

Abstract—Object-oriented modeling has become the de-facto

standard in the software development process during the last

decades. A great deal of research in this area focuses on

proposing modeling languages.

In order to properly understand, and assess an object

oriented modeling language, we believe that a set of criteria or

requirements is needed. This Paper presents a framework to

investigate and compare graphical object oriented modeling

languages. This framework is based on a requirement set for an

ideal object-oriented modeling languages.

Index Terms—Object-Oriented modeling languages,

comparison framework, requirement set, UML

I. INTRODUCTION

 Suitable modeling languages are needed to describe the

conceptual construct underlying software. These languages,

which are often graphical, can be used to produce a

satisfactory description of the conceptual constructs,

frequently prior to writing any code. Prior construction of a

model for a derived software system is as essential as having a

blueprint for a building or a schematic for a circuit before

building them [29]. A modeling language is a language used

to specify, visualize, construct, and document a software

system.

The UML was born out of the unification of the many

object oriented graphical modeling languages that thrived in

the late 1980s and early 1990s [11]. It has rapidly been

accepted throughout the software industry as the standard

graphical language for specifying, constructing, visualizing,

and documenting software-intensive systems [3].

The evolution process seems to have gone astray, and as a

result, we are witnessing the return of some of the older

methodologies (such as RDD, [40]). At the same time, some

of the methodologies or variants introduced today (such as

EUP [1], OPM [7], and FOOM [36]) do not even adhere to

UML modeling conventions. On the other hand, the

Executable UML [22] and OMG’s Model-Driven

Architecture (MDA) [25], the general development approach

based on transforming logical models of the system (called

Platform-Independent Models – PIMs) into physical

implementation models (called Platform-Specific Models –

PSMs) [25], is still in its early stages of development.

Realizing the need and potential for further improvement in

the field, it is important to point out that the relatively long

Ali Kamandi is with the Computer Engineering department, Sharif

University of Technology, Tehran, Iran (e-mail: kamandi@ce.sharif.edu).

Jafar Habibi is with the Computer Engineering department, Sharif

University of Technology, Tehran, Iran (e-mail: habibi@sharif.edu).

history of object oriented modeling languages is a rich source

of lessons to be learned. In every language, there are features

to exploit and pitfalls to avoid.

Several techniques such as empirical studies, model based

evaluation and metric based evaluation, have accomplished to

evaluate and compare modeling languages. This paper

proposes a criteria set that can be used both as requirement

specification in new OO modeling language development and

as a framework for comparison existing languages.

The rest of this paper is organized as follows: Section II

overviews the related work, section III presents state of the art

in object oriented modeling languages. Section IV introduces

the proposed requirement set for graphical object oriented

modeling languages. Finally, section V draws conclusions.

II. RELATED WORK

Engels and Groenewegen in [8] introduced a list of

requirements for an ideal object-oriented modeling language.

They also compared the achievements of the UML with the

ideal language according to these requirements. Among the

requirements for an ideal language, user-friendliness,

precision, understandability, separation of concerns,

modularization, scalability, consistency and

horizontal/vertical composition are the most important.

Ramsin in his PhD thesis [31] mentioned two requirement

sets: one for object-oriented methodologies and another for

object-oriented modeling languages. He mentioned two

important requirements for OO modeling languages: 1)

Support for consistent, accurate and unambiguous

object-oriented modeling; and 2) Provision of strategies and

techniques for tackling model inconsistency and managing

model complexity.

In 1996 Rossi and Brinkkemper [33] proposed and

developed a relatively easy to use and straightforward set of

measures intended to capture the structural complexity of

modeling methods. Their metrics are based on measurement

of the meta-model constructs, and were specifically created to

be measure the complexity of virtually any (diagrammatic,

structurally based) modeling method.

