
Method of Generating Operation Map from
Source Programs for Operation Learning

Hajime Iwata * , Daisuke Kuroiwa ∗, Junko Shirogane †, Yoshiaki Fukazawa *

Abstract— Many complicated software packages
make the operation difficult for end users. To acquire
the skills for software operation, supporting end users
to learn operating methods by themselves is effective.
When in learning operating methods, it is important
for end users to check the overview of the operating
methods and their current step in the sequence of
operations. On the basis of the overview and their
current step, end users can consider how to operate
the software to achieve their goal. For this purpose,
we consider that “operation maps” are effective. Op-
eration maps show the sequences of window switching
in the software. Also, in operation maps, the window
on currently focused is emphasized. This window can
be considered as the current step of an end user. To
realize operation maps easily, we propose a method of
generating operation maps from the source programs
of the software. In this paper, we describe how op-
eration maps can be generated by extracting window
information, such as the titles and widget types of
windows, from source programs.

Keywords: Graphical User Interfaces, Learning Sup-

port, Operation Maps, Window Switching

1 Introduction

Many types of software have been developed with a wide
range of functions. As a result, the operating methods
used in software tend to be complicated; thus, it is some-
times difficult for end users to learn how to operate soft-
ware. Therefore, it is important to provide support for
learning operating methods.

There are various support methods for learning opera-
tion methods, such as paper manuals, help systems, nav-
igation systems [1] and tutorial systems [2] [3]. These
methods are suitable for end users who want to learn
the details of each operating step, because these support
methods show operating methods step by step. Also,
these methods are effective when end users follow the in-
structions without any errors or mistakes. However, in

∗Department of Information and Computer Science,
Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo 169-
8555, Japan; Tel/Fax: +81-3-5286-3345; Email: {hajime i,dai-
kuro,fukazawa}@fuka.info.waseda.ac.jp

†Tokyo Woman’s Christian University, 2-6-1 Zempukuji,
Suginami-ku, Tokyo 167-8585, Japan; Tel/Fax: +81-3-5382-6763;
Email: junko@lab.twcu.ac.jp

learning operation methods, it is also important for end
users to understand the overview of the entire operation
and for them to be supported when they make errors
and mistakes. These above-mentioned methods are not
suitable for helping end users to understand overviews
of operating methods or for helping end users to recover
from mistakes and errors.

In these cases, it is important for end users to be able
to learn how to operate the software by understanding
overviews of the operating methods by finding their cur-
rent step in the overview and by considering how to
achieve their goal. To support these aims, it is effective
to show a map of window switchings and to emphasize
the end users’ current step on the map. In our method,
this map is called an “operation map” and the system
that shows the operation map and the end users’ current
step is called an “operation map system”.

Using an operation map system, end users can see whole
sequences window switching involved in software oper-
ations. The operation map system is considered to be
effective for supporting end users as they learn operation
methods and recover from errors and mistakes. Thus, by
considering how to operate the software and how to re-
cover from errors and mistakes, the end users can acquire
much greater skill at operating the software.

However, developing operation maps and an operation
map system are a heavy burden for software developers,
and high costs are required. Thus, we propose a method
for generating operation maps and an operation map sys-
tem automatically. Using our method, it becomes easy
for developers to develop operation maps and an oper-
ation map system, which are generated from the source
programs of the target software. In our method, our tar-
get program language is Java and the source programs
are translated into JavaML [4] format using a JavaML
converter, a tool for translating Java source programs
into JavaML format, which is the XML format that Java
source programs are translated into. Using the source
programs in JavaML format, our system generates oper-
ation maps and an operation map system. The opera-
tion map system generated by our system is written in
AspectJ [5] programs, and is weaved into the target soft-
ware. AspectJ is one of the tools used to realize aspect-
oriented programming (AOP). Using AspectJ, it is pos-

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008



sible to weave the operation map system into the target
software without modifying the source programs.

2 Features of our method

2.1 Overview of operation learning

Operation maps show the sequences of all windows during
the necessary operations in the target software. By con-
sulting an operation map, end users can find the current
step they are at in the operation sequence and consider
how to operate the software to achieve their goal.

