USB Key. Thirdly, SSL
application scenarios based on user agent and security analysis
shows that this scheme can effectively improve the client-side
security in e-commerce. At last, advantages of this user agent
and what to do further are given in conclusion and future work.

Index Terms—e-commerce, Java Card, Smart Card, User
Agent

I. INTRODUCTION
 With the development of the Internet, more and more

people are surfing the Internet for day-to-day activities, from
shopping, banking and paying bills to consuming media and
entertainment. But as the value of what people do online has
increased, the internet itself has become more complex and
dangerous. On line identity theft, fraud, security and privacy
concerns are on the rise [1]. Phishing is one of those criminal
activities on the Internet. Phishing is online identity theft in
which confidential information is obtained from an
individual [2].Data suggest that some phishing attacks have
convinced up to 5% of their recipients to provide sensitive
information to spoofed websites [3]. About two million users
gave information to spoofed websites resulting in direct
losses of $1.2 billion for U.S. banks and card issuers in 2003
[4]. 25624 unique phishing attacks were submitted to APWG
in August 2007 [5].

 Several papers have summarized the phishing attacks until
now [2][6][7]. We will discuss the followings which will
threaten the security of e-commerce seriously:

Maleware-based phishing:
Malware-based phishing refers generally to any type of

phishing that involves running malicious software on the
user’s machine. Malware-based phishing can take many
forms [2]:

Dawei Zhang is with the School of Computer and Information

Technology, Beijing Jiaotong University, Beijing 100044 China (e-mail:
dwzhang@ bjtu.edu.cn).

Peng Hu is with the Department of Products, Beijing Watchdata system

Co. Ltd , Chaoyang District, Beijing 100015 China (e-mail:
peng.hu@watchdata. com).

� Keyloggers and Screenloggers: Keyloggers will
monitor data being input and send relevant data to a
phishing server. A screenlogger monitors both the
user’s inputs and the display on screen.

� Session Hijackers: Session hijacking refers to an attack
in which a user’s activities are monitored, typically by a
malicious browser component, which will “hijacks” the
session to perform malicious actions once the user log
in.

� Data Theft: Once malicious code is running on a user’s
computer, it can directly steal confidential information
stored on the computer.

 Why can malware-based phishing succeed? The answer
is that the user’s computer is not a secure and trusted
computing environment.

 Furthermore, there are other phishing attacks which often
occur on the communication channel:

DNS-Based Phishing (Pharming):
DNS-based phishing refers the phishing that interferes

with the integrity of the lookup for a domain name.
Man-in-the-Middle (MITM) Phishing:
A man-in-the-middle attack is a form of phishing in which

the phisher positions himself between the user and the
legitimate site. Man-in-the-middle attacks can also be used
for session hijacking.

At last, a kind of phishing attack, which will occur on the
real endpoint of transaction system – the user, will be
discussed as follows:

Web spoofing:
In their seminal work on Web spoofing, Felten et al [8]

showed how, in 1997, a malicious server could forge some
browser cues, such as location bar information, SSL icons,
SSL warnings, certificate information, and response time.
Subsequent papers also researched this issue, Ye et al [7]
gave a working definition of Web spoofing: When malicious
action causes the reality of the browsing session to differ
significantly from the mental model a reasonably
sophisticated user has of that session.

Why can pharming, MITM phishing and Web spoofing
succeed? The answer is that users themselves can not really
authenticate the server by Web browsers even though there is
a PKI certificate for server. Some properties concerned with
anti-phishing must be taken into consideration here:

The unmotivated user property: Security is usually a
secondary goal [8]. Most users prefer to focus on their
transaction rather than the certificate of server.

The limited human skills property: Humans are not
general purpose computers and limited by their inherent
skills and abilities. Rather than only approaching a problem
from a traditional cryptography-based security framework
(e.g., “what can we secure?”), a usable design must take into
account what humans do well and what they do not do well

Trusted e-Commerce User Agent Based on USB Key
Dawei Zhang, Peng Hu

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

[10].
 A lot of anti-phishing work has been done recently. We

summarized some of those proposals here:
Enhancement of browsers’ security usability
Many proposals for stopping phishing attacks, such as

SpoofStick [11], Trustbar [12] and eBay’s Account Guard
[13], rely on a security toolbar that displays warnings or
security-related information in the web browser’s interface.