Paige et al. argued that modeling languages, like

programming languages, need to be designed [29]. They

presented principles for design of modeling languages. They

conjectured that the principles are applicable to the

development of new modeling languages, and for improving

the design of existing modeling languages that have evolved,

perhaps through a process of unification [29]. They proposed

nine principles including simplicity, uniqueness, consistency,

seamlessness, reversibility, scalability, supportability,

A Framework for Classifying and Comparing

Graphical Object Oriented Modeling Languages

Ali Kamandi, and Jafar Habibi

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

reliability and space economy.

Krogstie has developed a generic quality framework for

discussing the quality of models in general, motivating the

focus on language quality as a means to achieve models of

high quality. Five areas for language quality are identified

with aspects related to both the meta-model and the notation

[18]:

• Domain appropriateness: the conceptual basis must be

powerful enough to express anything in the domain [38].

• Participant language knowledge appropriateness: the

conceptual basis should correspond as much as possible to the

way that individuals perceive reality.

• Knowledge externalizability appropriateness: the goal is to

ensure that there is no statement in the explicit knowledge of

the participant that cannot be expressed in the language.

• Comprehensibility appropriateness: the phenomena of the

language should be easily distinguishable from each other, the

number of them should be reasonable, the use of the

phenomena should be uniform, symbolic simplicity should be

a goal and so on.

• Technical actor interpretation appropriateness: it is

important that the language lend itself to automatic reasoning.

This requires formal syntax and semantics.

III. STATE OF THE ART

Before gathering the requirements for an ideal object-oriented

modeling approach, we will briefly summarize in this section

the current state-of-the art in object-oriented modeling

languages in industry and research. This forms the basis for

identifying drawbacks and open issues to be investigated in

future. Introducing UML, it seems that the method war is

finished, but after it several modeling notations and languages

are introduced and used in software industry. Among them we

will investigate and present some important ones.

A. UML

UML was born out of the unification of the many object

oriented modeling languages in 1997 after methodology war

in the mid 1990s and has rapidly been accepted throughout

the software industry as the standard graphical OO modeling

language [26]. UML was intended as a general purpose

object-oriented modeling language. UML 2.0 provides more

than 13 diagrams for modeling functional, structural and

behavioral aspect of software.

B. OML

The OPEN (Object-oriented Process, Environment, and

Notation) development methodology provides a modeling

language named OML and a development process [13]. The

OML language is composed of a COMN (Common Object

Modeling Language) notation and a meta-model [10]. The

COMN notation, like UML, offers a set of diagram types,

which are used to model software systems. Some diagrams

document the static structure; others specify the dynamic

behavior of an application.

Diagrams of OML include: semantic nets, context

diagrams, Layer diagrams, Configuration diagrams, Package

diagram, Inheritance diagram, Scenario class diagram,

Interaction diagram, Black-box sequence diagram, White-box

sequence diagram, Package collaboration diagram, Scenario

collaboration diagram, Internal collaboration diagram and

State transition diagram.

Several papers concluded that there is a lack of formality

and correctness in both the descriptions of diagrams and

language constructs, and also the semantics of OO concepts

were not complete. [15], [2], [14].

C. BON

The BON (Business Object Notation) Methodology presents

a set of concepts for modeling object-oriented software, a

supporting notation in two versions-one graphical and one

textual-and a set of rules and guidelines to be used in

producing the models [39].

BON concentrates on the seamless, reversible specification

of software, using the contract model. BON includes several

models: system chart, cluster chart, scenario chart, static

architecture, class dictionary, class chart, event chart, creation

chart, object scenario, class interface and system execution

scenario. The notation provides mechanisms for modeling

inheritance and usage relationships between classes, and has a

small collection of techniques for expressing dynamic

relationships. The notation also includes as assertion

language [28]. BON provides only a small collection of

powerful modeling features that guarantee seamlessness and

full reversibility on the static modeling notations. BON is

architecture-centric and contract driven, but not use-case

driven [28].

