
Towards a Formalization of Combinatorial Local
Search

Eric Monfroy, Frédéric Saubion, Broderick Crawford and Carlos Castro ∗

Abstract—Although there are some frameworks to
formalize constraint propagation, there are only few
studies of theoretical frameworks for local search. We
are here concerned with the design of a generic frame-
work to model local search as the computation of a
fixed point of functions. This work allows one to sim-
ulate standard strategies used for local search, and to
easily design new strategies in a uniform framework.

Keywords: Constraint Satisfaction Problems (CSP),

Local Search, Constraint Solving

1 Introduction

Constraint Satisfaction Problems (CSP) [11] provide a
general framework for the modeling of many practical
applications (planning, scheduling, time tabling,...). A
CSP is usually defined by a set of variables associated to
domains of possible values and by a set of constraints. We
only consider here CSP over finite domains. Constraints
can be understood as relations over some variables and
therefore, solving a CSP consists in finding tuples that
belong to each constraint (an assignment of values to the
variables that satisfies these constraints).

From a practical point of view, CSP can be solved by us-
ing either complete (such as constraint propagation [3]) or
incomplete techniques (such as local search [1] or genetic
algorithms [7]). Therefore, constraint solvers mainly rely
on the implementation and combination of these tech-
niques. Local search techniques [1] have been successfully
applied to various combinatorial optimization problems.
In the CSP solving context, local search algorithms are
used either as the main resolution technique or in coop-
eration with other resolution processes (e.g., constraint
propagation) [5, 9, 4]. Unfortunately, the definitions and
the behaviors of these algorithms are often strongly re-
lated to specific implementations and problems.

Our purpose is to define a framework based on functions
to provide uniform modeling tools which could help bet-
ter understanding local search algorithms and designing
new ones. The idea is similar to [10], but with a much

∗The author’s affiliations, respectively, are:
Universidad Técnica Federico Santa Maŕıa, Valparáıso, Chile
Université de Angers, France
Pontificia Universidad Católica de Valparáıso, Chile
Universidad Técnica Federico Santa Maŕıa, Valparáıso, Chile

finer grain definition of functions.

From a more conceptual and theoretical point of view,
K.R. Apt has proposed a mathematical framework [2, 3]
for iteration of a finite set of functions over “abstract” do-
mains with partial ordering: this is well-suited for solving
CSPs with constraint propagation. The purpose of this
paper is to focus on the modeling of basic local search
processes and then to improve this previous work by pro-
viding a more comprehensive definition to local search
algorithms.

To obtain a finer definition of local search, we propose a
computation structure (the domain of Apt’s iterations)
which is better suited for local search. Then, we define
the basic functions that will be used iteratively on this
structure to create a local search process. We identify
here precisely the two basic processes used for intensifi-
cation and diversification (move and neighborhood com-
putation) and the process for jumping to other parts of
the search space (restart). These three processes are ab-
stracted at the same level by some homogeneous functions
called reduction functions. The result of local search is
then computed as a fixed point of this set of functions.
Moreover, the theoretical framework of [3] is then ex-
tended here to fit our new function definitions.

This allows us to take into account in a single model var-
ious moves (such as for improvement, diversification, non
looping, . . .), neighbors (such as all neighbors, improving
neighbors, . . .), and restart functions that can be inter-
leaved as needed.

2 Solving CSP with Local Search

A CSP is a tuple (X, D, C) where X = {x1, · · · , xn} is
a set of variables taking their values in their respective
domains D = {D1, · · · , Dn}. A constraint c ∈ C is a rela-
tion c ⊆ D1 × · · · ×Dn . Note that for sake of simplicity,
we consider that each constraint is over all the variables
x1, . . . , xn. However, one can consider constraints over
some of the xi. Then, the notion of scheme [3] can be
used to denote sequences of variables. In order to sim-
plify notations, D will also denote the Cartesian product
of Di and C the union of its constraints. A tuple d ∈ D is
a solution of a CSP (X, D, C) if and only if ∀c ∈ C, d ∈ c.
In this paper, we always consider D finite.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Given an optimization problem (which can be minimizing
the number of violated constraints and thus trying to find
a solution to the CSP), local search techniques [1] aim at
exploring the search space, moving from a sample (i.e., a
representative of a tuple which is usually the tuple itself
but could also be a set of tuples such as a scatter of tuples,
a box of tuples, . . .) to one of its neighbors.