 Wu et al [14] conducted two user studies of security
toolbars and other browser security indicators and found
them all ineffective at preventing phishing attacks.
Furthermore, they are vulnerable to Web spoofing because
security toolbar can be forged by Web graphic components.

Ye et al [14] proposed “Synchronized Random Dynamic
Boundaries” to secure the path from users to their browser. A
weakness of this approach is that it ignores the “limited
human skills” property and the security depends on how
many border frequency options are available and how many
users can differentiate [10].

R. Dhamija and J.D. Tygar [10] proposed “Dynamic
Security Skins” scheme. In this scheme, they design the
browser extension provides a trusted window with a specific
photographic image in the browser and users can authenticate
content from the server by images match.

 The research [10] and [14] are all based on the open
source Mozilla Browser and they all need to make changes on
the source code, which is not very convenient for common
users. Both two can resist Web spoofing but are all
vulnerable to malware-based phishing.

 Therefore, in our opinion, enhancement of browsers’
security usability is not enough for secure e-commerce
nowadays.

PKI and Multi-factor authentication
Since Netscape introduced the Secure Socket Layer (SSL

v2) protocol based on PKI (Public Key Infrastructure) in
1995, the protocol and its successors, SSLv3 and TLS, have
been touted to consumers as a safe and secure means for
conducting web commerce. Users can authenticate servers
by their certificates and vice-versa. At the same time,
multi-factor authentication [15] combined with PKI become
more and more popular especially in e-banking applications.
As far as the e-banking in China is concerned, most of
sophisticated users will choose the USB Key as a hardware
security token, which will store private keys, client
certificates and execute crypto operations [16]. Users must
insert USB Key on the machine’s USB port and verify their
password for USB Key at first when they log in e-banking
and do transactions. This application scenario is a classic
two-factor authentication:

What you know: users’ password for e-commerce
What you have: USB Key purchased from banks
It can resist some of malware-based phishing attacks, such

as keyloggers and screenloggers, data theft because hijackers
can not get the USB Key although they got the password.

Is it really secure for common e-commerce users?

Figure 1. Work flow of USB Key call

 Before analyzing the security vulnerabilities of this

scheme, we consider the basic work theory of call between
applications and USB Key in Windows at first. The
applications of Web service (e.g. IE, Outlook) will call the
CSP by cryptoAPI and then the CSP will send APDU
(Application Protocol Data Unit) commands to USB Key.
When USB Key sends the response the CSP will return it to
applications. This work flow is shown in Fig. 1.

Based on this work flow, Marchesini et al [17] leverage the
“dll proxy” method [18] to hijack calls from applications
(such as IE) to CryptoAPI. Therefore they can use the USB
Key, for example sign arbitrary data with user’s private key,
even after the IE has been shut down. Moreover, malware on
users’ machine can hijack the APDU communication on USB
Bus. In other words, the current model of USB Key usage is
vulnerable to session hijack of malware-based phishing. The
reason is that USB Key in this scenario is a passive device
and “behind” the Web browser. USB Key is a secure and
trusted computing environment but the calls to it on users’
machine is not.

Furthermore, the security of SSL in this application
scenario should be carefully considered, too. It is impossible
for security designers to expect most of users to check the
certificate chain carefully because of unmotivated user
property. Therefore the man-in-the-middle attacks on SSL,
which include technology and social engineering issues, can
succeed [19] [20]. An even greater risk is posed by
unprotected systems where an attacker can preload his/her
own trusted root authority certificates. In public
environments such as libraries and computer labs, there is
little to prevent such an attack from taking place [19]. It is
more interesting and dangerous that Web spoofing is feasible
in this scenario because of limited human skills property.

In summary, it is very necessary to improve the client-side
security further to secure e-commerce. Security system
designers must assure that the transactions behave as what
users expect, be aware of and approved.

II. PRINCIPLES OF OUR SOLUTION
The objective of our solution is to efficiently improve the

client-side security and usability in e-commerce so that users
can make sure that the transactions behave as what they
expect, be aware of and approved.