D. OPM

Object-Process Methodology (OPM) was introduced by Dori

in 1995 [6]. OPM’s modeling strength lies in the fact that only

one type of diagram is used for modeling the structure,

function and behavior of the system. This single-model

approach avoids the problems associated with model

multiplicity, but the model that is produced can be complex

and hard to grasp.

The Object-Process Methodology (OPM) has been shown

to successfully describe the structure and behavior of systems

using an integrated and coherent set of Object-Process

Diagrams (OPDs) [6], [7], [19]. OPD uses elements of types

object and process to model the structural, functional and

behavioral aspects of whatever is being modeled.

OPM includes a clear and concise set of symbols that form

a language enabling the expression of the system’s building

blocks as well as their relationship to each other.

OPM inherits its capabilities from both object oriented and

process oriented paradigms. OPM is an integrated approach

to the study and development of software systems. In OPM,

objects and processes have equal status and are described as

things or entities. OPM handles complex systems by using

recursive seamless scaling. OPM is not pure object-oriented,

because behavior in OPM is not necessarily encapsulated

within a particular object class construct: using stand-alone

processes, one can model a behavior that involves several

object classes and is integrated into the system structure.

IV. MODELING LANGUAGE REQUIREMENT SET

This section describes a list of proposed criteria and

requirements for object oriented modeling languages.

A. Consistency

Consistency means mutual agreement and logical

coherence of different models and diagrams. Model

inconsistency is a dire problem. UML has exacerbated the

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

situation instead of improving it [7], [31], [17]. Different

models produced for a system should not be allowed to

contradict each other; alternatively, there should be

mechanisms for detecting inconsistencies. Paige et al. argued

[29]: “Some modeling languages, e.g., UML, allow designers

to describe a system in several independently constructed

models – e.g., a class diagram, deployment diagram, use-case

diagram, sequence diagram, et cetera – and at implementation

time, these models must be checked for consistency, i.e., that

something said in one model is not contradicted by something

said in another model”.

Simons and Graham [35] enumerated the problems

experienced by the developers as they embraced the UML

notation and engaged in what they considered to be the most

appropriate sequence of activities for building UML models.

They classified these problems into four categories, which

one of them is inconsistency, meaning that parts of UML

models are in contradiction with other parts, or with

commonly accepted definitions of terms.

Because the collection of models that can be produced

using UML is large, and because each model itself may be

complex (containing many different abstractions and

relationships), checking the consistency of a UML

specification is non-trivial, and it is questionable whether it

can be automated. A contrasting approach is offered by BON:

therein, a single model is constructed for each class, and

checking the consistency of this model is straightforward and

can be assisted by automated tools [29].

Instead, BON concentrates on what is essential for

object-oriented development in general, and tries to define a

consistent notation to support the corresponding concepts.

The user is then free to complement the notation with

whatever more might be needed for a particular project [39].

B. Comprehensibility

Some modeling languages are too complex to be

effectively mastered, configured, and enacted. Perhaps the

most important of all general principles for conceptual

models, as well as for notations, is simplicity [29]. The deep

results of the natural sciences seem to indicate that nature is

inherently simple—that complexity is only introduced by our

lack of understanding [39]. Complexity can be interpreted in

two ways: structural or cognitive. The cognitive or

psychological complexity is usually known as

comprehensibility [27].

Cognitive complexity as related to human perception can

be seen as the burden (load) people face in trying to process

and understand models of information systems [9].

Cognitive Load Theory assumes that novices have little

pre-existing knowledge about any new topic they encounter

[20] and are less able to reach a deep understanding of a

system when they are presented with a model representing the

system, because they find it necessary to expend more effort

understanding the elements composing the diagram or model

itself [37],[9].

Siau and Cao carried out a comparison of the practical

complexity of UML with other Object-Oriented (OO)

techniques. Their results concluded that individual diagrams

in the UML are not more complex than the diagrams in other

OO methods. However as a whole, UML is 2-11 times more

complex than other OO methods [34]. Zendler et al. [41]

compared the comprehensibility of the coarse-grained

concepts in three object-oriented approaches: UML, OML

and TOS (Taxonomic Object System). The results showed

that when modeling a database-oriented application, the

coarse-grained concepts of OML and TOS were better than

those of UML.

