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Abstract-Software is an integral part of 
many critical and non-critical 
applications and virtually any industries 
dependent on computers for their basic 
functioning. As computer Software 
permeates our modern society and will 
continue to do so at an increasing pace 
in the future, the assurance of its quality 
becomes an issue of critical concern. 
Techniques to measure and ensure 
reliability of hardware have seen rapid 
advances, leaving Software as the 
bottleneck in achieving overall system 
reliability. Its evaluation includes two 
types of activities namely reliability 
estimation and defect prediction. 
Predicting fault-prone modules for 
software development project enable the 
companies to reach high reliable systems 
and minimize necessary budget, 
personnel and resource to be allocated 
to achieve their goal. This can be 
achieved by identifying the fault-prone 
modules in the software development 
process in the first phase. In the next 
phase recognize the test results & adopt 
suitable reliability model by applying 
AIRS[Artificial Immune Recognition 
System]. 

Index terms-AIRS, Bayesian model, 
Reliability models, Software lifecycle, 
Software reliability 
 

I.INTRODUCTION 
 

          Software reliability is defined    as 
the probability of failure-free software 
operation for a specified period of time in a 
specified environment. Its evaluation 
includes two types of activities namely 
Reliability estimation and Defect 
prediction.  
             “The process of operating a system 
or component under specified conditions, 
observing or recording the results, and 
making an evaluation of some aspect of the 
system or component.” 
 
               Software testing is often used in 
association with the terms verification and 
validation. Verification is the  
checking or testing of items, including 
software, for confirmation and consistency 
with an associated specification. Software 
testing is just a kind of verification, which 
also uses the techniques such as reviews, 
analysis, inspections and walkthroughs.  

Validation is the process of checking that 
what has been specified is what the user 
actually wanted. 

 
Validation: are we doing the right 
job? 
Verification: are we doing the job 
right? 
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II.OBJECTIVES 
        
The objective of the paper is to help 

engineers, managers and users make more 
precise decisions to make everyone more 
concretely aware of software reliability by 
focusing attention on it and to have high 
quality reliable system to reduce the 
overhead after delivery. Economics of the 
development of a system, delivery and 
maintenance can be scaled out. The life 
span of the system can be estimated and 
make the users to be aware of reliable 
system. 

 
III.METHODOLOGY 

 
       There are two main methodologies. 
One is the testing methodology in which 
the errors are spotted and the failure rate is 
calculated. These values are used as input 
for next stage that is the reliability 
estimation.  
           There are many probabilistic and 
statistical approaches for modeling 
software reliability. Software reliability 
estimation is used for various purposes 
during development, to make the right 
decision. And after the software has been 
taken into use reliability estimation will 
provide idea on the basis of maintenance 
recommendations.  Further improvement is 
made on the basis of the recommendation 
to discontinue the use of the software. 
 

IV.THE ARTIFICIAL IMMUNE 
RECOGNITION SYSTEM (AIRS) 

 
The recognition and learning 

capabilities of the natural immune system 
have been an inspiration for researchers 

developing algorithms for a wide range of 
applications. This section introduces some 
basic immune system concepts and 
provides the history and background 
behind the AIRS algorithm for 
classification. 

 
NATURAL IMMUNE SYSTEMS 

 
The natural immune system offers 

two lines of defense, the innate and 
adaptive immune system. The innate 
immune system consists of cells that can 
neutralize a predefined set of attackers, or 
‘antigens’, without requiring previous 
exposure to them. The antigen can be an 
intruder or part of cells or molecules of the 
organism itself. In addition, higher animals 
like vertebrates possess an adaptive 
immune system that can learn to recognize, 
eliminate and remember specific new 
antigens. This is accomplished by a form 
of natural selection.  

The bone marrow and thymus 
continuously produce lymphocytes and 
each of these cells can counteract a 
specific type of antigen. Now if for 
example a B-cell lymphocyte encounters 
an antigen it codes for, it will produce 
antibody molecules that neutralize the 
antigen and in addition a large number of 
cloned B-cells are produced that code for 
the same antigen (‘cloned expansion’ or 
‘colonel selection’). The immediate 
reaction of the innate and adaptive immune 
system cells is called the primary immune 
response. A selection of the activated 
lymphocytes is turned into sleeper memory 
cells that can be activated again if a new 
intrusion occurs of the same antigen, 
resulting in a quicker response. This is 
called the secondary immune response. 
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ARTIFICIAL IMMUNE SYSTEMS 
 

Natural immune systems have 
inspired researchers to develop algorithms 
that exhibit adaptivity, associative 
memory, self – non-self discrimination and 
other aspects of A Comprehensive 
Benchmark of the Artificial Immune 
Recognition System (AIRS) immune 
systems. These artificial immune system 
algorithms (also known as immuno 
computing algorithms) have been applied 
to a wide range of problems such as 
biological modeling, computer network 
security & virus detection, robot 
navigation, job shop scheduling, clustering 
and classification. 
  The Artificial Immune System 
algorithm (AIRS) can be applied to 
classification problems, which is a very 
common real world data-mining task. Most 
other artificial immune system research 
concerns unsupervised learning and 
clustering. The only other attempt to use 
immune systems for supervised learning is 
the work of Carter .The AIRS design refers 
to many immune system metaphors 
including resource competition, clonal 
selection, affinity maturation, memory cell 
retention, and so on. AIRS builds on the 
concept of resource limited clustering. 

According to the introductory paper, 
AIRS seems to perform well on various 
classification and machine learning 
problems. Watkins claimed, “The 
performance of AIRS is comparable, and 
in some cases superior, to the performance 
of other highly-regarded supervised 
learning techniques for these benchmarks”. 
Later on, Goodman, Boggess and Watkins 
investigated the “source of power for 
AIRS” and its performance on multiple-
class problems. They claim “AIRS is 

competitive with the top five to eight 
classifiers out of 10-30 best classifiers on 
those problems”, “it was surprisingly 
successful as a general purpose classifier” 
and it “performed consistently strong 
across large scope of classification 
problems”. 