 Our solution is to provide a trusted user agent for
e-commerce to improve the client-side security. Therefore
we will define the concept of user agent at first. The user
agent is the software system that is intended to serve and
protect the interests of the user [23]. In traditional way, Web

Applications

USB Key

CSP

CryptoAPI

APDUs on
USB Bus

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

browser is the user agent for e-commerce but not secure as
mentioned above. We will adopt USB Key (hardware and
software on it) as a trusted user agent for e-commerce in this
paper.

Based on analysis of security threats in section 1 and some
important usability studied of security applications [21] [22]
[23], the design principles of our solution are given as
follows:
� Multi-factor authentication: In order to authenticate

users’ identity and assure the security of e-commerce
transaction, we select USB Key, which can store
certificate, private key and sign transaction data, as the
hard token for users.

� Trusted path between users and transactions: The
users must have an unspoofable and incorruptible
channel to do transactions with trusted remote servers.
We will construct a trusted and secure channel for end
users by trusted user agent.

� Path of Least Resistance: To the greatest extent
possible, the natural way to do any task should also be
the secure way [23]. Our solution expects to make users
do as what they do on paper transactions as much as
possible. At the same time, it is very convenient that our
solution need not modify user machines’
configurations.

� Customized Solution: In our opinion, as far as
e-commerce, such as e-banking, e-shopping, is
concerned, customized solutions are better than general
solutions because they can provide more detailed
security information and countermeasures.

III. OVERVIEW OF OUR SOLUTION
In this paper, a new idea of trusted user agent based on

USB Key is given.
The hardware platform of USB Key consists of a security

chip, a flash disk and trusted input and output devices –
buttons and screen. The core software, which will be
discussed in the next section, will run on the security chip.
The flash disk will store programs running in PC OS so that
users need not to install any additional software. The screen
is used to display sensitive data (such as security status
information, transaction amount etc.) and users press the
button when they approve some actions. Only the end users
and applets on USB Key can access and control those screen
and buttons, malware on users’ machine can not access
screen and simulate the signals of pressing buttons on Key.
Therefore a trusted path between users and user agent is
established. The appearance of USB Key is shown in fig. 2.

The basis of software platform is a Java Card Platform on
USB Key. Based on this platform Web Server and
development framework of security agent are implemented in

Figure 2. Appearance of our USB Key

this paper, which will be discussed in the next section.
Therefore users can browser the content on the USB Key
with the Web browser. E-commerce providers can develop
and deploy customized secure user agent applet, which is an
applet of Java Card, on this framework. In fact, USB Key
with customized applet becomes a secure user agent that is a
network proxy with special security functionalities. Users
can use it to finish mutual authentication, establishment of
secure channel, e-transactions between remote server and
client. In other words, USB Key become an active device and
“before” the Web browser in this scenario. All of the security
– related operations, e.g. checking certificate chain, key
exchange, derivation of session key in SSL, encryption and
decryption of data etc., will be done on USB Key. This
scheme can resist session hijack of malware-based phishing
effectively. The application scheme of user agent is shown in
fig. 3.

Furthermore, e-commerce providers can design a more
natural and secure way of doing e-transactions with
customized user agent applets on USB Key. Therefore
e-commerce providers are able to provide more secure,
flexible and convenient e-transaction manner. When doing
e-transaction, users check the transaction information on Key
screen just like they check the receipts of paper transactions
and they will accept or reject this transaction by pressing
buttons on Key. Because of trusted input and output devices,
user agent can assure ‘What they see is what they sign with
their approval’. Therefore a trusted path between users and
transactions is established by user agent based on USB Key.

Our design and implementation of this user agent will be
discussed in the following sections. The software architecture
of this user agent is presented in section 2. Application
scenario and security analysis are presented in section 3 and
finally the conclusion and future work.

IV. SOFTWARE ARCHITECTURE OF TRUSTED USER AGENT
The main modules in trusted user agent include:

� Web server on USB Key: Our solution implemented
an embedded Web sever on USB Key, which supports
HTTP sever, CGI functions.

� Security Agent Framework: Our solution
implemented a development framework of security
agent on USB Key for secure communication between
remote server and client machine by user agent. After
e-commerce providers distributed their security applets
on this framework, customized authentication and
secure transaction schemes can be implemented.