Otero and Dolado compared UML and OML empirically.

In their study two dependent variables are used in order to

assess the semantic comprehension: 1) the amount of time

spent answering each question (comprehension time) and 2)

number of correct answers [27].

The obtained results reveal that the average time required

understanding the model in OML was shorter and subjects

understood this language and were more consistent in their

answers when the COMN notation was involved [27].

Reinhartz-Berger and Dori compared UML and OPM for

web applications [32]. In this study, the results suggest that

OPM is better than UML in modeling the dynamics aspect of

the Web applications. In specifying structure and distribution

aspects, there were no significant differences. They

concluded that the single OPM diagram type, the

Object-Process Diagram (OPD), which supports the various

structural and dynamic aspects throughout the system

lifecycle, is easier to understand and apply by untrained users

[32].

C. Simplicity (Structural)

Structural complexity is more closely connected to the

physical properties of the diagramming techniques found in

modeling approaches such as UML diagrams [9].

Briand, Wüst, and Lounis [4] believed that the physical

(structural) complexity of diagrams affects the cognitive

complexity faced by the humans using the diagrams as aids to

understand and/or develop systems.

The UML structural complexity was evaluated by Hahn

and Jinwoo [12] and Purchase et al. [30] to improve the

comprehension and use of the UML models. Compared to

other modeling methods and languages, UML is very

complex [9].

Purchase et al. [30] evaluated the aesthetic effect of the

layout of graphic elements in the UML diagrams. From the

point of view of usability, the aesthetic preferences are

empirically investigated in class and collaboration diagrams,

with the purpose of reducing the number of crossings, and

increasing the display of symmetry. In conclusion, they

obtained a ranking of aesthetic aspects to consider in the

future design of UML graph drawing algorithms.

D. Compactness

An extensible core set of models and diagrams is preferable

to a customizable monstrosity. referring to lightness and

simplicity of models, and its being free of nonessential, excess

features; hefty and complex notations are hard to understand

and master, and difficult to use.

The BON notation strives for simplicity and tries to

minimize the number of concepts. For example, there are only

two basic relations between classes: the inheritance relation

and the client relation. To obtain multiple views of a system,

we also need relations between classes and clusters and

between clusters and clusters. However, instead of

introducing new concepts BON uses the compression

mechanism (generalizing the class relations), and give them

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

well-defined semantics when clusters are involved. [39]

Despite its evolution and status as standard language, UML

has also been criticized for its complexity, inconsistent

semantics and ambiguous constructs. Some of its detractors

question the usefulness of having 13 diagramming techniques

in UML, since the language becomes more complex and more

difficult to learn [35]. Siau and Cao argued that 80% of

systems are developed by using only 20% of the language

constructs, relating to a practical or use-based complexity

[34].

Hodgett studied usage of UML diagrams in Australian

information technology industry. The study showed that few

used or continued to use all the views or aspects of the

modeling language. The parts selected depended on the

application and the comments indicated that part of the lack of

support was because most business applications are not real

time and do not have the degree of size or complexity that

might justify the use of a wider range of UML views. It was

recognized that Use Cases were the core of the methodology.

Class and Object diagrams followed as the most accepted

parts of the language while Activity diagrams were

universally disregarded. Criticism of these latter diagrams

seemed to center around the time taken to model minutiae

while comments from programmers indicated that this level of

detail was not required [16].

E. Extensibility

Extensibility specifies the degree to which the modeling

language can be extended to support new concepts.

Extensibility is an attribute of something that allows it to last

or continue, or to be expanded in range or scope [24]. UML is

a good example for extensibility. It provides several

mechanisms such as stereotypes and profiles for language

extension.

