
 
 

 

An XML Definition Language to Support Use 
Case-Based Requirements Engineering 

M. Golbaz, A. Hasheminasab, and N. Daneshpour 

 
Abstract—The focus of this paper is to introduce a theory 

based on a wide-spreading model of Use Cases (UCs). The 
pervasive benefits of UCs in the computer systems and 
software’s developments have motivated the UCs formalization 
needing. Also, the definition of UCs through Use Case 
Description Markup Language (UCDML) is enabled the XML 
technology explotation in order to suggest the powerful ways for 
the creation, usage, distribution, and maintenance of UCs. 
Consequently, we present the UCDML formalization, an XML 
definition language, to support the UC-based requirements 
engineering. 
 

Index Terms— Requirements engineering, UCDML, UCs, 
XML technology.  
 

I. INTRODUCTION 

       Use Case (UC) analysis is one of the first and primary 
means of requirements gathering in the behavioral 
methodology, and UCs are standard techniques for collection 
of requirements in many modern software methodologies 
developments. According to the Unified Modeling Language 
(UML) semantics, a UC can be described in plain text, using 
operations, in activity diagrams, by a state-machine, or by 
other behavior description techniques, such as Pre- and 
Post-conditions. The interaction between the UC and the 
Actors can also be presented in collaboration diagrams [1]; 
however, no format is presented for any of these alternatives. 
Most users find it suitable to follow the Jacobson’s original 
style [2] of natural language descriptions inserted in a table, 
but the problem is that the original proposal was imperfect. 
UCs have a formal and well-defined structure in the theory of 
software engineering, and are commonly expressed as 
hard-to-read text documents, containing a mix of natural 
language statements, semi-standard names and expressions, 
and raw cross references.  

    Although the XML technologies benefits based on the 
UCs and UCDML descriptions are very questionable, the 
followings are the reasons of UCDML software developers 
presented for the UCs descriptions [3]: 
 
Manuscript received November 11, 2007. 

M. Golbaz is with the Department of Computer Engineering, College of 
Electrical Engineering, Shahid Rajaee University, Tehran, Iran. (Phone: 
0098-21-22970062; fax: 0098-21-22970033; e-mail: mgolbaz@sru.ac.ir).  

A. Hasheminasab is with the Department of Computer Engineering, 
College of Electrical Engineering, Shahid Rajaee University, Tehran, Iran. 
(e-mail: alireza.hn@sru.ac.ir). 

N. Daneshpour is with the Department of Computer Engineering, College 
of Electrical Engineering, Shahid Rajaee University, Tehran, Iran. (e-mail: 
daneshpour@aut.ac.ir). 

 
• XML is exceedingly related to the Web. Its meaning is that 

by simply using XML-enabled web browsers and web 
servers, the UC descriptions may be simply published 
and edited in distributed systems. So, our approach in 
contradiction of most UC-manipulation tools is not 
platform-dependent. 

• The UCs can be easily converted into different formats by 
using the XSLT technology. Many free software tools 
support XSLT and their output can have a generic 
structured format. UCs can be transformed to be 
compatible with the file formats of existing applications 
as well. 

• It is without difficulty possible to produce a detailed 
textual documentation directly from the structural 
description of the UC by the XSLT technology. Thus, 
we have already created a first transformation style-sheet 
to present the UCDML descriptions in a standard tabular 
format which is frequently employed in business 
documents. 

    Accordingly, we present the UCDML formalization, an 
XML-based approach to the definition of UCs.   This paper 
outlines a syntax and informal semantics for UC template, 
and we propose an XML definition language to support 
UC-based requirements engineering. 

II. RELATED WORKS 

    In the last few years, lots of researches have been done in 
the field of UC-based requirements engineering, and a 
variety of techniques, models and notations have been 
developed quickly.  
    Du Bois et al. [4] present the specification language Albert 
II. This formal language is based on ontology of concepts 
used for capturing requirements of real-time, distributed 
systems. Being as expressive as pioneering RE languages [5], 
the language is reported to be natural: it offers a declarative 
description of mapping between the informal statements 
provided to the customers onto formal statements expressed 
in the language. Then, Cunning and Rosenblit [6] present a 
semi-formal method to structure the behavioral requirements 
for real-time embedded systems. This method is based on a 
set of forms called Structured Requirements Specifications 
(SRSs) that contain both informal text-based descriptions and 
formally defined language constructs.  

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008



 
 

 

    Dulac et al. [7] confirm that the interactive use of 
computer-supported, visual representations of requirements 
helps create, navigate, review, and understand formal 
specifications. There are also research efforts in visual 
requirement representation that focus on different aspects of 
the requirements engineering practice. One such example [8] 
investigates multimedia technology for eliciting 
requirements of general software systems, promoting 
reusable components that include not only code and 
documents, but also voice narration, animation sequences, 
and message mechanisms. 
    UCs are often used to describe requirements for systems to 
be designed and implemented in the object-oriented 
paradigm [9]. However, there has been much debate as to 
where the UC is the most effective approach. Jacobson [2], 
later an important contributor to the Unified Modeling 
Language (UML) and Rational Unified Process (RUP), see 
the UC as useful for requirements, specification and design, 
then codified the visual modeling technique for specifying 
UCs. Originally he used the term Usage Case, but found that 
neither of these terms sounded natural in English, and 
eventually he settled on the term UC. Since he originated UC 
modeling, Cockburn [10] made contributions to the subject, 
arguably the most influential, comprehensive, and coherent 
next step in defining what UCs are (or should be) and how to 
write them. 
    Many other authors have suggested using guidelines for 
UC descriptions [10]–[13] and such guidance is often 
entirely plausible. Graham [14] suggests structure for task 
events, and Alexander and Stevens [15] suggest that 
requirements statements should also be similarly 
straightforward. Adolph et al. [16] present patterns for UC 
descriptions that provide a high level view of the UC 
structure, and some advice on how to construct individual 
sentences. Other authors have posited similar guidance on 
writing descriptions, such as recommending the use of strong 
verbs and nouns [17] and avoiding passive voice [18]. Others 
again suggest structural guidance. For example, Fowler and 
Scott [19] and the OMG [20] recommend writing primitive 
steps and numbering events. 
    The UML community takes a similar viewpoint, for 
example, Booch et al. [21], Jackson [22], [23], and Kovitz 
[24] see UCs as a means for describing a specification, 
because UCs deal with interactions between a user (actor) 
and the machine (system). However, Rosenberg [25], [26] 
has a slightly different take on the matter. He sees UCs as 
ways of describing “units of behavior”, requirements as 
describing the “laws that govern that behavior” and functions 
as “the individual actions that occur within that behavior” (p. 
123). In the following we present an obvious statement of 
content or format of the UC text. 
    Works on natural language analysis of UCs include [27], 
[28]. They mainly focus on providing guidelines and 
restricted languages for writing UCs in natural language 
whereas avoiding ambiguities and errors. In [27] Rolland and 