During learning, it is said that it is very important for
learners to consider and find the solutions of problems by
themselves. In our method, using the operation maps,
end users search for the final window that they wish to
operate to achieve their purpose. This final window cor-
responds to the step for achieving end users’ goal of the
operation maps. Then, end users consider the appropri-
ate path of operations from the current step to the final
window by themselves.

Also, when end users make mistakes in the operations, or
when errors occur, they can recover from the mistakes or
errors by referring to the operation map, which is difficult
to do using manuals. In these cases, operation maps can
support error recovery.

Details of the operation maps and an operation map sys-
tem are as follow.

2.2 Operation maps

Operation maps include all window switchings during the
operation of the target software. Window sequences of
the entire software are represented in operation maps.
That is, window maps represent overviews of operations
in the target software.

Figure 1: Example of an operation map

An example of an operation map for an operation in Mi-
crosoft Excel 2003 is shown in Figure 1. All the windows
in the target software and their relationships are repre-
sented.

In operation maps, arrows show the sequences of the win-
dows. When window switchings occur, some user events,
such as pushing a button and selecting a menu, become
triggers. These triggers are shown next to the arrows.
The names of windows used as triggers are identified by
square brackets. The operation sequences of these trig-
gers are represented by “>>”. For example, in Figure 1,
[Insert] >> [Graph] means that end users select the menu
button “Insert”, then they select menu item “Graph”,
and then Microsoft Excel 2003 switches from the “Main”
window to the “Graph Wizard(1/4)” window.

In some types of software including Microsoft Excel 2003,
a window is created several times for each operation. For
example, Microsoft Excel 2003 creates a window of work-
ing spaces for each selection of the menu button “File”
followed by “New”. In this case, operation maps repre-
sent only the window switchings, and these windows are
represented as a single window.

2.3 Operation map system

To realize the support of learning operations using oper-
ation maps, it is necessary to display the current step of
the end user and the operations in the windows. When
an end user operates software, the current step of the
end user, i.e., the window currently focused on, changes.
Thus, it is necessary to acquire the window currently fo-
cused on. The system used for this is called the operation
map system. In the operation map system, an operation
map is displayed, and the window currently focused on is
acquired, then displayed and highlighted in the operation
map.

By displaying window the currently focused on, end users
can recognize the step that they are at in the entire soft-
ware operation. End users can thus consider their next
operation. When end users make mistakes in an oper-
ation, or when errors occur, they can consider how to
recover from them by referring to the operation map.

3 Preliminary

To extract the sequences of window switching, we classify
the types of widgets and generating windows. These clas-
sifications comprise the “listener database” and “window
database”, respectively.

3.1 Listener database

Window switchings often occur in software. For example,
the flow for saving contents to a file in a simple text editor
is shown in Figure 2 . This text editor was written using
Java and Java Swing packages.

When window switching occurs, the widgets that are op-
erated on users occur often become triggers. There are
many types of widgets in the Java Swing packages; how-
ever, only some widget types are used as triggers. We

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008



classify widgets into those that become triggers and those
that do not become triggers. We call the widgets that
become triggers “action widgets”, and those that do not
become triggers “nonaction widgets”. Action widgets are
widgets that react to user events and become the triggers
of window switching, and nonaction widgets are widgets
that do not react to user events. For example, button
widgets and menu item widgets are action widgets. When
user events occur due to their use, then some processes
are performed. That is, they cause user events. Label
widgets and list box widgets are nonaction widgets. Even
if user events occur due to their use, no process is per-
formed in many cases. That is, they do not cause user
events.

Figure 2: Example of action widgets

In the windows of Figure 2, Java Swing widgets such
as JMenuBar, JMenu, JMenuItem, JTextArea and JFile-
Chooser are used. In this text editor, when end users se-
lect the “File” menu, some menu items, such as “Save”,
“Open”, “Save as” and “Exit”, are shown. When end
users select “Save”, a window for saving the file is dis-
played. These menu widgets, such as “File”, are JMenu
widgets, and these menu item widgets are JMenuItem
widgets in Java Swing. Windows are displayed by inter-
acting with JMenuItem widgets, thus they are classified
as action widgets.