F. Traceability

Traceability specifies the degree to which models can be

shown to have stemmed from the requirements. Requirements

engineering is still the weak link, and requirements

traceability is rarely supported; requirements are either not

adequately captured or partially lost or corrupted during the

development process [23], [31]. The main issue to consider is

that both functional and non-functional requirements must be

considered.

G. Coverage of standard software development activities

This criterion means covering activities constituting or

supporting the generic software development lifecycle

(Analysis, Design, Implementation, Test, and Maintenance).

There are many ways to describe a software system, but all

descriptions can be characterized as being either static or

dynamic. Static descriptions document the structure of a

system: what the components are and how these components

are related to each other. Dynamic descriptions, by contrast,

document how the system will behave over time. In an

object-oriented context, this means describing how objects

interact at execution time; how they invoke operations on

each other (passing messages in Smalltalk terminology) and

how the information content of the system changes [39].

H. Scalability

Scalability means manageability of complexity

(Hierarchical Structure); Provision of strategies and

techniques for managing model complexity [31]. We must

make sure that the notation will scale up, and still be useful for

large systems [39]. Hierarchical structure is the main

mechanism to manage complexity of large systems. The

second thing to note when scaling up is that flat partitioning is

not enough to get comprehensive views of large systems. We

need views at different levels of detail and the ability to

“zoom” between them [39].
As the size of a system increases, some mechanism

becomes required to limit the visibility of information to only

those objects of interest at a particular time [24].

BON proposed cluster as a facility to group classes into

higher-level units. UML uses packages (and subsystems) for

this purpose. OML uses packages too. OPM separates

diagrams at different abstraction levels.

I. Clear Definition

One important criteria of language design is accuracy,

unambiguous, and consistency of definition. The concepts of

the language should be easily distinguishable from each other.

The number of underlying concepts should be reasonable.

Use of a concept or notation in different models and diagrams

should be unified [18]. Language should be documented in a

precise and accurate way. Its documentation should be

readable and understandable for modelers. Language

definition should be accurate enough that tool developers can

develop CASE tools and modeling environments without

ambiguity. The syntax and semantics should, in addition to

being expressive, also be well-defined [24].

Simons and Graham enumerated the problems related to

language definition, experienced by the developers, which

includes ambiguity, meaning that some UML models are

under-specified, allowing developers to interpret them in

more than one way and adequacy, meaning that some

important analysis and design concepts could not be captured

using UML notations. These problems are summarized in

figure 1.

Figure 1: distribution of problems reported by Simons and

Graham

J. Generality

Not restricted to any specific application domains, special

need of certain applications or programming languages [39].

UML is not specified to special programming language or

environment. Also there exist some extensions and special

frameworks based on UML for special environments and

frameworks such as Java, C++, J2EE and CORBA. BON was

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

developed inherently for Eiffel language.

K. Reversibility

To promote reuse and achieve true seamlessness, the core

elements of a notation for analysis and design should

represent concepts that are directly mapable not only to, but

also from, an executable object-oriented language. Besides

making it possible to maintain long-term consistency between

specification and implementation, reversibility is also

important for the reuse of analysis and design elements [39].

Reversibility is one of the main objectives of BON. UML,

OPM and OML are weak in this area.

L. Domain appropriateness

Is the notation suited to a particular application domain?

Some notations are targeted at real-time and embedded or

interactive systems applications, while other notations are

more suited for information systems development. Domain

appropriateness is also proposed by Krogstie [18]. “Ideally,

the conceptual basis must be powerful enough to express

anything in the domain, on the other hand you should not be

able to express things that are not in the domain [38],[18].
UML is a general modeling language, specially having

extension mechanisms such as profiles and stereotypes make

it possible to model various kinds of systems with UML.

Conallen presented how to model web applications with UML

[5].

Erickson and Siau presented that UML class, use case,

sequence and statechart diagrams are best suitable as its core

generally [9]. They also showed that class, statechart,

sequence and use case are more appropriate for Real-time

systems. Class, use case, sequence, statechart are more

appropriate for web-based systems. And class, use case,

sequence and activity diagram are more suitable for enterprise

systems.