Ben Achour present an approach for guiding UCs 
development. They propose linguistic patterns and structures 
for UC specification as well as an iterative process for writing 
UC specification as an unambiguous natural language text. A 
similar approach is discussed in [29] where a restricted 
language based on a set of guidelines is defined for UCs. 
Fantechi et al. [28] use linguistic techniques to analyze UCs 
expressed in natural language. They collect quality metrics 
and detect defects related to UCs inherent ambiguity. Martin 
Glinz [30] proposes a natural language based notation for 
UCs and a manual approach for state-charts synthesis. 
    In the Potts' et al. approach [31], [32] scenarios are in 
textual form following some tabular notations. The 
requirements engineering process is supported by a 
hyper-text tool in which scenarios and requirements are 
annotated with requirements discussions, rationales and 
change requests. Therefore, whereas inspecting a 
requirement or a scenario fragment, the user can retrieve, 
through hypertext links, the open questions, responses and 
arguments that have been posed on this element and the 
change requests referring to it as well. 
    Cockburn [33] offers a step-by-step description given in 
natural language. UCs written in Cockburn's style shows an 
apparent sequence of actions and separate normal cases from 
exceptional ones. Nevertheless, nonlinear flow of actions 
(alternatives, iterations) is not systematically treated and 
there is still no comprehensible separation between user 
actions and system responses. We split the notion of 
interaction given by Cockburn into a sequence of well 
distinguished atomic steps. The new atomic notion of 
interaction, gained by separating user actions from system 
responses, has been more suitable for consecutive automatic 
manipulation of UCs. 
    Duran et al. [34], [35] use XML to signify software 
requirements and XSLT to support the requirements 
verification in order to guarantee some quality properties. 
However, this approach does not focus on the formal 
structuring of requirements through XML. In fact, it is mostly 
oriented towards the implementation, and the authors 
propose the REM tool which is a visual environment where 
the user can write the specifications and automatically 
perform some verification on them. 
    A number of XML languages for UCs exist, notably 
OMG’s interchange language for all parts of UML [36]. In 
contrast, UCDML is not designed to match a particular 
notation but is designed to embody the aspects of UCs that 
people use and interpret consistently, with the goal of 
supporting automation based on this consistency. Nentwich 
et al.’s xlinkit is a general-purpose framework for expressing 
and checking consistency constraints in XML documents 
[37]. 
    Thomas A. Alspaugh [38] describes an approach for 
identifying aspects of scenarios(and UCs containing them) 
that people use consistently, structuring them, and using this 
structure to support work with scenarios, and this approach  

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008



 
 

 

is implemented by an XML language and a Java package for 
it. Also, Della Penna et al. [3] define a new XML-based 
language, called SDML (Scenario Description Markup 
Language), to support the Scenario-based requirements 
engineering. In the following we give a brief synthesis of 
some techniques for representing and using UCs which have 
been developed so far. 

III. USE CASE MODEL TERMINOLOGY 

    The UML defines UCs drawing syntax as well as the 
associations of UCs and Actors, but it does not include a clear 
statement of content or format of the UC text. In this section, 
we describe the different parts of UCs which are consisting of 
following parts: 
 
Identifier. Each UC should have an integer number in 
addition to a unique name suggesting its purpose. The name 
should express what happens when the UC is performed. 
Type. Each UC has three types namely Primary, Secondary, 
and Optional. 
Description. Each UC should have a Description describing 
the role, purpose, outcome, or a high-level description of the 
sequence of actions.  
Overview. The Overview provides a quick summary of a UC 
processing documentation.  
Level. The Level specifies the goal level of the UC 
distinguished by the Summary, Sub-function, or User levels. 
Scope. This indicates the system or subsystem witch the UC 
refers to, and contains two Strategic and System types. 
Actor. An Actor is a person or external entity that interacts 
with the system and performs UCs to accomplish tasks. 
Actors can be illustrated as an External, Primary, or a 
Secondary. 
Stakeholders and Interests. Stakeholders and Interests are 
various entities may not directly interact with the UC system 
but they may have an interest in the outcome of the UC.  
Status. This shows the UC work in progress, ready for 
review, passed review, or failed review status.  
Categorization. Categorization provides a way of UCs 
breakings into the manageable collections. 
Trigger. The Trigger describes the UC initiation causes event 
such as an Actor, another UC, or a temporal event.  
Pre-conditions. Before the initiation of a UC, Pre-conditions 
define the expected state of the system.  
Basic Course of Actions. This is the interaction between 
Actors and the System. Each step should have a Step 
Number, an Actor Action and a System Response. 
Post-conditions. Post-conditions define the final state of the 
system after a successful completion of the Basic Course of 
Actions. For each Post-condition, the followings including 
Success End Condition, Failure End Condition and Minimal 
Guarantee should be documented. 
Alternative Courses of Action. Alternative Courses of Action 
define additional paths which may be triggered the Basic 

Course of Actions; consequently, an Alternative Name, 
Triggers, Course Steps and Post-conditions should be 
documented. 
Frequency of Use. Frequency of Use estimates the number of 
times the UC will be performed by the Actors per appropriate 
unit of time.  
Assumptions. Each Assumption should be in a declarative 
manner evaluating to be true or false.  
Associated UCs. Combination of Extended and Included UCs 
can create the Associated UCs.  
Special Requirements. For the UCs needing to be addressed 
during design or implementation, additional requirements 
(e.g. nonfunctional) identified by the Special Requirements.  
Issues. Issues are a list of action items related to the 
development of the UCs. There may also be some notes on 
possible implementation strategies or impact on other UCs. 
General Notes. Additional information related to the UCs 
need to be captured whereas UC analysis is performing.  
 

IV. THE UC DESCRIPTION MARKUP LANGUAGE 
 

     In this section, we formalize the structure of the UC model 
throughout a formal language called UCDML (Use Case 
Description Markup Language) whose syntax has been 
defined through an XML Schema. A UCDML document 
begins with the <UCDML> element that contains these 
elements: 
 
Identifier. Each Identifier is defined by a distinct <identifier> 
element. As shown in Fig. 1, this element contains a <name> 
element giving the unique name of the UC, and a <number> 
element identifying the integer number of the UC. 
Type. Each type is defined by a distinct <type> element. Fig. 
2 illustrates the UC element type attributes (i.e. primary or 
secondary or optional). 
Description. This is defined by a distinct <description> 
element giving a textual description of the UC (Fig. 2). 
Description. This is defined by a distinct <description> 
element giving a textual description of the UC (Fig. 2). 
Overview. Each overview is characterized by a distinct 
<overview> element providing an overview of the UC (Fig. 
2). 
 

