

A Software Reliability Estimation Tool Using
Artificial Immune Recognition System

Prof.S.Chitra M. E. Dr. M.Rajaram

Abstract-Software is an integral part of
many critical and non-critical
applications and virtually any industries
dependent on computers for their basic
functioning. As computer Software
permeates our modern society and will
continue to do so at an increasing pace
in the future, the assurance of its quality
becomes an issue of critical concern.
Techniques to measure and ensure
reliability of hardware have seen rapid
advances, leaving Software as the
bottleneck in achieving overall system
reliability. Its evaluation includes two
types of activities namely reliability
estimation and defect prediction.
Predicting fault-prone modules for
software development project enable the
companies to reach high reliable systems
and minimize necessary budget,
personnel and resource to be allocated
to achieve their goal. This can be
achieved by identifying the fault-prone
modules in the software development
process in the first phase. In the next
phase recognize the test results & adopt
suitable reliability model by applying
AIRS[Artificial Immune Recognition
System].

Index terms-AIRS, Bayesian model,
Reliability models, Software lifecycle,
Software reliability

I.INTRODUCTION

 Software reliability is defined as
the probability of failure-free software
operation for a specified period of time in a
specified environment. Its evaluation
includes two types of activities namely
Reliability estimation and Defect
prediction.
 “The process of operating a system
or component under specified conditions,
observing or recording the results, and
making an evaluation of some aspect of the
system or component.”

 Software testing is often used in
association with the terms verification and
validation. Verification is the
checking or testing of items, including
software, for confirmation and consistency
with an associated specification. Software
testing is just a kind of verification, which
also uses the techniques such as reviews,
analysis, inspections and walkthroughs.

Validation is the process of checking that
what has been specified is what the user
actually wanted.

Validation: are we doing the right
job?
Verification: are we doing the job
right?

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

II.OBJECTIVES

The objective of the paper is to help

engineers, managers and users make more
precise decisions to make everyone more
concretely aware of software reliability by
focusing attention on it and to have high
quality reliable system to reduce the
overhead after delivery. Economics of the
development of a system, delivery and
maintenance can be scaled out. The life
span of the system can be estimated and
make the users to be aware of reliable
system.

III.METHODOLOGY

 There are two main methodologies.
One is the testing methodology in which
the errors are spotted and the failure rate is
calculated. These values are used as input
for next stage that is the reliability
estimation.
 There are many probabilistic and
statistical approaches for modeling
software reliability. Software reliability
estimation is used for various purposes
during development, to make the right
decision. And after the software has been
taken into use reliability estimation will
provide idea on the basis of maintenance
recommendations. Further improvement is
made on the basis of the recommendation
to discontinue the use of the software.

IV.THE ARTIFICIAL IMMUNE
RECOGNITION SYSTEM (AIRS)

The recognition and learning

capabilities of the natural immune system
have been an inspiration for researchers

developing algorithms for a wide range of
applications. This section introduces some
basic immune system concepts and
provides the history and background
behind the AIRS algorithm for
classification.

NATURAL IMMUNE SYSTEMS

The natural immune system offers

two lines of defense, the innate and
adaptive immune system. The innate
immune system consists of cells that can
neutralize a predefined set of attackers, or
‘antigens’, without requiring previous
exposure to them. The antigen can be an
intruder or part of cells or molecules of the
organism itself. In addition, higher animals
like vertebrates possess an adaptive
immune system that can learn to recognize,
eliminate and remember specific new
antigens. This is accomplished by a form
of natural selection.

The bone marrow and thymus
continuously produce lymphocytes and
each of these cells can counteract a
specific type of antigen. Now if for
example a B-cell lymphocyte encounters
an antigen it codes for, it will produce
antibody molecules that neutralize the
antigen and in addition a large number of
cloned B-cells are produced that code for
the same antigen (‘cloned expansion’ or
‘colonel selection’). The immediate
reaction of the innate and adaptive immune
system cells is called the primary immune
response. A selection of the activated
lymphocytes is turned into sleeper memory
cells that can be activated again if a new
intrusion occurs of the same antigen,
resulting in a quicker response. This is
called the secondary immune response.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

ARTIFICIAL IMMUNE SYSTEMS

Natural immune systems have
inspired researchers to develop algorithms
that exhibit adaptivity, associative
memory, self – non-self discrimination and
other aspects of A Comprehensive
Benchmark of the Artificial Immune
Recognition System (AIRS) immune
systems. These artificial immune system
algorithms (also known as immuno
computing algorithms) have been applied
to a wide range of problems such as
biological modeling, computer network
security & virus detection, robot
navigation, job shop scheduling, clustering
and classification.
 The Artificial Immune System
algorithm (AIRS) can be applied to
classification problems, which is a very
common real world data-mining task. Most
other artificial immune system research
concerns unsupervised learning and
clustering. The only other attempt to use
immune systems for supervised learning is
the work of Carter .The AIRS design refers
to many immune system metaphors
including resource competition, clonal
selection, affinity maturation, memory cell
retention, and so on. AIRS builds on the
concept of resource limited clustering.

