

Abstract— Nurse Scheduling Problems (NSP) represent a

subclass of scheduling problems that are hard to solve. The goal
is to find high quality shift and resource assignments, in
accordance with the labor contract rules, satisfying the
requirements of employees as well as the employers in
health-care institutions. The Nurse Scheduling Problems (NSP)
can be viewed as Constraint Satisfaction Problem (CSP) where
the constraints are classified as hard and soft constraints. In this
paper, a real case of a cyclic nurse Scheduling problem is
introduced. This means that the generated roster can be
repeated indefinitely if no further constraint is introduced. We
use two different methods, namely, Simulated Annealing and
Genetic Algorithm to solve this problem and compared their
performances at different difficulty levels.

Index Terms— constraints, genetic algorithm, nurse
scheduling, simulated annealing.

I. INTRODUCTION

 In organizations that operate continuously, daily work is
divided into shifts. In such a context, the Scheduling problem
consists in assigning a schedule to each worker, which
involves building a timetable for a specified period. The
timetable should comply with staffing requirements, the rules
laid down by the administration and the labour contract
clauses.

 A nurse roster is a timetable consisting of shift
assignments and rest days of nurses working at a hospital. In
nurse scheduling, the ultimate aim is to create high quality
timetables, taking well-being of nurses [20] as a basis without
discarding the concerns of employers.

 Work schedules directly affect the employees’ pay,
quality of life, and structure of work, family, and leisure
activities. Effective scheduling of employees can reduce both,
the size and the cost of the workforce. The objective is to
satisfy the daily labor demands with the minimum size or
minimum cost of the workforce. Typically, personnel
scheduling problems are highly constrained and NP-hard. In
this paper, two different procedures are presented for solving
the cyclic nurse-scheduling problem (NSP), which involves

S. Kundu, West Bengal University of Technology, Calcutta, India,

e-mail: sudip.wbut@ gmail.com.
M. Mahato, West Bengal University of Technology, Calcutta, India

e-mail: mihir.mahato@gmail.com.
B. Mahanty, West Bengal University of Technology, Calcutta, India

e-mail: mahantybiswajit@gmail.com
S. Acharyya, West Bengal University of Technology, Calcutta, India

e-mail: srikalpa8@ yahoo.co.in

the construction of duty rosters for nursing staff over a
pre-defined period.

 Scheduling nurses to staff shifts involves considerable
time and resources, and it is often difficult to create schedules
that satisfy all the requirements.

 The nurse scheduling is achieved based on requests from
all nurses. Schedulers, who typically are head or chief nurses
in the units, must assign nurses to each shift according to
numbers and skill levels required while at the same time
balancing the workload among the nurses involved and
considering staff nurses’ preferences such as providing
requested days-off [5].

 The NSP under study is incorporated with three main

components, i.e.
- Each nurse needs to express her preferences as the

aversion to work on a particular day and shift.
- The minimal coverage constraints embody the minimal

required nurses per shift and per day, and are inherent to any
shift scheduling problem.

- The case-specific constraints are not inherent to any NSP
instance but are rather case-specific, i.e. determined by
personal time requirements, specific workplace conditions,
national legislation, etc.

 Hence, the objective of the NSP is to satisfy nurses’
requests as much as possible without discarding the concerns
of employers.

II. PROBLEM DESCRIPTION

We are interested in those classes of NSP, which are
abstracted from real-life problems. There are two types of
nurse rosters, a two-shift system and a three-shift system. In
this paper, we focus on the 3-shift system [9] . Each day
consists of three shifts: a morning-shift or M (8 a.m.–3 p.m.),
an evening-shift or E (1:30 p.m.–8:30 p.m.), and a night-shift
or N (8:00 p.m.–8 a.m.). Nurses have to be assigned to these
shifts or give off-days. On any day only one shift can be
assigned to any nurse. The scheduling period is usually one or
two week or one month. These schedules have to satisfy
working contracts and meet the demand for a given number of
nurses on each shift, and to be accepted by the staff
concerned. The latter objective is achieved by meeting as
many of the nurses’ requests as possible. Few things are taken
into account for generating a roster. These include:

– The number of nurses assigned to each working shift must
be within the range of a certain maximum value and a certain

Comparative Performance of Simulated
Annealing and Genetic Algorithm in Solving

Nurse Scheduling Problem

S. Kundu, M. Mahato, B. Mahanty and S. Acharyya

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

minimum value.
– The number of shifts assigned to each nurse must be

within the limits of legal regulation.
– Prohibited working patterns must be prevented. A

“working pattern” is a sequence of working shifts over several
days.