 
 

Fig. 1. UCDML fragment for the UC Identifier. 
 

 
 

Fig. 2. UCDML fragment for the UC Type, Description and 
Overview. 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008



 
 

 

 
 

Fig. 3. UCDML fragment for the UC Level, Scope and Actor. 
 

 
 

Fig. 4. UCDML fragment for the UC Stakeholder, Status and 
Categorization. 

 

Levels. As it is seen in Fig. 3, each level is marked by a 
distinct <level> element specified the type attribute (i.e. 
summary, sub-function or user). 
Scope. Fig. 3 shows the type attribute (i.e. strategic or 
system) defined by a distinct <scope>.  
Actor. Each Actor is defined by a distinct <actor> element. 
This element has two attributes specifying the unique 
identifier of the Actor and the Actor type (external, internal, 
primary or secondary), respectively. As shown in Fig. 3, the 
<actor> element contains a <name> element giving the name 
of the Actor and a <description> element contains a textual 
description of the Actor. 
Stakeholder. Each Stakeholder is defined by a distinct 
<stakeholder> element which has an attribute specifying the 
unique identifier of the Stakeholder. The <stakeholder> 
element in Fig. 4 includes a <name> element giving the name 
of the Stakeholder and a <description> element contains a 
textual description of the Stakeholder. 
Status. Each Status (i.e. work in progress, ready for review, 
passed review or failed review) is defined by a distinct 
<statue> element (Fig. 4). 
Categorization. Categorization is defined by a distinct 
<categorization> element (Fig. 4) which has a type attribute 
specifying the business importance, level of abstraction, UC 
type, functional area and etc. 
Trigger. Definition of each Trigger is by a distinct <trigger> 
element distinguishing the Trigger type (i.e. Actor, another 
UC or a temporal event). According to the Fig. 5, the 
<trigger> element contains an <actor> as well as a 
<useCase> element including the unique identifier of the 
Actor, the Actor name, the unique identifier of the UC and 
the UC name, respectively. Also, it involves an <event> 
element with textual temporal event description. 
Pre-conditions. Each one is defined by a distinct 
<precondition> element commenting on the Pre-conditions 
of a UC (Fig. 5). 
Basic Course of Actions. Each Basic Course of Action is 
defined by a distinct <basicCourseofAction> element which 
has an id character specifying the unique identification. This 
element describes the control flow through a sequence of 
<step> element with an id attribute presenting the position in  

 
 

Fig. 5. UCDML fragment for the UC Trigger and 
Pre-condition. 

 

 
 

Fig. 6. UCDML fragment for the UC Basic Course of Action. 
 

the control flow, and contains the <interaction> element 
pointing the basic step of the control flow as well. As it is 
behold in Fig. 6, each <interaction> has an <actor>element 
which shows the unique identifier of the Actor and the Actor 
name; moreover, it has an <action> element describes the 
happened Actor actions in each step, and a 
<systemResponse> element recognized the system name. 
Post-conditions. Explanation of a Post-condition is by a 
<postcondition> element. This element is comprised of a 
<successEndCondition> element with the successful end 
condition description or a <failureEndCondition> element 
with the failure end condition description, and also a 
<minimalGuarantee> element with the guarantee or 
assurance of the UC depiction (Fig. 7). 
Alternative Courses of Action. This is characterized in a 
<alternativeCourseOfAction> element which has two 
featuring the special identifier and the name of the 
Alternative Course of Action. This element has a <trigger> 
element describing the execution causes of the Alternative 
Course of Action, a <step> element describing the alternative 
control flow, and a <postcondition> element  specifying The 
post-conditions of an Alternative Course of Action. Each 
<step> has an id attribute declaring the position in the 
alternative control flow and contains the <interaction> 
element through a basic step of the alternative control flow 
description. As revealed in Fig. 8, each <interaction> 
contains an <actor> element with unique identifier of the 
Actor and the Actor name attributes. In addition, it has an 
<action> element which describes the Actor actions in the 
step, and a <systemResponse> element with the name of the 
system feature. 
 

 
 

Fig. 7. UCDML fragment for the UC Post-condition. 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008



 
 

 

 
 

Fig. 8. UCDML fragment for the UC Alternative Course of 
Action. 

 

 
 

Fig. 9. UCDML fragment for the UC Frequency of Use, 
Assumption, Associated Use Case, Special Requirement. 

 

 
 

Fig. 10. UCDML fragment for the UC Issue, General Note. 
 
Frequency of Use. A frequency of use is defined by a distinct 
<frequencyOfUse> element. As shown in Fig. 9, this element 
has a number attribute identifying the number of times the 
UC will be executed. 
Assumptions. As it is demonstrated in Fig. 9, definition of 
each assumption is by a separate <assumption> element. 
Associated Use Cases. Each Associated Use Case is defined 
by a different <associatedUseCase> element containing an 
<extend> and <include> elements which have two attributes 
specifying the unique identifier and name of the extended or 
included UC (Fig. 9). 
Special Requirements. Identification of any additional 
requirement of the UC is determined via a 
<specialRequirement> element (Fig. 9). 
Issues. Issue is defined by a distinct <issue> element which 
concludes a list of UC issues (Fig. 10). 
General Notes. A <generalNote> element holds an 
<information> element with any additional UC information 
descriptions, an <author> element identifying the name of a 
person who initially documented the UC, a <priority> 
element supplied the priority of the UC, a <version> element 
with the UC version specification, a <date> element 
indicating when UC version was created, and an 
<approved_by> element designating the name of a person 
who the UC approved by (Fig. 10). 

V. Conclusion 
 
    In this paper, we proposed an UML compatible template 
utilized for the documentation of UCs; furthermore, the 
simplicity usage of the presented template should be 
acceptable. Moreover, we show the UCDML formalization 
of UCs descriptions. The description of UCs through 
UCDML can be easily published and edited in distributed 
systems, and converted into various formats using the XSLT 
technology. 

REFERENCES 
[1]     UML Semantics version 1.1, Rational Software Corporation, 

September 1997. Available: http://www.rational.com/uml/index.shtml. 
[2]      I. Jacobson, M. Christerson, P. Jonsson, and G. Oevergaard, 

Object-Oriented Software Engineering: a Use Case Driven Approach. 
Addison-Wesley Longman Publishing Co., 1992. 