For the resolution of a CSP (X,D, C), the search space
can be often defined as the set of possible tuples of
D = D1 × · · · × Dn and the neighborhood is a map-
ping N : D → 2D. This neighborhood function defines
indeed the possible moves from a sample (i.e., a tuple
in this case) to one of its neighbors and therefore fully
defines the exploration landscape. The fitness (or evalu-
ation) function eval is related to the notion of solution
and can be defined as the number of constraints c that
are not satisfied by the current sample, i.e., constraints
such that d �∈ c (d being the currently visited sample,
i.e., an element of D in this case). The problem to solve
is then a minimization problem. Given a sample d ∈ D,
two basic cases can be identified in order to continue the
exploration of D:

- intensification: choose d′ ∈ N (d) such that eval(d′) <
eval(d).

- diversification: choose any other neighbor d′.

In order to integrate possible restarts (to start new paths)
and to generalize this approach we will consider local
search as a set of basic local searches.

3 A Computational Framework

3.1 The Computation Structure

As we have seen, local search acts usually on a structure
which corresponds to points of the search space. Here,
we propose a more general and abstract definition based
on the notion of sample, already suggested.

Definition (Sample) Given a CSP (X, D, C), a sample
function is a function ε : D → 2D. By extension, ε(D)
denotes the set {ε(d)| d ∈ D}.

Generally, ε(d) is restricted to d and ε(D) = D, but it
can also be a scatter of tuples around d, or a box of tuples
covering d. Indeed, the search space D is abstracted by
ε(D) to be used by the local search. Note that in any
case, ε(D) is finite since we consider D to be finite.

The general process of local search can be abstracted by
three stages:

• start or restart a search from a given starting sample,

• generate the neighborhood of the current sample,

• move from the current sample to one of the previ-
ously computed neighbor.

Definition (Local Search Path) A local search path p is
a finite sequence (s1, · · · , sn) such that ∀1 ≤ i ≤ n, si ∈
ε(D).

A local search configuration is given by a local search
path and a set of possible candidates for the next move
(i.e., neighbors of the last encountered sample).

Definition (Local Search Configuration) A local search
configuration is a pair (p, V) where p = (s1, · · · , sn) is a
local search path and V ⊆ 2ε(D).

We denote by Pε(D) (resp. Cε(D)) the set of all possible
local search paths (respectively configurations) on ε(D).
Given a tuple p = (s1, · · · , sn) ∈ ε(D)n, and an element
s ∈ ε(D), we denote p′ = p ⊕ s the tuple (s1, · · · , sn, s).
To simplify notation, we denote s ∈ p the fact that a
sample s is a component of a path p.

Practically, a local search process aims at building a fi-
nite path whose length is either determined by reaching
a solution or by having performed a maximum number
of iterations. Therefore, we now define the orderings for
the above structures taking into account these two main
aspects of local search.

Definition (Ordering on paths and configurations)
Given p = (s1, · · · , sn) and p′ = (s′1, · · · , s′m) two paths of
Pε(D), p 	 p′ iff

• s′m ∈ Solε(D)

• or sn �∈ Solε(D) and m ≥ n.

Given c = (p, V) and c′ = (p′, V ′) two configurations of
Cε(D), c 	 c′ iff either:

• p 	 p′,

• or p = p′ and V ⊆ V ′.

According to this definition, a path leading to a solution
will not be extended and corresponds to a final state of
computation: indeed reaching a solution is usually used
as a stop criterion in local search algorithms.