� Applets Load: Applets developed by security
designers can be remote loaded onto USB Key by the
Internet and Browser so that the e-commerce providers
can distribute security agent or security patches on line.

Cli

Internet

USB

User Agent

Server

Figure 3. Application Scheme of User Agent

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Recent proposals have been made to connect USB key (or
smart card) to the Internet [24] [25] [26]. There are some
differences between our scheme and those proposals:
1) The goal of our design is to provide a trusted user agent

for e-commerce, which will supports third party’s
security agent development and distribution but those
proposals emphasize to provide a Web – enabled
device. The fact is that an open security infrastructure is
a trend on the Internet [27].

2) The full TCP/IP and HTTP will be implemented in
security chips in those proposals but the precondition is
a high performance chip platform [3]. The cost is high
and the HTTP performance is not very high. In this
paper, the security chip is the 8-bit 8051 architecture
chip with 6 K RAM and 64 K EEPROM and two layers
architecture is deployed on our platform. This scheme
will improve the whole performance and lower cost.

There are two layers of software in our solution. At first, a
communication agent that gets HTTP data from TCP/IP
connection will stay in the FLASH disk on USB Key and run
in PC operating system (e.g. windows XP). This agent is
responsible for establishing TCP connect, encapsulate HTTP
data into APDU and transmit to the USB Key by USB Port.
Secondly, a HTTP Server and security agent framework in
Java are implemented on the USB Key security chip.

The advantages of this scheme are as follows:
1) All the procedures of HTTP and security agent will be

done on USB Key with Java Card platform, which is a
secure computing environment [28][29]. Therefore,
system security is guaranteed.

2) The communication agent in FLASH disk will run
automatically (auto run mechanism provided by
operating system) when the USB Key is inserted on
USB port. So it is convenient to use and need not to
install any additional software on operating system.

The communication agent is simple in this system and
unnecessary to be described further in this paper. So we will
discuss the design architecture of software on USB Key
security chip in the following sections, which includes
request switch, HTTP server, CGI, security agent framework
and applet load components. All of those components are
implemented in Java language on Java Card platform. The
architecture is depicted in fig. 4.

A. Request Switch Component
The first component on USB Key that will process the

HTTP data encapsulated in APDU is Request Switch. At first
this component will get the HTTP request data from APDU,
then parse the command and switch it to the appropriate
components.

All of those methods are encapsulated in a class –
RequestSwitchObject, which can be provided for application
development.

B. HTTP Server Component
HTTP server component will manage the Web page data,

parse HTTP protocol and construct response data. It consists
of two sub-components.

The first sub-component is a Web data management
component. All of the Web - related data will be stored in

Figure 4. Software Architecture on Security Chip
WebObject object in USB Key persistent memory. The

relationship between a Web page and WebObject is:

Web Page = { x | x is a WebObject }

At the same time, there is an index table to indicate the map
between PC file and WebObject. The reason to maintain this
table is that the source identifier in Web page is based on PC
file system.

Another sub-component is a HTTP parser. This
component will parse HTTP data from request switch
component and finish the corresponding operations
according to HTTP method. We implement this component
in a class – HTTPparser.

The USB Key can be visited by HTTP through Web
browser based on this component. Furthermore, more
HTTP–related applets can be built on those classes by
developers.

C. CGI Component
CGI (Common Gateway Interface) is supported on USB

Key middleware. Two approaches to implement CGI are
used in our design.

The first approach is to implement CGI in terms of APIs
(methods) in HTTP server component. In other words, CGI
programs run in the same execution context [26] as HTTP
server. The advantage of this approach is to eliminate context
switch between different applets and improve the running
speed. The disadvantage is that HTTP server and CGI
programs execute in the same context, which is not secure.
Any bug in CGI programs coded by third party can
negatively impact the entire server, including URL requests
have nothing to do with the bug-containing programs.
Therefore we only take this approach to implement some
simple, USB Key specific CGI functions, such as verify user
PIN, generate SHA-1digest of message etc. We call is as
local CGI, which is part of HTTP server.

In the second approach, we implement CGI programs as
Java Card applets with SIO (Shareable Interface Object) [30].