M. Tool Support

The availability of suitable CASE tool to facilitate the

description and examination of the system from various points

of views using the specified modeling language. UML has

several CASE tools, but others have only some CASE tools.

N. Analyzability

Language should lend itself to automatic reasoning. This

requires formal syntax and semantics. Formal semantics can

be operational, logical, or both. Formality is not sufficient

since the reasoning must also be efficient for practical use.

BON is more powerful relating to analyzability, because of its

formalism added to classes. Others have less formalism. UML

is very weak regarding analyzability, because of having

several modeling diagrams make it difficult to integrate

models and construct one integrated model that can be used

for analysis [17]. Performance analysis, validation,

verification (dead lock detection, etc.) are the major topics in

this area.

O. Space economy

The amount of information that can be conveyed by an

overview of some part of a system (what can be made to fit on

one page).

Developers can build very compact models using OPM,

because it merges both dynamic and static views. BON is in

the second position. UML having several diagrams (some of

them are not orthogonal) is not very good in this respect.

Hodge-Mock in the last position, because it used different

diagrams for concepts that can be merged in one diagram (i.e.

it separated inheritance diagram from class diagram).

P. Support business

Medvidovic [21] proposed three lamp posts that each

perfect ADL must balance between them: technology, domain

and business. System’s business position includes its

relationship to other products, time-to-market, and so on. An

effective modeling language must strike a proper balance

between a strict focus on recurring technical concerns

mandated by different application domains and business

contexts [21].

Unfortunately all of these languages are weak in this aspect.

Neither of them have features for predicting business status of

system which is modeled within the language.

Q. Expressiveness

The expressiveness of each method's notation is

evaluated for its support for such concepts as aggregation,

generalization/ specialization, and object interaction. If the

notation is not sufficiently expressive the user is required to

encode the representation in an ad hoc manner, often as

unformatted text attached to the model, or maintained

separately from the model. This leads to inconsistent, more

complex, and less easily understood models [24]. All of

mentioned notations have enough concepts for modeling

object oriented systems (such as class, inheritance,

aggregation, association and so on).

R. Orthogonality

Ideally, each model represents some aspect of the system

not represented completely by another model, yet each model

provides "clues" or direction in the partial or complete

creation of other models [24]. Each model within a notation

should contribute to the overall understanding of the problem

or design. Yet each model should not be entirely orthogonal to

every other model in the notation. This interaction of models

also assists in the verification and software quality assurance

of the models.

Simple languages such as BON and OPM have orthogonal

models, but large languages such as UML have many

concepts and diagrams, which some of them are not

orthogonal, for example, sequence diagram and

communication diagram are very similar and both of them can

be used for behavioral modeling.

V. CONCLUSION

This paper proposed a new framework and criteria set for

evaluation, classification and comparison of object oriented

modeling languages. This criterion set can be used also as a

requirement set for new object oriented modeling language

development. This requirement set is essential in order to

properly understand, and assess an object oriented modeling

language. Table 1 shows a summarization of comparison of

modeling languages such as UML, BON, OML and OPM.

This comparison is based on existing studies and evidences,

and more research is needed to improve its accuracy and

validity.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Table 1: Comparison of modeling languages according to

proposed framework

Criteria\Language UML BON OML OPM

Comprehensibility -- ++ - ++

Consistency -- ++ - +++

Structural

Simplicity

+ + + +

Compactness - + - ++

Extensibility ++ - - -

traceability ++ ++ + -

Coverage of

Software Dev. Cycle

++ + ++ -

Scalability ++ ++ ++ +

Clear Definition + ++ + ++

Generality +++ + + +

Reversibility - + - -

Domain

Appropriateness

++ + ++ ++

Tool Support +++ + + +

Analyzability - ++ - ++

Space Economy - + - +

Support Business - - - -

Expressiveness +++ ++ ++ ++

Orthogonality -- ++ - ++

REFERENCES

[1] Ambler, S. W., and L. L. Constantine, The Unified Process Inception

Phase, CMP Books, Gilroy, CA., 2000.