Note the notion of congruence on paths: two paths p =
(s1, · · · , sn) and p′ = (s′1, · · · , s′m) can be “syntactically
different” but equal with our ordering: sn ∈ Solε(D) and
sm ∈ Solε(D) (as well as sn �∈ Solε(D), sm �∈ Solε(D),
and n = m) is sufficient to have p = p′. This notion of
congruence extends to configurations.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

In order to generalize the basic local search process and
to handle specific operations such as restart, we consider
now a local search as a set of local search configurations
that we call a whole local search. Therefore, we define
the following structure : LSε(D) = 2Cε(D) as our general
computation structure. The elements that we will handle
are thus finite sets of configurations that we will often
denote λ = {c1, . . . , cn}.
Since most of the times we will be given D and we will
consider only one sampling function ε on D, in the fol-
lowing we will often abbreviate Pε(D) (respectively Cε(D),
and LSε(D)) to P (respectively to C, and LS).

Before extending ordering on configurations to ordering
on sets of configurations, we need to define the notion of
comparable couples. |S| denotes the cardinality of the set
S.

Definition (Coupling) Given λ = {c1, . . . , cn} and λ′ =
{c′1, . . . , c′n} in LS, a coupling from λ and λ′ is a set S
such that:

• S ⊆ λ× λ′,

• ∀(ci, c
′
j) ∈ S, c′j 	 ci ∨ ci 	 c′j ,

• and, ∀(ci, c
′
j) ∈ S, (� ∃l ∈ [1..n], (ci, c

′
l) ∈ S) ∧ (� ∃k ∈

[1..n], (ck, c′j) ∈ S).

We say that a coupling S is maximum if there does not
exist any coupling S′ from λ and λ′ such that |S| ≤ |S′|.
S� (respectively S�) is the set defined by S� = {(ci, c

′
j) ∈

S | c′j 	 ci} (respectively S� = {(ci, c
′
j) ∈ S | ci 	 c′j}).

Based on this notion of coupling, we can now define an
ordering on elements of LS. Informally, let λ and λ′ be
two elements of LS. Then, λ 	 λ′:

• if they have the same size, and there are less ele-
ments of λ′ that are smaller than elements of λ than
elements of λ that are smaller than elements of λ′.

• or if λ′ is bigger, and has a subset (of the same size
as λ) which is also bigger than λ.

Definition (Ordering on LS) Given λ and λ′ in LS,
λ 	 λ′ iff either:

• |λ| = |λ′|, and there is a maximum coupling S from
λ to λ′ such that |S�| ≤ |S�| and |S| = n ,

• or, |λ| ≤ |λ′| and there exists λ′′ ⊆ λ′ such that
|λ′′| = |λ| and λ 	 λ′′

In the next section, we define the functions that will apply
on these structures to perform local search.

3.2 Reduction Function Definitions

Our definition of reduction functions is based on K.R.
Apts framework.

Definition (Reduction function on a structure) Given a
partial ordering (D,), a reduction function f is a func-
tion from D to D which satisfies the following properties:

• ∀x ∈ D, x 	 f(x) (inflationary)

• ∀x, y ∈ D, x 	 y ⇒ f(x) 	 f(y) (monotonic)

We may now distinguish two kinds of reduction functions
as they apply either on a single local search configuration
or on a whole local search composed of several configura-
tions.

Definition (Move Function) A move function is a func-
tion:

μ : C → C
(p, V) �→ (p′, ∅)

where:

• p′ = p⊕ s with s ∈ V if p = p′′ ⊕ s′ and s′ �∈ Solε(D)

and V �= ∅,

• p′ = p otherwise.

Definition (Neighborhood Func.) A neighborhood func-
tion is a function:

ν : C → C
(p, V) �→ (p, V ∪ V ′)

such that V ′ ⊆ ε(D) and V ′ ∩ V = ∅.

Move and neighborhood functions are reduction functions
on C. The proof is straightforward.

We now define a function which applies on a whole local
search to generate a new configuration, i.e., a starting
sample from ε(D) and an empty set of neighbors that
will be used later to make a new search.

Definition (Restart Function)

restart : LS → LS
λ �→ λ ∪ {(s, ∅)} with s ∈ ε(D)

Restart functions are reduction functions on LS. The
proof is straightforward.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

3.3 Control for Reduction Function

In order to apply the basic move and neighborhood func-
tions on an element λ of LS we need to select a specific
configuration c in λ using a selection function:

select : LS → C
λ �→ c with c ∈ λ

We now extend move and neighborhood functions on LS
using select.