Secure Computing Environment

HTTP
server

Local/
Remote

CGI

Applet
load

Request switch

Security Agent
Framework

User Agent Applets

Com
munic
ation
agent

Communication layer

Web
Browser

TCP/IP

JavaCard
API

Java Card Platform
APDU

FLASH
Disk

USB Key

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Figure 5. Remote CGI call principles

The request switch component received the CGI request

and then will call this CGI program by SIO. At the same time,
execution context will switch to CGI programs and switch
back to HTTP server (in fact, request switch and HTTP
server share the same context in our design) after CGI
execution. There is an applet firewall to protect runtime
environment between different contexts on Java Card
platform [29]. Therefore any bug in CGI programs can not
impact entire server because they run in different context. We
think this approach is more secure than the first approach.
Any CGI programs developed by third party on our
framework can be loaded into USB Key on line at any time,
which is an open, scalable and secure architecture. We call it
as remote CGI. Remote CGI principles are depicted in fig. 5.

D. Security Agent Framework
It is not difficult to implement security agent framework

based on components mentioned above.
At first, the communication agent is designed to be able to

establish two connections at the same time, one is to local
browser and another is to remote server which the agent
wants to reach.

Secondly, the security agent framework is implemented as
a remote CGI call for security considerations.

The SIO of agent defined as follows:
public interface securityAgentInterface extends Shareable
 {
 void securityProcess (byte[] buffer);
 }
the base class of this framework defined as follows:
public class secrityAgentClass extends Applet
implements securityProxyInterface
 {
public Shareable getShareableInterfaceObject(AID

clientAID, byte parameter) { return this; }
public static void install(byte[] bArray, short bOffset, byte

bLength) {…}
public void securityProcess (byte[] buffer) {…}
protected final void waitForUserAccept() {…}
protected void sendData() { Send data to remote server; }
protected void receiveData() { Receive data from remote

server; }
}
Developers can extend securityAgentClass and override

the securityProcess() method according to the specific
security scheme(e.g. SSL,TLS) between client and remote

server.
Another important method is protected final boolean

WaitForUserAccept (). We implemented this method as
follows:
1) Display a Web page in Web browser to prompt the user

to press accept button on Key.
2) Wait for the user to press button (detect the interrupt

signal of pressing button in Key). If not, goto 2.
3) If accept button is pressed, return true else return false.

When developers install a security agent applet with
corresponding URL in parameters buffer, the install()
method implemented by us will bind this URL to the applet in
agent register table. While the end user visit this URL, the
security agent component will look for in register table and
call the corresponding applet’s securityProcess() to establish
security connection.

E. Applet Load Component
Applet load component can receive the program code of

Java applets on line and install or update (if there is an old
version of this program) it on USB Key.

At first, the Java Card Applet code will be verified by
verifier, which is stored in FLASH disk and called by
communication agent at first.

Secondly, the Applet code data will be converted to
GP(Global Platform) download command sequences by this
component and then be installed according to GP
specification (with secure channel) [31].

Because of security considerations, this component is not
open for user agent application development.

V. APPLICATION SCENARIO BASED ON USER AGENT

A. Trusted User Agent with SSL
In this section, we will describe an application scenario for

SSL with mutual authentication.
At first, the user certificate, sever certificate and user’s

private key will be stored on Key. The customized user agent
will support SSL protocol and compare the received server
certificate with stored server certificate.

Secondly, the e-commerce provider link will be stored in
home page of USB Key.

Thirdly, during transaction procedure, the transaction
amount, account will be displayed on screen and wait for
users’ approval.

The securityProcess() user agent applet can be described
as follows:

securityProcess()
{
Send ClientHello to start SSL connection;
Receive SeverHello and get Certificate of Server;
Compare received Certificate with stored Certificate of

server,
If (Certificate is illegal) {
Send detailed alarm information to users’ browser;
End this session;
 }
Send Certificate of client;
Establish SSL channel and transfer application data;

Applet Firewall

Request
Switch

HTTP
server

CGI
program

CGI context Server context

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

If (doing transaction is required) {
Extract transaction information and display it on Key
screen;

 If (waitForUserAccept())
 Do transaction;

Else
 Abort transaction;

}
}
The work flow of this scenario as follows:

1) The user input password for Key usage. The home page
of USB Key showed on browser and the user visits
e-commerce Server.