[2] F. Barbier, and B. Henderson-Sellers, “Object modeling languages:

An evaluation and some key expectations for the future”, Annals of

Software Engineering 10, 2000, pp. 67-101.

[3] Booch, G., J. Rumbaugh, and I. Jacobson, Unified Modeling

Language-User’s Guide, Addison-Wesley, Reading, Mass, 1999.

[4] L. Briand, J. Wüst, and H. Lounis, “A Comprehensive Investigation of

Quality Factors in Object-Oriented Designs: An Industrial Case

Study”, 21st International Conference on Software Engineering, Los

Angeles, CA., 1999, pp. 345-354.

[5] Conallen, J., Building Web Applications with UML. Reading:

Addison-Wesley, 1999.

[6] D. Dori, “Object-process analysis: Maintaining the balance between

system structure and behavior”, Journal of Logic and Computation 5,

2 (April), 1995, pp. 227-249.

[7] Dori, D., Object-Process Methodology: A Holistic Systems Paradigm,

Springer, Berlin-New York, 2002.

[8] G. Engels, and L. Groenewegen, “Object-oriented modeling: a

roadmap”, In Proceedings of the Conference on the Future of

Software Engineering –ACM/ICSE, 2000, pp. 103-116.

[9] J. Erickson, and K. Siau, “Can UML Be Simplified? Practitioner Use

of UML in Separate Domains”, In Proc. of the Workshop on Exploring

Modeling Methods for Systems Analysis and Design (EMMSAD'07),

Trondheim, Norway, Tapir Academic Press, Trondheim, Norway,

2007, pp. 87-96.

[10] Firesmith, D. G., B. Henderson-Sellers, I. Graham, M. Page-Jones,

Open Modeling Language (OML) reference Manual, SIGS Books &

Multimedia, 1998.

[11] Fowler, M., UML Distilled: a brief guide to the standard object

oriented modeling language, 3rd ed. Addison-Wesley, 2004.

[12] J. Hahn, and K. Jinwoo, “Why are some diagrams easier to work with?

Effects of diagrammatic representation on the cognitive integration

process of system analysis and design”, ACM Transactions on

Computer-Human Interaction 6 (3), 1999, pp. 181-213.

[13] Henderson-Seller, B., A. Simons, and H. Younessi, The OPEN

Toolbox of Techniques, Addison Wesley, Reading, MA, 1998.

[14] B. Henderson-Sellers, and D. G. Firesmith, “Comparing OPEN and

UML: the two third-generation OO development approaches”,

Information and Software Technology 41, 1999, pp. 139-156.

[15] B. Henderson-Sellers, G. Collins, R. Due´, I. Graham, “A qualitative

comparison of the two processes for object-oriented software

development”, Information and Software Technology 43 (12), 2001,

pp. 705-724.

[16] R. A. Hodgett, “The acceptance of Object-Oriented Development

Methodologies in Australian Organizations and the Place of UML in

Information System Programs”, Information Science, 2003.

[17] A. Kamandi and J. Habibi, “Evaluating UML according to modeling

language design principles and new requirements”, Information and

Knowledge Technology (IKT2007), Mashhad, Iran, Nov. 27-29, 2007.

[18] J. Krogstie, “Evaluating UML using a generic quality framework”, In

Idea Group Publishing (Eds.), UML and Unified Process, 2003, pp.

1-22.

[19] Y. Liu, L. Wenyin, and C. Jiang, “Object-Process diagrams as explicit

graphic tool for Web Service composition”, Journal of Integrated

Design and Process Science 8 (1), 2004, pp. 113-127.