Definition (Extended Move and Neighborhood Func-
tions) Let f be a move or a neighborhood function. Then
its extension fselect is defined by:

fselect : LS → LS
λ �→ λ′

where λ = [c1, . . . , ci, . . . , cl] and λ′ =
[c1, . . . , f(ci), . . . , cl] with select(λ) = ci.

Extended move and neighborhood functions are reduction
functions on LS. The proof is straightforward.

Note that this control aspects introduce non determinism
in the basic reduction functions. This will be discussed in
section 4. At this step, we restrict the functions in order
to fit a real operational framework.

3.4 Restricting Functions to Match a Prac-
tical Framework

As mentioned before, the stop conditions are always
added in local search algorithms to insure termination.
These conditions are basically based on a maximum num-
ber of allowed search steps or on a notion of solution (if
this notion is available). In the context of CSP solving,
this notion of solution has been clearly defined and is
taken into account in the definition of our computation
structure. The second aspect will be introduced in the
move and neighborhood functions.

Here the maximum number of operations will be defined
by a maximum number σ of steps in each path (maximal
length of a path) and a maximum number ρ of restarts
(number of attempts to build a path leading to a solu-
tion).

Given an extended move or neighborhood func-
tion fselect:LS → LS, we define its restriction
f (select,σ):LS → LS as:

• f (select,σ)(λ) = fselect(λ) if |select(λ)| ≤ σ

• and f (select,σ)(λ) = λ otherwise.

Concerning the restart function, its restriction is defined
as:

• restartρ(λ) = restart(λ) if |λ| ≤ ρ

• and restartρ(λ) = λ otherwise.

We must insist on the fact that, after these practical re-
strictions, we only consider P as the set of all possible
local search paths of size σ. Therefore, this set is finite
and C and LS are also finite. Note that only the re-
striction concerning σ is required to insure finiteness of
the structures which is needed to fit the generic iteration
framework (section 4).

3.5 Fairness

We now define fairness notions that are useful at two lev-
els: 1) to fairly consider all samples of ε(D) with restart
functions, 2) to fairly consider all the configurations of a
whole local search. These notions are correct w.r.t. the
fact that our structures D, ε(D), C and LS are finite.

A restart function r is fair if it does not neglect infinitely
a sample of ε(D). More formally, consider an infinite se-
quence of whole local searches from LS: λ1, λ2, . . . Then,
each element s ∈ ε(D) appears infinitely many times in
r(λ1), r(λ2), . . .

A select function s is fair if it does not neglect infinitely
a configuration of a whole local search. More formally,
consider an infinite sequence of whole local searches from
LS: λ1, λ2, . . . such that λ1 	 λ2 	 Then, each
configuration c ∈ C and c ∈ ⋃

i λi appears infinitely many
times in the sequence s(λ1), s(λ2), . . .

A move or neighborhood function f (select,σ) is fair if it
relies on a fair select function. In the following, we con-
sider only fair select, and restart functions, and thus, fair
move and neighborhood functions.

4 Local Search as a Fixed Point of Re-
duction Functions

In our framework, local search will be described as a fixed
point computation on the previously ordered structure.

4.1 Chaotic Iterations

K.R. Apt proposed chaotic iterations [3], a general the-
oretical framework for computing limits of iterations of
a finite set of functions over a partially ordered set. In
this paper, we do not recall all the theoretical results of
K.R. Apt, but we just give the GI algorithm for comput-
ing fixed point of functions. Consider a finite set F of
functions, and d an element of a partially ordered set D.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

GI: Generic Iteration Algorithm
d :=⊥;
G := F ;
While G �= ∅ do

choose g ∈ G;
G := G− {g};
G := G ∪ update(G, g, d);
d := g(d);

where ⊥ is the least element of the partial ordering (D,	
), G is the current set of functions still to be applied (G ⊆
F), and for all G, g, d the set of functions update(G, g, d)
from F is such that:

P1 {f ∈ F − G | f(d) = d ∧ f(g(d)) �= g(d)} ⊆
update(G, g, d).