2) securityProcess() start. User agent receives the
certificate of server and checks it according to the stored
certificate in USB Key. If failed, send warning
information to user’s browser and end this session. If
succeeded, continue.

3) User agent finishes the establishment of SSL
connection.

4) If the user wants to do transactions, user agent will
extract the transaction information and display it on
USB Key screen. And then in Web browser prompt the
user to check the screen on Key.

5) User checks the transaction information, such as
accounts, amount etc. If the user approves the
transaction, press the “accept” button. User agent signs
the transaction data and sends it to server. Else, press the
“Reject” button to abort transaction.

6) When Web pages close user agent ends this session.

B. Security Analysis of Application Scenario
As far as known attacks are concerned, the security

analysis is given as follows:
1) Web spoofing, Pharming and MIMT attacks can not

succeed because the customized authentication of
server executes in user agent. The forged certificate of
server and security status information can not pass this
authentication on USB Key.

2) The malware on users’ machine can not attack SSL
process, which is done in Key.

3) The malware on users’ machine can not hijack the
transaction session because the transaction is done on
Key with user’s approval and the malware can not
access and control Key and user.

In summary, the trusted user agent assures that the
transactions behave as what users expect, be aware of and
approved.

VI. CONCLUSION AND FUTURE WORK
A new idea of trusted e-commerce user agent based on

USB Key is given in this paper. End users can do secure
e-transactions as what they expect, be aware of and approved
with this user agent. Some contributions of this technology
summarized as follows:
� We made a choice of a design following multi-factor

authentication and open infrastructure argument.
Developers can build and distribute an open, scalable
and secure user agent for e-commerce on USB Key.

� USB Key, which is a passive device and “after” the
Web browser in the past, becomes an active device and
“before” the Web browser depending on this
technology. In this active scheme, we can build a
trusted path between users and transactions based on
this user agent.

� Customized user agent on USB Key can authenticate
the e-commerce servers, establish secure channel with
specific cipher algorithms, etc. users can do
e-transactions in a more natural and understandable
manner. This scheme will improve the client-side
security and avoid the problems of unmotivated user
and limited human skills property.

The enhancement to this project is still going on. We will
optimize communication and storage management so as to
improve access speed. Furthermore, we are going to support
more application scenarios with different authentication
mechanisms on our user agent.

ACKNOWLEDGMENT
Dawei Zhang thanks Dr. Shengguang Li and Dr. Yixin Xu,

who participated in the development of HTTP Server. Peng
Hu thanks the members of USB Key research group in
Beijing Watchdata system Co. Ltd., who developed the
application scenario in this project.

REFERENCES
[1] Microsoft. (2005, May). Microsoft’s vision for an identity metasystem

[Online]. Available:
http://www.identityblog.com/stories/2005/07/05/IdentityMetasystem.
htm

[2] Emigh, A. (2005, June).Online identity theft: Phishing technology,
chokepoints and countermeasures [Online]. Available:
http://www.antiphishing.org/Phishing-dhs-report.pdf

[3] Loftesness, Scott. (2004, August). Responding to "Phishing" attacks
[Online]. Available:
http://www.glenbrook.com/opinions/phishing.htm

[4] Litan, Avivah. (2004, May). Phishing attack victims likely targets for
identity theft [Online]. Available:
http://www.gartner.com/resources/120800/120804/phishing_attack.pd
f

[5] Anti-Phishing Working Group. (2007, August). Phishing activity
trends report for the month of August 2007 [Online]. Available:
http://antiphishing.org/

[6] Jason Milletary.(2005, May). Technical trends in Phishing attacks
[Online]. Available:
http://www.uscert.gov/reading_room/phishing_trends0511.pdf

[7] E. Ye, Y. Yuan, S. Smith.(2002, February). Web spoofing revisited:
SSL and beyond [Online]. Available:
http://www.cs.dartmouth.edu/~pkilab/demos/spoo_ng/

[8] E. Felten, D. Balfanz, D. Dean, and D. Wallach, “Web spoofing: an
Internet con game,” 20th National Information Systems Security
Conference, 1997.