According to the introductory paper,
AIRS seems to perform well on various
classification and machine learning
problems. Watkins claimed, “The
performance of AIRS is comparable, and
in some cases superior, to the performance
of other highly-regarded supervised
learning techniques for these benchmarks”.
Later on, Goodman, Boggess and Watkins
investigated the “source of power for
AIRS” and its performance on multiple-
class problems. They claim “AIRS is

competitive with the top five to eight
classifiers out of 10-30 best classifiers on
those problems”, “it was surprisingly
successful as a general purpose classifier”
and it “performed consistently strong
across large scope of classification
problems”.

AIRS: THE ALGORITHM

In AIRS, there are two different

populations, the Artificial Recognition
Balls (ARBs) and the memory cells. If a
training antigen is presented, ARBs
(lymphocytes) matching the antigen are
activated and awarded more resources.
Through this process of stimulation,
mutation and selection a candidate
memory cell is selected which is inserted
to the memory cell pool if it contributes
enough information.

This process is repeated for all
training instances and finally classification
takes place by performing a nearest
neighbor search on the memory cell
population. To describe the AIRS
algorithm in detail, let us assume we have
a training data set X containing n labeled
instances, d i i i ag x t RˇZ with xi an input
with d attributes and ti a one dimensional
target class (i=1,2…n). The algorithm goes
through the following steps

1. Initialization

First all the data items will be

normalized so that the affinity of every two
training instances agi and agj is in the
range [0,1]. In AIRS, the affinity is usually
represented by Euclidean distance over the
attributes. We assume the set MC as the
memory cell pool containing m memory
cells: MC={mc1,mc2,…,mcm}, and set

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

AB as the ARB4 Lingjun Meng, Peter van
der Putten, Haiyang Wang population
containing r ARBs: AB={ab1,ab2,…,abr},
with { , } mc mcj j j mc x t �,(j=1,2,…,m);
{ , } ab ab k k k ab x t �, (k=1,2,…,r).
Then the memory cells pool MC and the
ARB populations AB are seeded by
randomly adding training instances.

2. Memory cell identification and
ARB generation

From now on, antigens (training

instances) will be presented to the
algorithm one by one. If an antigen agi
={xi,ti} is presented to the system, the
algorithm will identify a memory cell { , }
mc match mc x t �which has the same
class label (mc match t =ti) and lowest
distance to agi. If there is no mcmatch
available at this moment, just let agi act as
the mcmatch. This mcmatch will then be
cloned to produce new mc clones. First the
attributes of mcmatch will be mutated with
a certain probability. If any mutations
occurred for this particular clone, the class
label will be mutated as well with the same
probability

3. Competition for Resources and
Development of a Candidate Memory Cell

At this moment, there are a set of
ARBs including mcmatch, mutations from
mcmatch, and others from previous
training. AIRS mutates these memory cell
clones to generate new ARBs. The number
of ARBs allowed to produce is calculated
by the product of the hyper clonal rate,
clonal rate (both default 10), and the
stimulation level (1-distance to agi). The
newly generated ARBs will be combined
with the existing ARBs. AIRS then
employs a mechanism of survival of the
fittest individuals within the ARB

population. First, each ARB will be
examined with respect to its stimulation
level when presented to the antigen.

In AIRS, cells with high stimulation
responses that are of the same class as the
antigen and cells with low stimulation
response that are not of the same class as
the antigen are rewarded most and
allocated with more resources. The losers
in competing for resources will be
removed from the system. Then the ARB
population consists of only those ARBs
that are most stimulated and are capable in
competing for resources. Then the stop
criterion is evaluated.

The stop criterion is reached if the
average stimulation value of every class
subset of AB is not less than the
stimulation threshold (default 0.8).

 Then the candidate memory cell
mccandidate is chosen which is the most
stimulated ARB of the same class as the
training antigen agi. Regardless whether
the stop criterion was met the algorithm
proceeds by allowing the ARBs the
opportunity to proliferate with more
mutated offspring.