P2 g(d) = d implies that update(G, g, d) = ∅.

P3 g(g(d)) �= g(d) implies that g ∈ update(G, g, d)

Suppose that all functions in F are reduction functions as
defined before and that (D,) is finite (note that finite-
ness is important as is has already been mentioned for
our structure). Then, every execution of the GI algo-
rithm terminates and computes in d the least common
fixed point of the functions from F .

We now use the GI algorithm to compute the fixed point
of our functions. The algorithm is thus feed with:

• a set of fair restart functions, fair move and neigh-
borhood functions, that compose the set F ,

• ⊥ = ∅ ∈ LS to instantiate initial d,

• the ordering that we use is the ordering 	 on LS.

Unfortunately, the properties P1,P2 and P3 required in
[3] for the update functions (to insure the computation
of the fixed point) do not fit our extended functions. In-
deed, our extended functions are not deterministic and
can modify a whole local search even if a previous appli-
cation did not. This is due to the fact that the select func-
tion may choose a configuration which may not be modi-
fied by a move (or a neighborhood) function whereas an-
other configuration would be modified by the same move
(or neighborhood) function.

However, remember the fairness property of the select
function: if one configuration can be changed by a move
(or neighbor) function, then this configuration will not
be neglected forever; and a sample will not be neglected
forever by a restart function. Informally, the declarative
definition of the update means:

P1 put in the update(G, g, d) all functions not currently
in G that will modify g(d). This insures that all
effective functions will be re-applied (correctness of
the algorithm), whereas ineffective functions will not
be added (efficiency reasons).

P2 to ensure termination.

P3 to add g again if it must be re-used.

Note that in practice, the update set is computed by a
relaxation of the declarative definition. In our frame-
work, the declarative definition of the update could be
reformulated as follows to ensure correctness and termi-
nation. First, consider the notations: ∃g(d) = d as a
short cut for “there exists an element of the infinite se-
quence g(d), g(d), . . . which is equal to d”. And similarly,
∀g(d) = d is a short cut for “there does not exist an el-
ement of the infinite sequence g(d), g(d), . . . which is not
equal to d”. The update must satisfy the following prop-
erties:

P’1 {f ∈ F − G | ∀f(d) = d ∧ ∃f(g(d)) �= g(d)} ⊆
update(G, g, d).

P’2 ∀g(d) = d implies that update(G, g, d) = ∅
P’3 ∃g(g(d)) �= g(d) implies that g ∈ update(G, g, d)

Basically, we need to put in the update set of func-
tions, functions that potentially will modify d, the current
whole local search.

In these conditions, the algorithm terminates and com-
putes the least common fixed point of the functions
from F , i.e., the result of the whole local search. In-
spired by [3], the proof partially relies on an invariant
∀f ∈ F−G, f(d) = d of the “while” loop in the algorithm.
This invariant is preserved by our characterization of the
update function (P’1, P’2 and P’3). Moreover, since we
keep a finite partial ordering and a set of monotonic and
inflationary functions, the results of K.R. Apt can be ex-
tended here. We characterize more precisely these fixed
point results in the next section.

4.2 Characterization of the Results

We have described the basic computation structure and
processes through the previous generic algorithm. We
now define precisely the computed results w.r.t. the main
goal of local search algorithms. Since this algorithm aims
at optimizing an objective function in a CSP context, we
first define an evaluation function to rate the quality of
samples:

eval : ε(D) → E
s �→ e

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

where (E , >) is a totally ordered set, such that there
exists an element ⊥, ∀e ∈ E , e > ⊥. We require this
evaluation to have the solution recognition property, i.e.,
∀s ∈ Solε(D), eval(s) = ⊥.