[3]      G. Della Penna, B. Intrigila, A.R. Laurenzi, and S. Orefice, “An XML 
definition language to support scenario-based requirements 
engineering,” International Journal of Software Engineering and 
Knowledge Engineering 13 (3), 2003, pp. 237–256. 

[4]      P. Du Bois, E. Dubois, and J.-M. Zeippen, “On the use of a formal 
RElanguage: The generalized railroad crossing problem,” Heitmeyer 
and Mylopoulos [18]. 

[5]     S.J. Greenspan, A. Borgida, and J. Mylopoulos, “A requirements 
modeling language, Inform,” The Journal of Systems and Software 11 
(1), 1986, pp. 9–23. 

[6]     S.J. Cunning, J.W. Rozenblit, “Test scenario generation from a 
structured requirements specification,” IEEE Conf. Wksp Eng. 
Comput.-Based Syst. (CWECS), 1998. 

[7]     N. Dulac, T. Viguier, N. Leveson, and M.A. Storey, “On the use of 
visualization in formal requirements specification,” Dubois and Pohl 
[11], pp. 71–80. 

[8]     D. J. Chen, W. C. Chen, and K.M. Kavi, “Visual requirements 
representation,” The Journal of Systems and Software 61, 2002, pp. 
129–143. 

[9]     J. Arlow, “Use cases, UMLvisual modelling and the trivialisation of 
business requirements,” Requirements Engineering Journal [3], 1998, 
pp. 150–152. 

[10] A. Cockburn, Writing Effective Use Cases. Addison-Wesley Longman 
Publishing Co., Inc., Boston, MA, USA, 2001. 

[11] C. Ben Achour, C. Rolland, N. Maiden, and C. Souveyet, “Guiding use 
case authoring: Results of an empirical study,” In 4th IEEE 
international symposium on requirements engineering, RE’99, 
Limerick, Ireland, June 1999, pp. 36–43. 

[12] Cox, K, Heuristics for use case descriptions. PhD Thesis, 
Bournemouth University, UK, 2002. 

[13] C. Rolland, C. Ben Achour, “Guiding the construction of textual use 
case specifications,” Data and Knowledge Engineering Journal, 
25(1–2), 1998, pp. 125–160. 

[14] I. Graham, Requirements engineering and rapid development. Harlow: 
Addison-Wesley, 1998. 

[15] I. Alexander, R. Stevens, Writing better requirements. Harlow: 
Addison-Wesley, 2002. 

[16] S. Adolph, P. Bramble, A. Cockburn, and A. Pols. Patterns for 
Effective Use Cases. Addison Wesley, 2003. 

[17] D. Kulak, E. Guiney, Use Cases – Requirements in Context. Harlow, 
Addison-Wesley, 2000. 

[18] R. Pooley, P. Stevens, Using UML—Software Engineering with 
Objects and Components. Harlow, Addison-Wesley, 1999. 

[19] M. Fowler, K. Scott, UML Distilled 2nd Edition. Harlow, 
Addison-Wesley. 

[20] Object Management Group (OMG), Unified Modeling Language v1.4 
– Semantics. Document 01-09-73. Version taken from: 
http://www.omg.org/pub/docs/formal/01-09-73.pdf, taken Jan 2002. 

[21] M. Jackson, Problem frames. Harlow: Addison-Wesley, 2001. 
[22] G. Booch, I. Jacobson, and J. Rumbaugh. The Unified Modeling 

Language – Users Guide. Addison-Wesley Longman Publishing Co., 
Inc. Reading, MA, 1999. 

[23] M. Jackson, “A discipline of description,” Requirements Engineering 
Journal [3], 1998, pp. 73–78. 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

http://www.rational.com/uml/index.shtml
http://www.omg.org/pub/docs/formal/01-09-73.pdf


 
 

 

[24] B. Kovitz, Practical Software Requirements: A Manual of Content and 
Style. Manning Publications, Greenwich, CT, 1999. 

[25] D. Rosenberg, K. Scott, Use Case Driven Object Modeling with UML: 
A Practical Approach. Harlow, Addison-Wesley, 1999. 

[26] D. Rosenberg, K. Scott, Applying Use Case Driven Object Modeling 
with UML. An Annotated E-Commerce Example. Reading, MA, 
Addison-Wesley, 2001. 

[27] A. I. Anton, W. M. McCracken, and C. Potts, “Goal decomposition and 
scenario analysis in business process reengineering,” in Proc. 6th 
Conference on Advanced Information Systems Engineering, Utrecht, 
The Netherlands, 1994, pp. 94-104. 

[28] C. Potts, K. Takahashi, J. Smith, and K. Ora, “An evaluation of inquiry 
based requirements analysis for an internet service,” in Proc. Second 
IEEE Symp. Requirements Eng., IEEE Computer Society, 1995, pp. 
27-34. 

[29] C. Rolland, C.B. Achour, “Guiding the construction of textual use case 
specifications,” Data Knowl. Eng. J. 25 (1–2), 1998, pp. 125–160. 

[30] A. Fantechi, S. Gnesi, G. Lami, and A. Maccari, “Application of 
linguistic techniques for use case analysis,” in RE’02, Proceedings of 
the 10th Requirements Engineering Conference, 2002. 

[31] K. Bo¨ttger, R. Schwitter, D. Richards, O. Aguilera, and D. Molla´, 
“Reconciling use cases via controlled languages and graphical 
models,” in INAP 2001, Proceedings of the 14th International 
Conference on Applications of Prolog, 2001, pp. 186–195. 

[32] Glinz, “Improving the quality of requirements with scenarios,” in 
Proceedings of the Second World Congress on Software Quality, 2000, 
pp. 55–60. 

[33] A. Cockburn, “Using goal-based use cases,” Journal of 
Object-Oriented Programming 10(7), 1997, pp. 56-62. 

[34] A. Duran, B. Bernardez, A. Ruiz, and T. Toro, “An XML-based 
approach for the automatic verification of software requirements 
specifications,” in Proc. of the Fourth Workshop on Requirements 
Engineering (WER01), 2001, pp. 181-194. 

[35] A. Dura´n, A. Ruiz-Corte´s, R. Corchuelo, and M. Toro, “Supporting 
requirements verification using XSLT,” in Dubois and Pohl [11], pp. 
165–172. 

[36] MOF 2.0/XMI mapping specification, v2.1. Document 
formal/05-09-01, Object Management Group, Framingham, MA, 
September 2005. 

[37] C. Nentwich, W. Emmerich, and A. Finkelstein, and E. Ellmer, 
“Flexible consistency checking,” ACM Trans. Softw. Eng. Methodol, 
12(1), 2003, pp. 28–63. 

[38] Thomas A. Alspaugh, “Relationships between scenarios,” ISR 
Technical Report, 2006. 