This mutation process is similar to
the mutation of phase 2, with a small
exception: the amount of offspring than
can be to produced is calculated by the
product of stimulation level and the clonal
rate only. If the evaluation criterion was
not met in the last test, the process will
start again with the stimulation activation
and resource allocation step. Otherwise the
algorithm will stop.

3. Memory Cell Introduction

Now if mccandidate is more

stimulated by the antigen than mcmatch, it
will be added into the memory cell pool. In

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

addition, if the affinity value between and
mccandidate and mcmatch is also less than
the product of the affinity threshold
(average affinity between all training
items) and the affinity threshold scalar (a
parameter used to provide a cut A
Comprehensive Benchmark of the
Artificial Immune Recognition System
(AIRS) 5 off value, default 0.8), which
means mccandidate is very similar to
mcmatch, mccandidate will replace
mcmatch in the set of memory cells.

 By this mechanism, better
classifying memory cells can replace
existing memory cells so that the data
reduction capabilities of the algorithm are
improved. Training is completed now for
this training instance agi. and the process is
repeated from step 2 for the next instance.

4. Classification

With the training completed, the
evolved memory cell population
MC={mc1, mc2…,mcm} (m<n) will be
used for classification using k-nearest
neighbor. The classification for a test
instance will be determined by the majority
vote of the k most stimulated memory
cells.

V.BAYESIAN MODEL

It is rather easy to incorporate

evidence from many sources, e.g. experts,
tests, Operational data etc.Bayesian models
also work when there are no positive
instances (e.g. when no Failures have been
observed).

Bayesian approaches have been
proposed. The advantage of Bayesian
models is that various important but non-
measurable factors, such as software

complexity, architecture, quality of
verification and validation activities, and
test coverage are easily incorporated in the
model.

THE PROCESS OF BAYESIAN
RELIABILITY ASSESSMENT

To state the problem in Bayesian terms,
Here the event b e f t , t ,m means the
prediction that the software will fail f m
times in the time period starting from time
b t and lasting until time e t ; if the
different failure modes would be counted
separately, a separate index term would be
inserted to the event. Note that the
reliability of the system is a special case of
this formulation:

 (1)

Fig 1: The process of bayesian reliability
assessment

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

It is the probability that = 0 f m .The
event data means that the operational data
is what it is; if the data would be in time
series form, it might indicate that software
failed d m times in the time period starting
at time d b t , and lasting until time d e t , ;
there might of course be data for several
time periods. The data might alternatively
consist of failure events with timing
information. The prior probability (, ,) b e
f p t t m is, as stated above, arrived at
through expert judgment. The prior
probability for the data, p(data) , can be
thought of as a scaling factor, for
discounting exceptional circumstances.
This report mainly focuses on finding an
estimate for the likelihood function (| , ,)
b e f p data t t m . In what follows, the
information about b e f t , t ,m is usually
embedded in models: we try to find the
likelihood of the data given that we have
some model with which to predict the
number of failures.

VI.SCOPE

 Hardware and software

reliability engineering have many concepts
with unique terminology and many
mathematical and statistical expressions.
Basically, the approach is to apply
mathematics and statistics to model past
failure data to predict future behavior of a
component or system. Major statistical
distributions used in hardware reliability
modeling include the exponential, gamma,
Weibull, binomial, Poisson, normal,
lognormal, Bayes, and Markov
distributions.

To use these distributions, data
collected from failures of systems need to
be fitted with techniques like maximum
likelihood or least squares estimates. The

appropriateness of the models selected
need to be verified by using statistical
methods like Chi-squared or goodness-of-
fit. Because mechanical and electrical
systems tend to deteriorate over time, these
reliability distributions depend on time as
the variable, usually calendar time. This
project is one of its kind as it combines
both testing and reliability estimation
techniques.

It is important to document the times
and nature of bug occurrences, and their
correction times, throughout the design,
implementation and the formal testing
phases. Plays central role in the planning
and control of software development
projects.

 • Reliability growth model

• Unified approach

VII. UNIQUE FEATURES

• It is not a statistical method of
estimation.

• It is a reliability estimation growth
model, which does not consider the
system as a complete entity but it
estimates the reliability on each
phase of the development.

• Easy to perform the reliability
estimation and prediction rather than
other models.

• It is reliability growth model, which
gives the early alarm in the phases
of development.

VIII.ALTERNATIVES

• Models that are taken into account

are software architecture, software
complexity, test coverage, conduct
of verification and validation, and

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

structured expert opinion should be
given priority.

• In applications requiring high
dependability, software reliability
models should be used only in
conjunction with other methods of
ensuring sufficient quality.
Otherwise the amount of testing
grows prohibitively large. These
methods include, but are not limited
to, formal methods, software
inspections and reviews, static
analysis of code, and systematic
software testing.