– Requests from nurses should be satisfied as much as
possible.

 We will evaluate our method under different conditions.
For example we consider a scheduling term of 2 weeks, and
there are 15 nurses to be scheduled. Accordingly, the problem
is to assign shift numbers (morning/evening/night/day off),
i.e., values, to the number_of_nurses*number_of_days
(15*14 =210) variables. Different hard and soft constraints
must be taken into account for generating a roster. We’ve
considered the following types of constraints:

A. Hard constraints:

All the hard constraints must be satisfied to obtain a
feasible solution.

1) Type1-constraints:
 – Constraints on the number of nurses for each working

shift per day: For each shift, the number of nurses has to be
within the range of maximum and minimum values (morning:
4-6, evening: 3-5, night: 3-5).

2) Type2-constraints:
The roster must be cyclic and avoid the following

prohibited working patterns–
 “morning-shift after night-shift”,
 “evening-shift after night-shift”,
 “morning -shift after evening-shift”, and
 “3 consecutive night-shifts”.

B. Soft constraints:

The feasibility of a solution is determined by the
satisfaction of hard constraints. But the quality of a feasible
solution depends on the degree to which the soft constraints
are satisfied.

Type3-constraints:
 For each nurse in this example of two weeks rostering

problem, the typical type-3 constraints are
Total number of off-days = 4;
Total number of night-shifts = 3;
Total number of morning-shifts and evening-shifts for
each nurse is between 3 and 4.

This will vary depending on the scheduling period and
number of nurses.

 As we mentioned earlier, the roster is generated based on
the satisfaction of a number of constraints. All the hard
constraints must be satisfied and soft constraints should be
satisfied.

C. Cost function

 We have designed a cost function depending on the
different types of constraints mentioned earlier. Total cost
will be calculated by combining following three types of cost:

 cost1 is the penalty cost for violating most important type

of constraint i.e. type1 constraint. If the shift assignments on
any day violate any of the type1 constraints, then for each
violation the value of cost1 will be incremented by 1.

 cost2 is the penalty cost for violating type2 constraints. If
shift sequence for any nurse violates any of the type2
constraints, then for each violation cost2 will be incremented
by 1.

 cost3 is the penalty cost for violating type3 constraints.
For example, if for any nurse the total number of “day off” or
any other shift does not fall within the mentioned limit, then
for each violation the value of cost3 is incremented by 1.

 We have assigned three different weights to three

different types of constraints. Let w1, w2, w3 are the weights
assigned to type1, type2, type3 constraints respectively. Then
our objective is to minimize the

 total cost , C = w1*cost1 + w2*cost2 + w3*cost3

 We’ll consider a solution feasible only if all the hard

constraints are satisfied (i.e. cost1 and cost2 are minimized to
0). Solution strategy will also try to satisfy as many
soft-constraints as possible.

III. SOLUTION METHODS

A satisfactory analytical solution procedure for the
problem, even in its idealized form, has not yet been found.
We are thus forced to use heuristic methods [17] . There are
several approaches [1] to the nurse scheduling based on the
framework of Constraint Satisfaction Problem (CSP) [13].
We have tried to solve randomly generated problem instances
using the two randomized CSP methods. The solutions
obtained by us are not always complete, in the sense that all
the soft constraints are not always fully satisfied.

 Number of variables in our problem, N =
no_of_nurses*number_of_days. The main objective is to
assign shift values to all these variables such that the total cost
becomes minimum. The implementations given below
consider several problems consisting of i) the hard constraints
and ii) soft-constraints mentioned earlier.

A. SIMULATED ANNEALING

The initial trial solution S in Procedure SA [19] is obtained
by randomly assigning each nurse to one of the three shifts or
day-off on each day. As a result, all the variables in our
problem (x[nurse_no] [day_no]) are assigned random shift
values. So, now, a subset of the constraints are unsatisfied.
The initial cost corresponding to S is calculated using the cost
function mentioned earlier. Now this cost is taken as current
cost c. Then we randomly choose a variable, i.e., a
combination of nurse_no and day_no, and change its shift
value randomly. In this way we move to a neighbouring
solution S’ of S. Then we calculate the cost corresponding to
S’, taken as new cost c’. Now we have to take a decision,
whether we will accept this movement permanently or not.
This is discussed in details in Procedure SA given below.
This process is repeated and the algorithm outputs the feasible
solution of lowest cost.