[20] R. Mayer, “Models for Understanding”, Review of Ed. Research 59,

1989, pp. 43-64.

[21] N. Medvidovic, E. M. Dashofy, and R. N. Taylor, “Moving

architectural description from under the technology lamppost”,

Information and Software Technology 49, 2007, pp. 12-31.

[22] Mellor, S., and M. Balcer, Executable UML, Addison-Wesley, 2002.

[23] B. Nuseibeh, and S. Easterbrook, “Requirements engineering: A

roadmap”, In Proceedings of the Conference on the Future of

Software Engineering- ACM/ICSE 2000, 2000, pp. 35-46.

[24] A Comparison of Object-Oriented Development Methodologies. The

Object Agency, Inc., 1995

[25] OMG, Model Driven Architecture (MDA). Object Management

Group (OMG), 2001

[26] OMG, Unified Modeling Language Specification (v2.0). Object

Management Group (OMG), 2004.

[27] M. C. Otero, and J. J. Dolado, “An empirical comparison of the

dynamic modeling in OML and UML”, The Journal of Systems and

Software 77, 2005, pp. 91-102.

[28] R. F. Paige, and J. S. Ostroff, “A Comparison of the Business Object

Notation and the Unified Modeling Language”, In R. France, B.

Rumpe (eds.): UML99-The Unified Modeling Language, Beyond the

Standards. Second Int. Conf. Fort Collins, Co. LNCS 1723, Springer,

1999, pp. 67-82.

[29] R. F. Paige, J. S. Ostroff, and P. J. Brooke, “Principles for modeling

language design”, Infromation and Software Technology 42, 2000, pp.

665-675.

[30] H. C. Purchase, J. Allder, and D. Carrington, “User Preference of graph

layout aesthetics: A UML study”, Proceedings of Graph Drawing: 8th

International Symposium GD 2000, LNCS 1984, 2001, pp. 5-18.

[31] Ramsin, R.: The Engineering of an Object-Oriented Software

Development Methodology. Ph.D. Thesis, University of York, York,

UK, 2006.

[32] I. Reinhartz-Berger, and D. DORI, “OPM vs. UML-Experimenting

with Comprehension and Construction of Web Application Models”,

Empirical Software Engineering (Springer) 10, 2005, pp. 57–79

[33] M. Rossi, and S. Brinkkemper, “Complexity Metrics for Systems

Development Methods and Techniques”, Information Systems 21 (2),

1996, pp. 209-227.

[34] K. Siau, and Q. Cao, “Unified Modeling Language (UML)- A

Complexity Analysis” Journal of Database Management 12 (1), 2001,

pp. 26-34.

[35] A. J. H. Simons, I. Graham, “30 things that go wrong in object

modeling with UML 1.3”, In Behavioural Specifications of Businesses

and Systems. Kluwer Academic Publishers, 1999, pp. 237-257.

[36] P. Shoval, and J. Kabeli, “FOOM: Functional- and object-oriented

analysis and design of information systems: An integrated

methodology”, Journal of Database Management 12 (1), 2001,

pp.15-25.

[37] J. Sweller, “Cognitive load During Problem Solving: Effects on

learning”, Cognitive Science 12, 1988, pp. 257-285.

[38] Y. Wand, and R. Weber, “On the ontological expressiveness of

information systems analysis and design grammars”, Journal of

Information Systems 3 (4), 1993, pp. 217-237.

[39] Walden, K., and J. Nerson, Seamless Object-Oriented Software

Architecture, Prentice-Hall, Englewood Cliffs, NJ., 1995.

[40] Wirfs-Brock, R., and A. McKean, Object Design: Roles,

Responsibilities and Collaborations, Addison-Wesley, Reading,

Mass, 2002.

[41] A. Zendler, T. Pfeiffer, M. Eicks, and F. Lehner, “Experimental

comparison of coarse-grained concepts in UML, OML and TOS”,

Journal of Systems and Softwares 57 (1), 2001, pp. 21-30.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