• One should not rely on a single
model but rather choose a set of
models whose results are combined
in one way or another.

IX. ILLUSTRATIONS

 Table1: Test results with severity

Fig 2: Reliability Plot

X. CONCLUSION

 Software reliability is a key part in
software quality. The study of software
reliability can be categorized into three
parts: modeling, measurement and
improvement. Software reliability
modeling has matured to the point that
meaningful results can be obtained by
applying suitable models to the problem.
There are many models exist which do not
capture a necessary software
characteristics. Assumptions and
abstractions must be made to simplify the
problem. There is no single model that is
universal to all the situations. Software
reliability measurement is naive.
Development process, faults and failures
found are all the factors related to software
reliability.

This report is about the problem of
statistically forecasting the number of
software failures in a given time interval,
given a history of previous failures
(including the information that none have

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

occurred). An emphasis in the review has
been put on the form of the likelihood
function which represents the probability
that the data is what it is, given that the
model has a specific parametric form.

A multitude of models have been
proposed , but each has its drawbacks,
some being shared by most models. A
common problem with the reviewed
models is that none allow for non-existent
failure data, i.e., a software usage history
with a known duration of time in
operational use with no detected failures.
Another problem shared by the models is
that they support only rather modest
reliability claims. There is no solution to
this problem in sight.

The AIRS algorithm to have pure
data, that can be proposed to appropriate
estimation model which provides the
appropriate estimation on reliability for the
system or module. Once the endurance of
the system is fuzz , the developer can be
alerted to take necessary steps to provide
reliable software which will reduce the
expenses after delivery of the system to
end user.

XI. REFERENCES

[1.] Ebeling, Charles E., (1997), An

Introduction to Reliability and
Maintainability Engineering, McGraw-Hill
Companies, Inc., Boston.

[2.] Denney, Richard (2005) Succeeding with

Use Cases: Working Smart to Deliver
Quality. Addison-Wesley Professional
Publishing. ISBN . Discusses the use of
software reliability engineering in use case
driven software development

[3.] Kapur, K.C., and Lamberson, L.R., (1977),
Reliability in Engineering Design, John
Wiley & Sons, New York.

[4.] Siddhartha R. Dalal and Allen A.

McIntosh, "When to Stop Testing for
Large Software Systems with Changing
Code", IEEE Transactions on Software
Engineering

[5.] S. R. Dalal and C. L. Mallows, “When

Should One Stop Testing Software”,
Journal of the American Statistical
Association

[6.] Willa Ehrlich, Bala Prasanna, John

Stampfel, and Jar Wu, "Determining the
Cost of a Stop-Test Decision”.

[7.] William H. Farr and Oliver D. Smith,

Statistical Modeling and Estimation of
Reliability Functions for Software Users
Guide,

[8.] Swapna S. Gokhale, Teebu Phillip, and

Peter N. Marinos, “A Non-Homogeneous
Markov Software Reliability Model with
Imperfect Repair”

[9.] Swapna S. Gokhale, Peter N. Marinos,

Michael R. Lyu, and Kishor S. Trivedi,
“Effect of Repair Policies on Software
Reliability”.

[10.] Chin-Yu Huang, Sy-Yen Kuo,

Michael R. Lyu, and Jung-Hua Lo,
“Quantitative Software Reliability
Modeling from Testing to Operation”.

[11.] Daniel R. Jeski, “Estimating the

Failure Rate of Evolving Software
Systems” .

[12.] Ted Keller and Norman F.

Schneidewind, “Successful Application of
Software Reliability Engineering for the
NASA Shuttle” Csenki, A.

[13.] Bayes predictive analysis of a

fundamental software reliability model.
IEEE Transactions on Reliability, Vol. R-

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

39, No. 2 (June 1990), 177.183 Cutello, V.
and Nicosia, G. (2002).

[14.] Multiple learning using immune

algorithms. In 4th International
Conference on Recent Advances in Soft
Computing (RASC-2002), pages 102–107,

[15.] Carter, J. H. The immune systems

as a model for pattern recognition and
classification.Journal of the American
Medical Informatics Association 7(1), 28-
41, 2000 Blanchard, Benjamin S. (1992),

[16.] Logistics Engineering and

Management (Fourth Ed.), Prentice-
Hall, Inc., Englewood Cliffs, New Jersey.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol I
IMECS 2008, 19-21 March, 2008, Hong Kong

ISBN: 978-988-98671-8-8 IMECS 2008