We now consider a whole local search λ computed af-
ter applications of reduction functions. Its fundamental
properties are related to the samples that have been ex-
plored during this computation. Therefore, we define the
following function:

Π : LS → 2ε(D)

λ �→ {s ∈ ε(D) | ∃(p, V) ∈ λ and s ∈ p}

In fact this function is a projection of the computed paths
to the set of samples in order to get all the samples which
have been explored during search. We introduce then
the ordering 	Sol to characterize quality of encountered
solutions.

Definition (Quality of solution) Given λ and λ′ in LS,
λ 	Sol λ′ iff:

• either mins∈Π(λ)(eval(s)) > mins∈Π(λ′)(eval(s))

• or mins∈Π(λ)(eval(s)) = mins∈Π(λ′)(eval(s)) and
λ 	 λ′

where min refers to the minimum of a set of elements
from E with respect to >.

Solutions are non ordered w.r.t. this ordering which can
be useful to compare the results. Note that the reduc-
tions functions are compatible (i.e., monotonic and infla-
tionnary) w.r.t. this ordering. On the other hand, the
results obtained by the iteration algorithm are related to
the parameters of the search.

4.3 Characterization of the Search

We discuss here the influence of the two parameters σ
and ρ on local search.

ρ ≥ |ε(D)| In this case, thanks to the fairness property
of the restart functions, all the search space can be ex-
plored. We may thus obtain a complete solver, but still
practically unconceivable.

ρ < |ε(D)| In this case, to obtain a complete solver, we
must impose some more properties on move and neigh-
borhood functions:

• a move function must not loop, i.e., a path must be
a sequence of samples s1, s2, . . . , sm with m ≤ σ s.t.
there does not exist i, j ∈ [1..n] with si = sj .

• neighborhood functions must be total, i.e., from a
sample, each sample of ε(D) must be reachable by
at least one of the used neighborhood functions.

• σ ≥ |ε(D)|.

ρ << |ε(D)| and σ << |ε(D)| The previous cases, al-
though interesting from a theoretical point of view (they
help understanding why local search techniques are not
considered as complete methods) are inconceivable in
practice.

In this case, the search is not complete, and the qual-
ity of solution will depend on the quality of the move,
neighborhood, and restart functions. This justify all the
works that have conducted to improve local search by de-
signing new algorithms: in our framework, this translate
to new neighborhoods, new form of move and restart,
and new strategies. Note that these consideration could
be extended according to the requirements of the search
: find a solution, find all solution or optimization prob-
lems. Our framework, allowing to handle several paths
could be for instance interesting if one wants to extract
some different solutions of equivalent quality.

5 Using the Framework

In this work, possible uses of this framework are illus-
trated through the description of existing strategies such
as descent algorithms (WalkSat) and tabu search [8].
Concerning LS methods we focus on Tabu search (TS)
[6]. Basically, this algorithm forbids moving to a sample
that was visited less than l steps before. To this end,
the list of the last l visited samples is memorized. On
the other hand, we consider a basic descent technique
with random walks RW where random moves are per-
formed according to a certain probability p. According
to our model, we only have now to design functions of
the generic algorithm of Section 4.1 to model strategies.
Neighborhood functions are functions C → C such that
(p, V) �→ (p, V ∪ V ′) with different conditions:

FullNeighbor : V ′ = {s ∈ D|s �∈ V }
TabuNeighbor : V ′ = {s ∈ D| � ∃k,

n− l ≤ k ≤ n, sk = s}
DescentNeighbor : p = (s1, . . . , sn) and

V ′ = s ⊂ D s.t. � ∃s′ ∈ V
s.t. eval(s′) < eval(sn)

Move functions are functions C → C
s.t. (p, V) �→ (p′, ∅) with various conditions:

BestMove : p′ = p⊕ s′ and
eval(s′) = mins′′∈V eval(s′′).

ImproveMove : p = p′′ ⊕ sn and
p′ = p⊕ s s.t. eval(s′) < eval(sn).