 Procedure SA makes use of a number of parameters. The
values of these parameters must be finely tuned; otherwise,
inferior results are obtained frequently. The most important
issue is the initialization of the temperature and the

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

determination of the rate at which it should decrease [14]. In
our problem a high temperature such as 2000 is initially
chosen. Whenever, changes/trials > tcent, the temperature is
reduced fast using a parameter called fastfactor having a
typical value of 0.5; if changes/trials < tcent, the temperature
is reduced slowly. For the reducing factor, known as
tempfactor we choose a value of 0.98. The variable of interest
is c*, which stores the cost of the trial solution of minimum
cost among all feasible solutions found so far, up to the
current instant. c* is initialized to the initial cost c.
Procedure SA /* detailed procedure*/
{
 input a trial solution S; c = cost(S);
 c* = c; freezecount = 0; initialize temp;

initialize frzlim, sizefactor, fastfactor, tempfactor,
minpercent, tcent;

 while (freezecount < frzlim) {
 changes = trials = 0;
 while (trials < sizefactor * N) {

/* N is determined by the size of the problem */
 trials = trials + 1; generate a random neighbour S' of S;
 c' = cost(S'); ∆ = c'- c;
 if (S' is feasible and cost(S') < c*)
 { S* = S'; c* = cost(S'); }
 /* save best feasible solution found so far */
 if (∆ < 0) { changes = changes + 1; c = c'; S = S'; }

/* downhill move */
 else { /* possible uphill move */
 choose a random number r in [0,1];
 if (r <= exp(-∆/temp))

 { changes = changes+1; c = c'; S = S'; }
 }
 }
 if (changes/trials > tcent) temp = fastfactor * temp;

/* reduce temperature quickly */
 else temp = tempfactor * temp;

 /* reduce temperature slowly */
if (changes/trials < minpercent)

freezecount = freezecount+1;
 else freezecount = 0;
 }
 output the final solution S*; /* S* is a feasible solution of
minimum cost */
}

B. GENETIC ALGORITHM

Canonical GAs [15] were not intended for function

optimization [3], but slightly modified versions proved to be
successful [2]. In our experiments, the initial population
consisted of WP random trial solutions, where WP was
chosen to be around 10. Each trial solution S is defined as a
chromosome string of length N (number of variables, defined
earlier) where the elements were shift values, that is, integers
between 1 and 4. Each chromosome represents one complete
solution. First element of any chromosome represents the shift
assigned to nurse1 on day1; second element represents the shift
assigned to nurse1 on day2, and so on. The fitness function was
essentially identical to the cost function used in Simulated
Annealing, and nGen had a typical value of 10,000. Larger
values of nGen gave solutions of better quality at the expense

of higher runtimes. Cross-over and Mutation operators are
used to generate new chromosomes[2]. Among the
chromosomes generated, the one that had the highest rating
among all feasible solutions is finally outputted.

Procedure GA
1. Start with a randomly generated population of ‘n’, ‘l’

bit chromosomes.
Number of bits in each chromosome= number of
nurse * number of days;

2. Calculate the fitness f(y) of each chromosome y in
the population.

3. Move the best chromosome to the new population.
4. Repeat the following steps until (n-1) more

offsprings are created.
(a) Select a pair of parent chromosomes from

the current population, the probability of
selection being an increasing function of
fitness. Selection is done “with
replacement”, meaning that the same
chromosome can be selected more than
once to become a parent.

(b) With probability Pc (crossover probability),
cross over the pair between two randomly
chosen points (chosen with uniform
probability) to form two offsprings. If no
cross over takes place, form two offspring
that are exact copies of their respective
parents. (Here the cross over rate is defined
to be the probability that two parents will
cross over between two break points).

(c) Mutate the two offspring at a randomly
chosen bit with probability Pn (the mutation
probability or mutation rate) and place the
resulting chromosomes in the new
population.

 If n is even, one new population member can be discarded
at random.

5. Replace the current population with new population.
6. Go to step -2 until a desirable solution is found or

maximum number of generations is completed.