 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008


	I. Introduction 
	II. Related Works 
	III. Use Case Model Terminology 




(

An XML Definition Language to Support Use Case-Based Requirements Engineering

M. Golbaz, A. Hasheminasab, and N. Daneshpour

Abstract—The focus of this paper is to introduce a theory based on a wide-spreading model of Use Cases (UCs). The pervasive benefits of UCs in the computer systems and software’s developments have motivated the UCs formalization needing. Also, the definition of UCs through Use Case Description Markup Language (UCDML) is enabled the XML technology explotation in order to suggest the powerful ways for the creation, usage, distribution, and maintenance of UCs. Consequently, we present the UCDML formalization, an XML definition language, to support the UC-based requirements engineering.

Index Terms— Requirements engineering, UCDML, UCs, XML technology. 


I. Introduction

       Use Case (UC) analysis is one of the first and primary means of requirements gathering in the behavioral methodology, and UCs are standard techniques for collection of requirements in many modern software methodologies developments. According to the Unified Modeling Language (UML) semantics, a UC can be described in plain text, using operations, in activity diagrams, by a state-machine, or by other behavior description techniques, such as Pre- and Post-conditions. The interaction between the UC and the Actors can also be presented in collaboration diagrams [1]; however, no format is presented for any of these alternatives. Most users find it suitable to follow the Jacobson’s original style [2] of natural language descriptions inserted in a table, but the problem is that the original proposal was imperfect. UCs have a formal and well-defined structure in the theory of software engineering, and are commonly expressed as hard-to-read text documents, containing a mix of natural language statements, semi-standard names and expressions, and raw cross references. 

    Although the XML technologies benefits based on the UCs and UCDML descriptions are very questionable, the followings are the reasons of UCDML software developers presented for the UCs descriptions [3]:


· XML is exceedingly related to the Web. Its meaning is that by simply using XML-enabled web browsers and web servers, the UC descriptions may be simply published and edited in distributed systems. So, our approach in contradiction of most UC-manipulation tools is not platform-dependent.


· The UCs can be easily converted into different formats by using the XSLT technology. Many free software tools support XSLT and their output can have a generic structured format. UCs can be transformed to be compatible with the file formats of existing applications as well.


· It is without difficulty possible to produce a detailed textual documentation directly from the structural description of the UC by the XSLT technology. Thus, we have already created a first transformation style-sheet to present the UCDML descriptions in a standard tabular format which is frequently employed in business documents.


    Accordingly, we present the UCDML formalization, an XML-based approach to the definition of UCs.   This paper outlines a syntax and informal semantics for UC template, and we propose an XML definition language to support UC-based requirements engineering.

II. Related Works

    In the last few years, lots of researches have been done in the field of UC-based requirements engineering, and a variety of techniques, models and notations have been developed quickly. 


    Du Bois et al. [4] present the specification language Albert II. This formal language is based on ontology of concepts used for capturing requirements of real-time, distributed systems. Being as expressive as pioneering RE languages [5], the language is reported to be natural: it offers a declarative description of mapping between the informal statements provided to the customers onto formal statements expressed in the language. Then, Cunning and Rosenblit [6] present a semi-formal method to structure the behavioral requirements for real-time embedded systems. This method is based on a set of forms called Structured Requirements Specifications (SRSs) that contain both informal text-based descriptions and formally defined language constructs. 


    Dulac et al. [7] confirm that the interactive use of computer-supported, visual representations of requirements helps create, navigate, review, and understand formal specifications. There are also research efforts in visual requirement representation that focus on different aspects of the requirements engineering practice. One such example [8] investigates multimedia technology for eliciting requirements of general software systems, promoting reusable components that include not only code and documents, but also voice narration, animation sequences, and message mechanisms.


    UCs are often used to describe requirements for systems to be designed and implemented in the object-oriented paradigm [9]. However, there has been much debate as to where the UC is the most effective approach. Jacobson [2], later an important contributor to the Unified Modeling Language (UML) and Rational Unified Process (RUP), see the UC as useful for requirements, specification and design, then codified the visual modeling technique for specifying UCs. Originally he used the term Usage Case, but found that neither of these terms sounded natural in English, and eventually he settled on the term UC. Since he originated UC modeling, Cockburn [10] made contributions to the subject, arguably the most influential, comprehensive, and coherent next step in defining what UCs are (or should be) and how to write them.


    Many other authors have suggested using guidelines for UC descriptions [10]–[13] and such guidance is often entirely plausible. Graham [14] suggests structure for task events, and Alexander and Stevens [15] suggest that requirements statements should also be similarly straightforward. Adolph et al. [16] present patterns for UC descriptions that provide a high level view of the UC structure, and some advice on how to construct individual sentences. Other authors have posited similar guidance on writing descriptions, such as recommending the use of strong verbs and nouns [17] and avoiding passive voice [18]. Others again suggest structural guidance. For example, Fowler and Scott [19] and the OMG [20] recommend writing primitive steps and numbering events.


    The UML community takes a similar viewpoint, for example, Booch et al. [21], Jackson [22], [23], and Kovitz [24] see UCs as a means for describing a specification, because UCs deal with interactions between a user (actor) and the machine (system). However, Rosenberg [25], [26] has a slightly different take on the matter. He sees UCs as ways of describing “units of behavior”, requirements as describing the “laws that govern that behavior” and functions as “the individual actions that occur within that behavior” (p. 123). In the following we present an obvious statement of content or format of the UC text.


    Works on natural language analysis of UCs include [27], [28]. They mainly focus on providing guidelines and restricted languages for writing UCs in natural language whereas avoiding ambiguities and errors. In [27] Rolland and Ben Achour present an approach for guiding UCs development. They propose linguistic patterns and structures for UC specification as well as an iterative process for writing UC specification as an unambiguous natural language text. A similar approach is discussed in [29] where a restricted language based on a set of guidelines is defined for UCs. Fantechi et al. [28] use linguistic techniques to analyze UCs expressed in natural language. They collect quality metrics and detect defects related to UCs inherent ambiguity. Martin Glinz [30] proposes a natural language based notation for UCs and a manual approach for state-charts synthesis.


    In the Potts' et al. approach [31], [32] scenarios are in textual form following some tabular notations. The requirements engineering process is supported by a hyper-text tool in which scenarios and requirements are annotated with requirements discussions, rationales and change requests. Therefore, whereas inspecting a requirement or a scenario fragment, the user can retrieve, through hypertext links, the open questions, responses and arguments that have been posed on this element and the change requests referring to it as well.