RandomMove : p′ = p⊕ s′ and s′ ∈ V.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

We can precise here the input set of function F for algo-
rithm GI:

Tabusearch : {TabuNeighbor
;BestNeighBor}

Randomwalk : {FullNeighbor
;BestNeighBor;
RandomNeighbor}

TabuSearch + Descent : {TabuNeighbor
;DescentNeighbor
; ImproveNeighBor
;BestNeighBor}

Randomwalk + Descent : {FullNeighbor
;BestNeighBor
;RandomNeighbor
;DescentNeighbor
; ImproveNeighBor}

The different algorithms correspond to different sets of
input functions and different behaviours of the choose
function in the GI algorithm. choose alternatively selects
neighborhood and move functions. For the Random Walk
algorithm, given a probability parameter p, we have to
introduce a quota of p BestMove functions and 1 − p
RandomMove used in GI. Concerning Tabu Search, we
use here a TabuNeighbor with l = 10 and BestMove
functions to built our Tabu Search algorithm. At last, we
combine a descent strategy by adding DescentNeighbor
and ImproveMove to the previous sets in order to design
algorithms in which a Descent is first applied in order to
reach more quickly a good configuration.

Thus we design various algorithms in a single generic al-
gorithm: this is not so easy and clear when the methods
are considered from a pure algorithmic point of view. 1

6 Conclusion

In this paper, we have proposed a framework for modeling
CSP resolution with local search techniques. This frame-
work provides a computational model as the computation
of a fixed point of functions over a partial ordering, in-
spired the initial works of K.R. Apt [3]. It helps us to finer
define the basic processes of local search at a uniform de-
scription level and to describe specific search strategies.
This mathematical framework could be helpful for the
design of new local search algorithms, the improvement
of existing ones and their combinations.

This framework could be extended in order to include
complete resolution mechanisms (constraint propagation,
domain splitting) and even other metaheuristics such as
evolutionary algorithms as in [10]. However in [10], gran-
ularity of functions is more coarse grain than in the frame-
work we propose here: move and neighbor functions are

1Due to space limitations we did not include our experimental
results on different instances of Sudoku problem.

integrated in one function; restart is implicit and induced
by split functions. Thus [10] cannot consider several
move, neighborhood, or restart and this is thus also much
more restrictive in terms of strategies.

References

[1] E. Aarts and J. K. Lenstra, editors. Local Search
in Combinatorial Optimization. John Wiley & Sons,
Inc., New York, NY, USA, 1997.

[2] K. R. Apt. From chaotic iteration to constraint
propagation. In P. Degano, R. Gorrieri, and
A. Marchetti-Spaccamela, editors, ICALP, volume
1256 of Lecture Notes in Computer Science, pages
36–55. Springer, 1997.

[3] K. R. Apt. Principles of Constraint Programming.
Cambridge Univ. Press, 2003.

[4] B. Crawford, C. Castro, and E. Monfroy. Integration
of constraint programming and metaheuristics. In
I. Miguel and W. Ruml, editors, SARA, volume 4612
of Lecture Notes in Computer Science, pages 397–
398. Springer, 2007.

[5] F. Focacci, F. Laburthe, and A. Lodi, editors. Local
Search and Constraint Programming. In F. Glover
and G. Kochenberger, editors, Handbook of Meta-
heuristics, volume 57 of International Series in Op-
erations Research and Management Science. Kluwer
Academic Publishers, Norwell, MA, 2002.

[6] F. Glover and F. Laguna. Tabu Search. Kluwer Aca-
demic Publishers, Norwell, MA, USA, 1997.

[7] J. H. Holland. Adaptation in Natural and Artificial
Systems. University of Michigan Press, 1975.

[8] B. Jaumard, M. Stan, and J. Desrosiers. Tabu search
and a quadratic relaxation for the satisfiability prob-
lem. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, 26:457–478, 1996.

[9] N. Jussien and O. Lhomme. Local search with
constraint propagation and conflict-based heuristics.
Artif. Intell., 139(1):21–45, 2002.

[10] E. Monfroy, F. Saubion, and T. Lambert. Hybrid
csp solving. In B. Gramlich, editor, FroCos, volume
3717 of Lecture Notes in Computer Science, pages
138–167. Springer, 2005.

[11] E. Tsang. Foundations of Constraint Satisfaction.
Academic Press, London, 1993.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