[9] Alma Whitten, J.D. Tygar, ”Why Johnny can't encrypt: a usability
evaluation of PGP 5.0,” Proceedings of the 8th Usenix Security
Symposium, 1999,pp. 169-184.

[10] R. Dhamija, J.D. Tygar, “The battle against Phishing: dynamic security
skins”, Symposium on Usable Privacy and Security, 2005, pp. 77-88.

[11] eBay. (2005, December). SpoofStick [Online]. Available:
http://www.spoofstick.com/

[12] Herzberg, A., Gbara. (2004, September). TrustBar: Protecting (even
Naïve) Web users from spoofing and Phishing attacks [Online].
Available:
http://www.cs.biu.ac.il/~herzbea/Papers/ecommerce/spoofing.htm

[13] eBay. (2005, January).eBay toolbar and account guard. [Online].
Available: http://pages.ebay.com/help/confidence/account-guard.html

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

[14] Zishuang Ye, Sean Smith and Denise Anthony, “Trusted paths for

browsers”, Proceedings of the 11th Usenix Security Symposium, 2002,
pp. 121-135.

[15] Technology Administration U.S. Department of Commerce, National
Institute Standards and Technology. (2004, June). Electronic
Authentication Guideline. [Online]. Available:
http://www.cio.gov/eauthentication/documents/SP800-63V6_3_3.pdf

[16] CFCA. (2007, February). 2006 e-banking survey in China [Online].
Available: http://www.cfca.com.cn/

[17] John Marchesini, S.W.Smith, Meiyuan Zhao, “Keyjacking: risks of the
current client-side infrastructure,” Proceedings of the 2nd Annual PKI
Research Workshop, 2003. pp. 80-95.

[18] OS Security, Inc. (2004, February). Round one: ”DLL Proxy” attack
easily hijacks SSL from Internet Explorer [Online]. Available:
http://www.securityfocus.com/archive/1/353203/2004-02-09/2004-02
-15/2

[19] Peter Burkholder.(2002, February). SSL Man-in-the-Middle attacks
[Online]. Available:
http://www.sans.org/reading_room/whitepapers/threats/480.php

[20] Song, Dug. (2000, December). sshmitm, webmitm,
http://cert.uni-stuttgart.de/archive/bugtraq/2000/12/msg00285.html,

[21] A. Adams and M. A. Sasse, “Users are not the enemy: why users
compromise security mechanisms and how to take remedial measures,”
Communications of the ACM, December 1999, pp. 40-46.

[22] M. Walker and K.-P. Yee. (1999,January). Interaction design for
end-user security [Online]. Available:
http://www.cs.berkeley.edu/~pingster/sec/desktop/

[23] Ka-Ping Yee, “User interaction design for secure systems,” the 4th
International Conference on Information and Communication Security,
Singapore, December 2002, pp. 52-66.

[24] Christophe Muller, Eric Deschamps. (2004, March). Smart cards as
first-class network citizens [Online]. Available:
http://www.gemplus.com/smart/rd/publications/pdf/MD02gdcc.pdf

[25] Henrich C. Pohls, Joachim Posegga, “Smartcard firewalls revisited,”
CARDIS’06, 2006 August, pp.115-130

[26] Sun Microsystems, Inc. Sun’s Brazil research project [Online].
Available: http://research.sun.com/brazil

[27] Microsoft. (2005, May). Thelaws of identity [Online]. Available:
http://www.identityblog.com/?page_id=354

[28] Sun Microsystems, Inc. (2006, March). Java Card 2.2.2 Virtual
Machine Specification [Online]. Available:
http://java.sun.com/products/javacard/specs.html

[29] Sun Microsystems, Inc. (2006, March). Java Card 2.2.2 Runtime
Environment Specification [Online]. Available:
http://java.sun.com/products/javacard/specs.html

[30] Zhiqun Chen, Java Card technology for smart cards: architecture and
programmer's guide, Boston: Addison Wesley, 2000, pp. 70-88.

[31] Global platform organization. (2006, March). GlobalPlatform card
specification V2.2 [Online]. Available: http://www.globalplatform.org

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