    Cockburn [33] offers a step-by-step description given in natural language. UCs written in Cockburn's style shows an apparent sequence of actions and separate normal cases from exceptional ones. Nevertheless, nonlinear flow of actions (alternatives, iterations) is not systematically treated and there is still no comprehensible separation between user actions and system responses. We split the notion of interaction given by Cockburn into a sequence of well distinguished atomic steps. The new atomic notion of interaction, gained by separating user actions from system responses, has been more suitable for consecutive automatic manipulation of UCs.


    Duran et al. [34], [35] use XML to signify software requirements and XSLT to support the requirements verification in order to guarantee some quality properties. However, this approach does not focus on the formal structuring of requirements through XML. In fact, it is mostly oriented towards the implementation, and the authors propose the REM tool which is a visual environment where the user can write the specifications and automatically perform some verification on them.


    A number of XML languages for UCs exist, notably OMG’s interchange language for all parts of UML [36]. In contrast, UCDML is not designed to match a particular notation but is designed to embody the aspects of UCs that people use and interpret consistently, with the goal of supporting automation based on this consistency. Nentwich et al.’s xlinkit is a general-purpose framework for expressing and checking consistency constraints in XML documents [37].


    Thomas A. Alspaugh [38] describes an approach for identifying aspects of scenarios(and UCs containing them) that people use consistently, structuring them, and using this structure to support work with scenarios, and this approach  is implemented by an XML language and a Java package for it. Also, Della Penna et al. [3] define a new XML-based language, called SDML (Scenario Description Markup Language), to support the Scenario-based requirements engineering. In the following we give a brief synthesis of some techniques for representing and using UCs which have been developed so far.

III. Use Case Model Terminology


    The UML defines UCs drawing syntax as well as the associations of UCs and Actors, but it does not include a clear statement of content or format of the UC text. In this section, we describe the different parts of UCs which are consisting of following parts:


Identifier. Each UC should have an integer number in addition to a unique name suggesting its purpose. The name should express what happens when the UC is performed.

Type. Each UC has three types namely Primary, Secondary, and Optional.

Description. Each UC should have a Description describing the role, purpose, outcome, or a high-level description of the sequence of actions. 


Overview. The Overview provides a quick summary of a UC processing documentation. 

Level. The Level specifies the goal level of the UC distinguished by the Summary, Sub-function, or User levels.

Scope. This indicates the system or subsystem witch the UC refers to, and contains two Strategic and System types.

Actor. An Actor is a person or external entity that interacts with the system and performs UCs to accomplish tasks. Actors can be illustrated as an External, Primary, or a Secondary.

Stakeholders and Interests. Stakeholders and Interests are various entities may not directly interact with the UC system but they may have an interest in the outcome of the UC. 


Status. This shows the UC work in progress, ready for review, passed review, or failed review status. 


Categorization. Categorization provides a way of UCs breakings into the manageable collections.


Trigger. The Trigger describes the UC initiation causes event such as an Actor, another UC, or a temporal event. 

Pre-conditions. Before the initiation of a UC, Pre-conditions define the expected state of the system. 


Basic Course of Actions. This is the interaction between Actors and the System. Each step should have a Step Number, an Actor Action and a System Response.


Post-conditions. Post-conditions define the final state of the system after a successful completion of the Basic Course of Actions. For each Post-condition, the followings including Success End Condition, Failure End Condition and Minimal Guarantee should be documented.

Alternative Courses of Action. Alternative Courses of Action define additional paths which may be triggered the Basic Course of Actions; consequently, an Alternative Name, Triggers, Course Steps and Post-conditions should be documented.

Frequency of Use. Frequency of Use estimates the number of times the UC will be performed by the Actors per appropriate unit of time. 

Assumptions. Each Assumption should be in a declarative manner evaluating to be true or false. 


Associated UCs. Combination of Extended and Included UCs can create the Associated UCs. 


Special Requirements. For the UCs needing to be addressed during design or implementation, additional requirements (e.g. nonfunctional) identified by the Special Requirements. 


Issues. Issues are a list of action items related to the development of the UCs. There may also be some notes on possible implementation strategies or impact on other UCs.

General Notes. Additional information related to the UCs need to be captured whereas UC analysis is performing. 


IV. THE UC DESCRIPTION MARKUP LANGUAGE

     In this section, we formalize the structure of the UC model throughout a formal language called UCDML (Use Case Description Markup Language) whose syntax has been defined through an XML Schema. A UCDML document begins with the <UCDML> element that contains these elements:


Identifier. Each Identifier is defined by a distinct <identifier> element. As shown in Fig. 1, this element contains a <name> element giving the unique name of the UC, and a <number> element identifying the integer number of the UC.


Type. Each type is defined by a distinct <type> element. Fig. 2 illustrates the UC element type attributes (i.e. primary or secondary or optional).

Description. This is defined by a distinct <description> element giving a textual description of the UC (Fig. 2).

Description. This is defined by a distinct <description> element giving a textual description of the UC (Fig. 2).


Overview. Each overview is characterized by a distinct <overview> element providing an overview of the UC (Fig. 2).

[image: image1.jpg]<identifier>

<name>

<!--UC name--> </name>
<number>

<!--UC number--> </number>
</identifiers>






Fig. 1. UCDML fragment for the UC Identifier.

[image: image2.jpg]<type type="primary, secondary or optional" />
<descriptions> <!--UC description--></description>
<overview> <!--UC overview--></overviews>






Fig. 2. UCDML fragment for the UC Type, Description and Overview.

[image: image3.jpg]<level type="summary, sub-function or user" />
<scope type="strategic or system" />

<actor type="external, internal, primary or secondary" id=".

<name>

<!--actor name--> </name>

<description>

<!--actor description--> </description>
</actor>






Fig. 3. UCDML fragment for the UC Level, Scope and Actor.

[image: image4.jpg]<stakeholder id="..." >

<name>

<!--stakeholder name--> </name>

<description>

<!--stakeholder description--> </descriptions>
</stakeholder>






Fig. 4. UCDML fragment for the UC Stakeholder, Status and Categorization.


Levels. As it is seen in Fig. 3, each level is marked by a distinct <level> element specified the type attribute (i.e. summary, sub-function or user).


Scope. Fig. 3 shows the type attribute (i.e. strategic or system) defined by a distinct <scope>. 


Actor. Each Actor is defined by a distinct <actor> element. This element has two attributes specifying the unique identifier of the Actor and the Actor type (external, internal, primary or secondary), respectively. As shown in Fig. 3, the <actor> element contains a <name> element giving the name of the Actor and a <description> element contains a textual description of the Actor.


Stakeholder. Each Stakeholder is defined by a distinct <stakeholder> element which has an attribute specifying the unique identifier of the Stakeholder. The <stakeholder> element in Fig. 4 includes a <name> element giving the name of the Stakeholder and a <description> element contains a textual description of the Stakeholder.