IV. EXPERIMENTAL OBSERVATIONS

Our experimental result will show the best roster in tabular

form. A sample roster is given below. This roster is for 15
nurses and for one week.

• Each row in the table 1 shows the shift sequence of a
particular nurse.

• Each column in the table 1 shows shift assignment of
each nurse on that particular day.

• The marks ‘M’, ‘E’, ‘N’ and ‘* ’ represent a morning
shift, an evening shift, a night shift, and a day off
respectively.

• The number of nurses assigned to each shift is given
at the bottom of the table 1.

• The number of the shifts that each nurse works in the
scheduling period appears at the right of the table 1.

• The total cost will show the cost penalty for

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

unsatisfied constraints. If all constraints are satisfied,
then this cost is zero.

TABLE 1: A SAMPLE ROSTER

 M T W T F S S MOR EVE NGT OFF

 n01: N N * M M E E 2 2 2 1
 n02: E E N N * M M 2 2 2 1
 n03: M M E E N N * 2 2 2 1
 n04: * M M E E N N 2 2 2 1
 n05: M M E E N N * 2 2 2 1
 n06: E N N * M M E 2 2 2 1
 n07: N * M M E E N 2 2 2 1
 n08: E N N * M M E 2 2 2 1
 n09: N * M M E E N 2 2 2 1
 n10: M E E N N * M 2 2 2 1
 n11: M M E E N N * 2 2 2 1
 n12: E E N N * M M 2 2 2 1
 n13: N N * M M E E 2 2 2 1
 n14: N * M M E E N 2 2 2 1
 n15: E E N N * M M 2 2 2 1

MOR: 4 4 4 5 4 5 4
EVE: 5 4 4 4 4 5 4
NGT: 5 4 5 4 4 4 4
OFF: 1 3 2 2 3 1 3 Total Cost= 0

We now summarize our experimental observations on the

Nurse Scheduling Problem (in Table 2). The two CSP
methods were programmed in C and run on the
WINDOWS-based Pentium 4 machine. The random number
generators random(int) and rand() were used for generating
random numbers. Identical problem instances were run for
both the methods. We wanted to create random instances of
the NSP that were realistic and indicative of real life
situations. For this purpose, we collected data about nurse
rosters from well-known Peerless Hospital in Kolkata.
Duration of roster varies in different hospitals, so we decided
to keep the duration between 7 to 30 days. Hard constraints
are same for all the problems. Here Soft constraints depend on
the roster period. 100 problems were generated for each set.
We determined the number of problems solved in a set and the
average runtime in seconds. We also computed, for each
feasible solution, the number of unsatisfied soft-constraints.
The averages were taken over solved instances.

The methods were compared on the basis of three criteria:
i) the number of problems solved (denoted by Solved in the
table 2) in each set of 100; ii) the runtime in second averaged
over solved problems (denoted by Time in the table 2), iii) the
average cost of the solution obtained (denoted by Cost in the
table 2), cost being determined by the number of
soft-constraints which were not satisfied.

 Simulated Annealing (SA) is the better method, judged on
the basis of the three criteria mentioned above. The quality of
solutions improves markedly as parameters are fine tuned to
their optimal values. Problems become harder to solve if the
constraints are made stricter.

 To solve the same problems, Genetic Algorithm (GA) was
not very effective compared to SA. It took more time and the

quality of the solution was not very impressive. This is
because no constraints checking is done while choosing
cross-over points. And often, after cross-over, the child
chromosome may not be as good as their parent.

TABLE 2: THE NURSE SCHEDULING PROBLEM

PERFORMANCE OF SIMULATED ANNEALING AND GENETIC ALGORITHM

Period
(days)

Probs Method Solved Cost Time
(sec)

SA 88 0.27 0.77 7 100
GA 80 26.85 2.5
SA 92 0.11 2.85 14 100
GA 73 4.72 7.21
SA 100 2.46 3.48 21 100
GA 86 22.16 8.26
SA 65 2.52 11.77 30 100
GA 24 30.00 11.28

V. CONCLUSION

The Nurse Scheduling Problem is a complex scheduling
problem. The runtime increases as the number of variable
becomes higher. Assigning proper weight to each constraints
helps to get feasible solution faster. But if we assign too much
weight to the hard constraints, then the solutions of good
quality are hard to find. Of course, not every randomly
generated problem instance has a feasible solution. When no
weight it assigned to the constraints it is quite possible that
some of the problems do not have feasible solutions.