However, no action is performed by interacting with
JMenuBar and JTextArea, because JMenuBar widgets
are mats to place JMenu widgets on, and JTextArea wid-
gets are used for inputting text. Thus, JMenuBar and
JTextArea widgets are nonaction widgets. In this way,
we classify all widgets in Java Swing into action widgets
and nonaction widgets.

Upon operating on action widgets, user events, such
as pushing buttons and inputting by keyboard, occur.
There are several classes for detecting these user event
occurrences in Java Swing, and these classes are called
“listeners”. In our method, the relationships between
action widgets and listeners, i.e., the listeners that can
be used to obtain events on a certain action widget, are
written in the listener database.

When end users operate a widget, various processes corre-
sponding to the operation of the widget are invoked. Lis-
teners are used to detect the occurrence of user events.
There are several types of listeners, such as those de-
tecting mouse clicks and key strokes. That is, different
listeners detect different user events. Also, listeners are
added to each widget. In many cases, the types of user
events occurring on a widget depend on its type. That
is, the types of listeners added to a widget depend on its
type. Thus, it is necessary to store the correspondences
between listeners and widgets.

For example, “ActionListener” is one of the listeners, and
it can be used for detecting mouse clicking events on
JButton widgets. Thus, ActionListeners are added to
JButton widgets to detect mouse clicking. This relation-
ship between ActionListener and JButton is written in
the Listener Database. An example of a listener database
is shown in Table 1.

Table 1: Example of listener database

Action widgets Listener Type
ActionListener,

JButton ChangeListener, Left Click
ItemListener

ActionListener,
JMenuItem MenuKeyListener, Left Click

ItemListener
JTextField ActionListener, Keyboard Type

KeyListener

3.2 Window database

In Java Swing packages, there are two main types of win-
dow generation schemes. One is the type in which win-
dows are displayed by creating objects in the windows.
In our method, this type is called the “object creation”
type. Examples of this type of window are JFrame and
JDialog in Java Swing. In these types of windows, the
objects that are created are shown using a method called
“setVisible”. The other is the type in which windows
are displayed by calling the specific methods used in each
window. In our method, this type is called the “method
usage” type. Examples of this type of window are JOp-
tionPane and JFileChooser in Java Swing. For example,
JFileChooser windows are displayed by “showOpenDia-
log”, “showDialog” and “showSaveDialog”.

According to the usage of windows, these types of win-
dow generation methods and windows, and the methods
for displaying the windows are written in the window
database, an example of which is shown in Table 2.

4 Architecture of our method

The architecture of our method is shown in Figure 3. Op-
eration maps and the operation map system are generated

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008



Table 2: Example of window database

Window display Widgets Method of
scheme display

Object creation JFrame
showOpenDialog,

JFileChooser showDialog,
Method usage showSaveDialog

showMessageDialog,
JOptionPane showOptionDialog,

showInputDialog,etc

by the following three steps in our system.

1. Translating the source programs into JavaML for-
mat.

2. Generating operation maps and operation map sys-
tems using the JavaML format of the source pro-
grams.

3. Weaving the operation map system into target soft-
ware.

Figure 3: The Architecture of Our Method

4.1 Translating source programs into
JavaML format

Our system translates source programs into JavaML for-
mat using a JavaML converter. After this step, the trans-
lated JavaML format is used for the source programs.

4.2 Generating operation maps

To generate operation maps, the following are extracted
on the basis of each window (referred to here as “A”).

• Window before A (called “Abefore”).

• Necessary operations switching to A from Abefore.

• Window switched to after A (called “Aafter”).

• Necessary operations for switching to Aafter from A.

The relationships among these four items are represented
in an operation map. Operation maps consist of the win-
dows of the GUIs, the operation sequences between the
windows of the GUIs, which are described as nodes, and
the operation sequences, which are described as direct
edges. For example, in Figure 1, when window A is the
“Graph Wizard(1/4)” window, Abefore is the “Main”, and
Aafter is the window “Graph Wizard(2/4)”. The neces-
sary operation for switching to A from Abefore is [Insert]
>> [Graph].

Operation maps can be generated by extracting the rela-
tionships involved in all window switchings in the target
software. Then, operation maps are generated by con-
necting all the extracted relationships between windows.