Status. Each Status (i.e. work in progress, ready for review, passed review or failed review) is defined by a distinct <statue> element (Fig. 4).


Categorization. Categorization is defined by a distinct <categorization> element (Fig. 4) which has a type attribute specifying the business importance, level of abstraction, UC type, functional area and etc.


Trigger. Definition of each Trigger is by a distinct <trigger> element distinguishing the Trigger type (i.e. Actor, another UC or a temporal event). According to the Fig. 5, the <trigger> element contains an <actor> as well as a <useCase> element including the unique identifier of the Actor, the Actor name, the unique identifier of the UC and the UC name, respectively. Also, it involves an <event> element with textual temporal event description.

Pre-conditions. Each one is defined by a distinct <precondition> element commenting on the Pre-conditions of a UC (Fig. 5).


Basic Course of Actions. Each Basic Course of Action is defined by a distinct <basicCourseofAction> element which has an id character specifying the unique identification. This element describes the control flow through a sequence of <step> element with an id attribute presenting the position in 


[image: image5.jpg]<trigger type="actor, another UC or a temporal event" >

<actor id="..." name="..." />
<use-case id="..." name="..." />
<events>

<!--event description--> </events>
</triggers>

<preconditions>

<!--UC precondition--></preconditions>






Fig. 5. UCDML fragment for the UC Trigger and Pre-condition.

[image: image6.jpg]<basicCourseofAction id="..." >

<step id="..." >
<interaction>

<actor id="..." name="..." />
<action>

<!--actorAction--> </action>
<systemResponse name="..." >

<!--systemResponse--> </systemResponse>
</interaction>

</step>

</basicCourseofAction>






Fig. 6. UCDML fragment for the UC Basic Course of Action.


the control flow, and contains the <interaction> element pointing the basic step of the control flow as well. As it is behold in Fig. 6, each <interaction> has an <actor>element which shows the unique identifier of the Actor and the Actor name; moreover, it has an <action> element describes the happened Actor actions in each step, and a <systemResponse> element recognized the system name.


Post-conditions. Explanation of a Post-condition is by a <postcondition> element. This element is comprised of a <successEndCondition> element with the successful end condition description or a <failureEndCondition> element with the failure end condition description, and also a <minimalGuarantee> element with the guarantee or assurance of the UC depiction (Fig. 7).

Alternative Courses of Action. This is characterized in a <alternativeCourseOfAction> element which has two featuring the special identifier and the name of the Alternative Course of Action. This element has a <trigger> element describing the execution causes of the Alternative Course of Action, a <step> element describing the alternative control flow, and a <postcondition> element  specifying The post-conditions of an Alternative Course of Action. Each <step> has an id attribute declaring the position in the alternative control flow and contains the <interaction> element through a basic step of the alternative control flow description. As revealed in Fig. 8, each <interaction> contains an <actor> element with unique identifier of the Actor and the Actor name attributes. In addition, it has an <action> element which describes the Actor actions in the step, and a <systemResponse> element with the name of the system feature.


[image: image7.jpg]<postcondition>

<successEndCondition>

<!--UC successful end condition--> </successEndCondition>
<failureEndCondition>

<!--UC failure end condition--> </failureEndCondition>
<minimalGuarantees>

<!--UC minimal guarantee--> </minimalGuarantees>
</postcondition>






Fig. 7. UCDML fragment for the UC Post-condition.

[image: image8.jpg]<alternativeCourseOfAction id="..." >

<triggers>

<!--lternative course of action triggers--> </triggers>
<step id="..." >

<interaction>

<actor id="..." name="..." />

<action>

<!--actor action--> </action>

<systemResponse name="..." >

<!--system response--> </systemResponse>
</interaction>

</step>

<postconditions>

<!--alternative course of action post-conditions--> </postconditions>
</alternativeCourseOfActions>






Fig. 8. UCDML fragment for the UC Alternative Course of Action.


[image: image9.jpg]<frequencyOfUse number="..." />

<assumption>

<!--UC assumption--></assumption>
<associatedUseCase>

<include id="..." name="..." />

<extend id="..." name="..." />
</associatedUseCase>

<specialRequirement>

<!--UC special requirement--></specialRequirement>






Fig. 9. UCDML fragment for the UC Frequency of Use, Assumption, Associated Use Case, Special Requirement.


[image: image10.jpg]<issue>

<!--UC issues--></issue>
<generalNote>

<informationx>

<!--UC information--> </information>
<authers>

<!--UC auther--> </authers>

<priority>

<!--UC priority--> </prioritys>
<version>

<!--UC version--> </versions>
<date>

<!--when the UC was created--> </date>
<approved_by>

<!--who this UC approved by--> </approved_by>
</generalNote>






Fig. 10. UCDML fragment for the UC Issue, General Note.


Frequency of Use. A frequency of use is defined by a distinct <frequencyOfUse> element. As shown in Fig. 9, this element has a number attribute identifying the number of times the UC will be executed.


Assumptions. As it is demonstrated in Fig. 9, definition of each assumption is by a separate <assumption> element.


Associated Use Cases. Each Associated Use Case is defined by a different <associatedUseCase> element containing an <extend> and <include> elements which have two attributes specifying the unique identifier and name of the extended or included UC (Fig. 9).


Special Requirements. Identification of any additional requirement of the UC is determined via a <specialRequirement> element (Fig. 9).


Issues. Issue is defined by a distinct <issue> element which concludes a list of UC issues (Fig. 10).

General Notes. A <generalNote> element holds an <information> element with any additional UC information descriptions, an <author> element identifying the name of a person who initially documented the UC, a <priority> element supplied the priority of the UC, a <version> element with the UC version specification, a <date> element indicating when UC version was created, and an <approved_by> element designating the name of a person who the UC approved by (Fig. 10).

V. Conclusion

    In this paper, we proposed an UML compatible template utilized for the documentation of UCs; furthermore, the simplicity usage of the presented template should be acceptable. Moreover, we show the UCDML formalization of UCs descriptions. The description of UCs through UCDML can be easily published and edited in distributed systems, and converted into various formats using the XSLT technology.

References


[1]     UML Semantics version 1.1, Rational Software Corporation, September 1997. Available: http://www.rational.com/uml/index.shtml.


[2]      I. Jacobson, M. Christerson, P. Jonsson, and G. Oevergaard, Object-Oriented Software Engineering: a Use Case Driven Approach. Addison-Wesley Longman Publishing Co., 1992.


[3]      G. Della Penna, B. Intrigila, A.R. Laurenzi, and S. Orefice, “An XML definition language to support scenario-based requirements engineering,” International Journal of Software Engineering and Knowledge Engineering 13 (3), 2003, pp. 237–256.