 In this paper, we applied Simulated Annealing and

Genetic Algorithm for solving Nurse Scheduling Problem
which was modeled as weighted CSP. In most of the cases our
programs were able to return a feasible solution satisfying the
hard constraints. But the SA implementation proved to be
more useful than GA. What is more interesting is that the
resulting roster is cyclic, i.e. the same roster can be repeated
after the given duration.

REFERENCES

[1] S. Abdennadher, Schlenker, ”Nurse scheduling using constraint logic
programming.”, In Proc. of the 11th Annual Conference on Innovative
Applications of Artificial Intelligence (IAAI-99). 1999 pp. 838–843.

[2] U. Aickelin, Dowsland,"Exploiting problem structure in a genetic
algorithm approach to a nurse rostering problem”, Journal of
Scheduling, vol. 3, 2000, pp 139-153.

[3] K. De Jong, “Genetic Algorithms are NOT Function Optimisers.” In D.
Whitley (ed.), Foundations of Genetic Algorithms, vol. 2, San Mateo,
CA: Morgan Kaufmann, 1993, pp. 5–17.

[4] J. Frank, “Local Search for NP-Hard Problems”, Ph. D. Thesis,
University of California, Davis, California, 1997.

[5] G. Post, B. Veltman, “Harmonious Personnel Scheduling”,
Proceedings of the 5th International Conference on the Practice and
Automated Timetabling (PATAT) 2004, pp. 557-559.

[6] D. E Goldberg, “Using time efficiently: Genetic-evolutionary
algorithms and the continuation problem”, in: Proc. Genetic and
Evolutionary Computation Conf., 1999, pp. 212–219.

[7] D. E. Goldberg, “Genetic Algorithms in Search, Optimization and
Machine Learning”, Addison Wesley, 1989.

[8] H. Meyer, auf’m Hofe, “Solving Rostering Tasks as Constraint
Optimization”, E. K. Burke, W. Erben (Eds.): Practice and Theory of

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

Automated Timetabling, Third International Conference, Konstanz,
Springer, 2000, pp. 191-212.

[9] A. Ikegami, A. Niwa, M. Ohkura, “Nurse scheduling in Japan”,
Commun. Oper. Res. Society of Japan, vol. 41, 1996, pp. 436–442 (in
Japanese)

[10] D. S. Johnson, C. R. Aragon, L. A.McGeoch & C.Schevon,”
Optimization by Simulated Annealing”: An Experimental Evaluation,
Part I, Graph Partitioning, Operations Research, vol 37, 1989, pp
865-892.

[11] H. Kawanaka, K. Yamamoto, T. Yoshikawa, T. Shinogi, and S
Tsuruoka, “Genetic algorithm with constraints for the nurse scheduling
problem”, Proceedings of Congress on Evolutionary Computation,
IEEE Press, Seoul, South Korea , vol. 2, 2001, pp. 1123–1130.

[12] S. Kirkpatrick, C. D. Gelatt & M.P.Vecchi, “Optimization by
Simulated Annealing”, Science, vol 220, 1983, pp 671-680.

[13] V. Kumar, “Algorithms for Constraint Satisfaction Problems: A
Survey”, A I Magazine, vol. 13, no 1, 1992, pp 32-44.

[14] C. Liu, R.Kao & A.Wang, “Solving Location-allocation Problems with
Rectilinear Distances by Simulated Annealing”, J Opl Res Soc, vol .45,
no 11, 1994, pp 1304-1315.

[15] M.Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1996.
[16] Parkes & Walser, "Tuning Local Search for Satisfiability Testing”,

Proc AAAI-96, vol. 1, 1996, pp 356-362.
[17] C. R. Reeves, Modern Heuristic Techniques for Combinatorial

Problems, Orient Longman, 1993.
[18] Saxena & Anupam, ”Synthesis of Compliant Mechanisms for Path

Generation using Genetic Algorithm.”, Journal of Mechanical Design
127(4). 2005.

[19] W. M. Spears, Simulated Annealing for Hard Satisfiability Problems,
Technical Report, Naval Research Academy, Wasington D C, 1993.

[20] H. W. Warner, “Scheduling Nursing Personnel According to Nursing
Preference: A Mathematical Approach.”, Operations Research, vol.
24, 1976, pp. 842-856.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