As an example, parts of the source programs of the GUI
in Figure 2 are shown in Figure 4. To make the explana-
tion more understandable, the format of Java program-
ming language is used in this figure. However, our system
actually uses the JavaML format.

Figure 4: Parts of source programs of GUI in Figure 2

Operation maps and the operation map system are gen-
erated by the following procedure:

1. Codes for defining the variables of windows are ex-

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008



tracted from the source programs based on the win-
dow database. In Figure 4, the program segments
denoted as A are extracted from the source programs
in this step.

2. Action widgets on each window extracted in step 1
are extracted. In Figure 4, the program segments
denoted as B are extracted from the source programs
in this step.

3. Windows displayed by action widgets extracted in
step 2 are extracted. In this extraction, the meth-
ods that are defined in the listeners for detecting
user events are analyzed on the basis of the listener
database. In Figure 4, the program segments de-
noted as C are extracted from the source programs
in this step.

4. If codes for displaying windows are found in the ex-
tracted codes in step 3, then step 1 is repeated.

From these four steps, the following five items are ex-
tracted, then the relationships between windows are con-
structed from them, and an operation map is generated.

• Titles of windows.
• Class names of action widgets triggering window

switching.
• Label names of action widgets triggering window

switching.
• Types of user event occurring on action widgets, such

as single click and double click.
• Windows switched by the action widgets.

For example, the title of the window in Figure 2 win-
dow(1) is “MyEditor”. The class name of the action
widget is JMenuItem, and the label name of this action
widget is “Save”. The label name of JMenu before op-
erating JMenuItem is “File”. Also, the user event type
is “Left click”. All these items are extracted from the
source programs shown in Figure 4. Finally, our system
generates the logical structures of the operation maps and
the source programs of the operation map system used for
displaying operation maps. The generated operation map
for Figure 4 is shown in Figure 5.

Figure 5: Generated operation map for Figure 4

4.3 Weaving operation maps into software

The generated operation map system is added to the tar-
get software using AspectJ. Using the operation map sys-
tem, the window focused on is highlighted during the end
user operation, and this window changes with the end
user operation. To realize this highlighting, the operation

map system must acquire the window currently focused
on from the target software. This acquisition procedure
must be added to each class for generating the windows.
There are many classes used for generating the windows
in the software. Thus, AspectJ is suitable for adding the
operation map system to the target software. In this case,
the source programs of the target software do not require
modification.

5 Evaluation

We evaluated the generation of operation maps from the
source programs of the target software using our method.
The target software samples are a video rental system
(Sample A), an address book management system (Sam-
ple B) and text editor software (Sample C). The results
are shown in Table 3. In this table, WinH (number of
windows by human resources) is the total number of win-
dows in the target software, WinS (number of windows
using our system) is the number of windows displayed in
the operation maps, EdgH (number of edges by human
resources) is the total number of edges that represent all
window switchings in the target software, EdgS (number
of edges using our system) is the number of edges gen-
erated in the operation maps, and Correct Edg (correct
number of edges) is the number of correct edges in EdgS.

Also, in this evaluation, the ratio of the total number of
windows generated by our system to the total number
of windows that exist in the target software is called the
window cover rate. The ratio of the total number of di-
rected edges of the window map generated by our system
to the total number of edges in the actual window map
created manually is called the directed edge cover rate.

Table 3: Correctness of generating operation maps
WinH WinS EdgH EdgS Correct Edg

Sample A 21 20 21 19 19
Sample B 4 3 3 2 2
Sample C 21 12 20 11 11

Comparing WinH with WinS, the values of WinH are
1, 1 and 9 more than those of WinS in Samples A-C,
respectively. That is, one window in Samples A and B,
and nine windows in Sample C are not generated in the
operation maps.

This reason for this is that window switchings depend
on the state of nonaction widgets. For example, in the
address book management system, an entry is selected
from a list box, a button is pushed, and then a window
is displayed. During this time, the displayed window is
determined according to the selection. When no entry
is selected, no window is displayed. Thus, in our sys-
tem, list box widgets were not defined as action widgets.
Whatever is selected in the list box widgets switches win-

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008



dows in the operation maps and is extracted as the same
window. This is why one window in Sample A, one win-
dow in Sample B and four of the nine windows in Sample
C were not extracted.