[4]      P. Du Bois, E. Dubois, and J.-M. Zeippen, “On the use of a formal RElanguage: The generalized railroad crossing problem,” Heitmeyer and Mylopoulos [18].


[5]     S.J. Greenspan, A. Borgida, and J. Mylopoulos, “A requirements modeling language, Inform,” The Journal of Systems and Software 11 (1), 1986, pp. 9–23.


[6]     S.J. Cunning, J.W. Rozenblit, “Test scenario generation from a structured requirements specification,” IEEE Conf. Wksp Eng. Comput.-Based Syst. (CWECS), 1998.


[7]     N. Dulac, T. Viguier, N. Leveson, and M.A. Storey, “On the use of visualization in formal requirements specification,” Dubois and Pohl [11], pp. 71–80.


[8]     D. J. Chen, W. C. Chen, and K.M. Kavi, “Visual requirements representation,” The Journal of Systems and Software 61, 2002, pp. 129–143.


[9]     J. Arlow, “Use cases, UMLvisual modelling and the trivialisation of business requirements,” Requirements Engineering Journal [3], 1998, pp. 150–152.


[10] A. Cockburn, Writing Effective Use Cases. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.


[11] C. Ben Achour, C. Rolland, N. Maiden, and C. Souveyet, “Guiding use case authoring: Results of an empirical study,” In 4th IEEE international symposium on requirements engineering, RE’99, Limerick, Ireland, June 1999, pp. 36–43.


[12] Cox, K, Heuristics for use case descriptions. PhD Thesis, Bournemouth University, UK, 2002.


[13] C. Rolland, C. Ben Achour, “Guiding the construction of textual use case specifications,” Data and Knowledge Engineering Journal, 25(1–2), 1998, pp. 125–160.


[14] I. Graham, Requirements engineering and rapid development. Harlow: Addison-Wesley, 1998.


[15] I. Alexander, R. Stevens, Writing better requirements. Harlow: Addison-Wesley, 2002.


[16] S. Adolph, P. Bramble, A. Cockburn, and A. Pols. Patterns for Effective Use Cases. Addison Wesley, 2003.


[17] D. Kulak, E. Guiney, Use Cases – Requirements in Context. Harlow, Addison-Wesley, 2000.


[18] R. Pooley, P. Stevens, Using UML—Software Engineering with Objects and Components. Harlow, Addison-Wesley, 1999.


[19] M. Fowler, K. Scott, UML Distilled 2nd Edition. Harlow, Addison-Wesley.


[20] Object Management Group (OMG), Unified Modeling Language v1.4 – Semantics. Document 01-09-73. Version taken from: http://www.omg.org/pub/docs/formal/01-09-73.pdf, taken Jan 2002.


[21] M. Jackson, Problem frames. Harlow: Addison-Wesley, 2001.


[22] G. Booch, I. Jacobson, and J. Rumbaugh. The Unified Modeling Language – Users Guide. Addison-Wesley Longman Publishing Co., Inc. Reading, MA, 1999.


[23] M. Jackson, “A discipline of description,” Requirements Engineering Journal [3], 1998, pp. 73–78.


[24] B. Kovitz, Practical Software Requirements: A Manual of Content and Style. Manning Publications, Greenwich, CT, 1999.


[25] D. Rosenberg, K. Scott, Use Case Driven Object Modeling with UML: A Practical Approach. Harlow, Addison-Wesley, 1999.


[26] D. Rosenberg, K. Scott, Applying Use Case Driven Object Modeling with UML. An Annotated E-Commerce Example. Reading, MA, Addison-Wesley, 2001.


[27] A. I. Anton, W. M. McCracken, and C. Potts, “Goal decomposition and scenario analysis in business process reengineering,” in Proc. 6th Conference on Advanced Information Systems Engineering, Utrecht, The Netherlands, 1994, pp. 94-104.


[28] C. Potts, K. Takahashi, J. Smith, and K. Ora, “An evaluation of inquiry based requirements analysis for an internet service,” in Proc. Second IEEE Symp. Requirements Eng., IEEE Computer Society, 1995, pp. 27-34.


[29] C. Rolland, C.B. Achour, “Guiding the construction of textual use case specifications,” Data Knowl. Eng. J. 25 (1–2), 1998, pp. 125–160.


[30] A. Fantechi, S. Gnesi, G. Lami, and A. Maccari, “Application of linguistic techniques for use case analysis,” in RE’02, Proceedings of the 10th Requirements Engineering Conference, 2002.


[31] K. Bo¨ttger, R. Schwitter, D. Richards, O. Aguilera, and D. Molla´, “Reconciling use cases via controlled languages and graphical models,” in INAP 2001, Proceedings of the 14th International Conference on Applications of Prolog, 2001, pp. 186–195.


[32] Glinz, “Improving the quality of requirements with scenarios,” in Proceedings of the Second World Congress on Software Quality, 2000, pp. 55–60.


[33] A. Cockburn, “Using goal-based use cases,” Journal of Object-Oriented Programming 10(7), 1997, pp. 56-62.


[34] A. Duran, B. Bernardez, A. Ruiz, and T. Toro, “An XML-based approach for the automatic verification of software requirements specifications,” in Proc. of the Fourth Workshop on Requirements Engineering (WER01), 2001, pp. 181-194.

[35] A. Dura´n, A. Ruiz-Corte´s, R. Corchuelo, and M. Toro, “Supporting requirements verification using XSLT,” in Dubois and Pohl [11], pp. 165–172.

[36] MOF 2.0/XMI mapping specification, v2.1. Document formal/05-09-01, Object Management Group, Framingham, MA, September 2005.


[37] C. Nentwich, W. Emmerich, and A. Finkelstein, and E. Ellmer, “Flexible consistency checking,” ACM Trans. Softw. Eng. Methodol, 12(1), 2003, pp. 28–63.


[38] Thomas A. Alspaugh, “Relationships between scenarios,” ISR Technical Report, 2006.














Manuscript received November 11, 2007.


M. Golbaz is with the Department of Computer Engineering, College of Electrical Engineering, Shahid Rajaee University, Tehran, Iran. (Phone: 0098-21-22970062; fax: 0098-21-22970033; e-mail: mgolbaz@sru.ac.ir). 


A. Hasheminasab is with the Department of Computer Engineering, College of Electrical Engineering, Shahid Rajaee University, Tehran, Iran. (e-mail: alireza.hn@sru.ac.ir).


N. Daneshpour is with the Department of Computer Engineering, College of Electrical Engineering, Shahid Rajaee University, Tehran, Iran. (e-mail: daneshpour@aut.ac.ir).