Another cause of the nongeneration of windows is that
when action widgets were generated using specific meth-
ods, the switched windows were not extracted. For ex-
ample, in Sample C, developers define a “buildFileMenu”
method that generates the instance of button widgets and
adds listeners. This is why five of the nine windows in
Sample C were not generated.

According to Table 3, the window cover rate is 57% -
95% and the directed edge cover rate is 55% - 90%. Con-
sidering these rates, most windows were generated cor-
rectly. Considering the direct edge cover rate, most se-
quences of window switchings were extracted correctly.
Also, in these three software samples, the directed edges
included in the generated window maps were all appropri-
ate. Therefore, in our method, the directions of window
switchings were correctly extracted. We can conclude
that our method is an effective means of developing op-
eration maps.

6 Related work

Some other methods have been proposed to help end
users learn how to operate software. A method for vi-
sualizing the structures of GUIs has also been proposed.

Encarnacao and Stoev proposed a method that helps end
users learn operating methods using operation logs [6]. In
this method, the target end users are not beginners but
those who have operated the software several times. To
realize this method, the operation logs of end users are
collected, these logs are analyzed, and the frequencies and
patterns of function operations are extracted, on the basis
of which, instructions on how to operate the software
are given. In this method, knowledge of how the target
software is operated can be shared. End users can learn
operations by referring to this knowledge, thereby making
it effective for learning operations that are not written
in manuals. However, the logs that end users can base
operations on are not exhaustively collected; thus, end
users may not always find the solution to the problem.

Michail and Xie proposed a method for supporting end
users in recovering from errors [7]. In this method, end
users report bugs observed while running software to a
database. On the basis of the database, other end users
can avoid the bugs by viewing the reports. This method
does not support recovery from errors other than the bugs
and mistakes encountered by the end users.

Memon et al. proposed a method of generating test cases
by extracting the structures and behaviors of GUIs [8].
In this method, the structures and behaviors of GUIs are

visualized, then developers examine GUI test cases. To
generate the test cases, some graphs are generated, such
as “GUI Forest” graphs, which represent the relation-
ships between windows, and “Flow of Events” graphs,
which represent the behaviors of GUIs when the software
is running. These graphs are generated by displaying all
the windows and widgets in the target software. Thus,
these graphs can be generated without source programs
by executing the software; thus, not all the necessary win-
dows can be extracted. In our method, the windows are
extracted from the source programs; thus, all the win-
dows can be extracted.

7 Conclusions

We proposed a method of generating operation maps and
adding them to the original software. Using the operation
maps, end users can learn software operations effectively.
Future works include the following:

• Supporting more window-switching patterns.
• Improving operation maps for more effective learn-

ing.

References

[1] B. Shneiderman, C. Plaisant: Designing the User
Interface: Strategies for Effective Human-Computer
Interaction 4th Edition, Addison Wesley, 2004.

[2] F. Garcia: CACTUS: Automated Tutorial Course
Generation for Software Applications, Intelligent
User Interfaces (IUI2000), 2000.

[3] T. Bouhadada, M. T. Laskri: DB-TUTOR: An Intel-
ligent Tutoring System Using a Troublemaker Com-
panion, ACS/IEE International Conference on Com-
puter Systems and Applications (AICCSA’01), 2001.

[4] G. J. Badros: JavaML: A Markup Language for Java
Source Code, 9th International Conference on the
World Wide Web, 2000.

[5] The AspectJ project at Eclipse.org,
http://eclipse.org/aspectj/

[6] L. M. Encarnacao, S. Stoev: “An Application-
Independent Intelligent User Support System Ex-
ploiting Action-Sequence Based on User Modelling”,
7th International Conference on User Modeling,
1999.

[7] A. Michail, T. Xie: Helping Users Avoid Bugs in
GUI Applications, International Conference on Soft-
ware Engineering (ICSE’05), 2005.

[8] A. Memon, I. Banerjee, A. Nagarajan: GUI Ripping:
Reverse Engineering of Graphical User Interfaces for
Testing, 10th Working Conference on Reverse Engi-
neering (WCRE03), 2003.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008