 
AIRS: THE ALGORITHM 

 
In AIRS, there are two different 

populations, the Artificial Recognition 
Balls (ARBs) and the memory cells. If a 
training antigen is presented, ARBs 
(lymphocytes) matching the antigen are 
activated and awarded more resources. 
Through this process of stimulation, 
mutation and selection a candidate 
memory cell is selected which is inserted 
to the memory cell pool if it contributes 
enough information.  

This process is repeated for all 
training instances and finally classification 
takes place by performing a nearest 
neighbor search on the memory cell 
population. To describe the AIRS 
algorithm in detail, let us assume we have 
a training data set X containing n labeled 
instances, d i i i ag x t RˇZ with xi an input 
with d attributes and ti a one dimensional 
target class (i=1,2…n). The algorithm goes 
through the following steps  

 
1. Initialization 

 
First all the data items will be 

normalized so that the affinity of every two 
training instances agi and agj is in the 
range [0,1]. In AIRS, the affinity is usually 
represented by Euclidean distance over the 
attributes. We assume the set MC as the 
memory cell pool containing m memory 
cells: MC={mc1,mc2,…,mcm}, and set 
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AB as the ARB4 Lingjun Meng, Peter van 
der Putten, Haiyang Wang population 
containing r ARBs: AB={ab1,ab2,…,abr}, 
with { , } mc mcj j j mc x t �,(j=1,2,…,m); 
{ , } ab ab k k k ab x t �, (k=1,2,…,r). 
Then the memory cells pool MC and the 
ARB populations AB are seeded by 
randomly adding training instances. 
 

2. Memory cell identification and 
ARB generation 

 
From now on, antigens (training 

instances) will be presented to the 
algorithm one by one. If an antigen agi 
={xi,ti} is presented to the system, the 
algorithm will identify a memory cell { , } 
mc match mc x t �which has the same 
class label ( mc match t =ti) and lowest 
distance to agi. If there is no mcmatch 
available at this moment, just let agi act as 
the mcmatch. This mcmatch will then be 
cloned to produce new mc clones. First the 
attributes of mcmatch will be mutated with 
a certain probability. If any mutations 
occurred for this particular clone, the class 
label will be mutated as well with the same 
probability  

3. Competition for Resources and 
Development of a Candidate Memory Cell 

At this moment, there are a set of 
ARBs including mcmatch, mutations from 
mcmatch, and others from previous 
training. AIRS mutates these memory cell 
clones to generate new ARBs. The number 
of ARBs allowed to produce is calculated 
by the product of the hyper clonal rate, 
clonal rate (both default 10), and the 
stimulation level (1-distance to agi). The 
newly generated ARBs will be combined 
with the existing ARBs. AIRS then 
employs a mechanism of survival of the 
fittest individuals within the ARB 

population. First, each ARB will be 
examined with respect to its stimulation 
level when presented to the antigen.  

In AIRS, cells with high stimulation 
responses that are of the same class as the 
antigen and cells with low stimulation 
response that are not of the same class as 
the antigen are rewarded most and 
allocated with more resources. The losers 
in competing for resources will be 
removed from the system. Then the ARB 
population consists of only those ARBs 
that are most stimulated and are capable in 
competing for resources. Then the stop 
criterion is evaluated.  

The stop criterion is reached if the 
average stimulation value of every class 
subset of AB is not less than the 
stimulation threshold (default 0.8). 

 Then the candidate memory cell 
mccandidate is chosen which is the most 
stimulated ARB of the same class as the 
training antigen agi. Regardless whether 
the stop criterion was met the algorithm 
proceeds by allowing the ARBs the 
opportunity to proliferate with more 
mutated offspring.  

This mutation process is similar to 
the mutation of phase 2, with a small 
exception: the amount of offspring than 
can be to produced is calculated by the 
product of stimulation level and the clonal 
rate only. If the evaluation criterion was 
not met in the last test, the process will 
start again with the stimulation activation 
and resource allocation step. Otherwise the 
algorithm will stop. 

 
3. Memory Cell Introduction 
 
Now if mccandidate is more 

stimulated by the antigen than mcmatch, it 
will be added into the memory cell pool. In 
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addition, if the affinity value between and 
mccandidate and mcmatch is also less than 
the product of the affinity threshold 
(average affinity between all training 
items) and the affinity threshold scalar (a 
parameter used to provide a cut A 
Comprehensive Benchmark of the 
Artificial Immune Recognition System 
(AIRS) 5 off value, default 0.8), which 
means mccandidate is very similar to 
mcmatch, mccandidate will replace 
mcmatch in the set of memory cells. 

 By this mechanism, better 
classifying memory cells can replace 
existing memory cells so that the data 
reduction capabilities of the algorithm are 
improved. Training is completed now for 
this training instance agi. and the process is 
repeated from step 2 for the next instance. 
 

4. Classification 
 

With the training completed, the 
evolved memory cell population 
MC={mc1, mc2…,mcm} (m<n) will be 
used for classification using k-nearest 
neighbor. The classification for a test 
instance will be determined by the majority 
vote of the k most stimulated memory 
cells. 

 
V.BAYESIAN MODEL 

 
It is rather easy to incorporate 

evidence from many sources, e.g. experts, 
tests, Operational data etc.Bayesian models 
also work  when there are no positive 
instances (e.g. when no Failures have been 
observed). 

Bayesian approaches have been 
proposed. The advantage of Bayesian 
models is that various important but non-
measurable factors, such as software 

complexity, architecture, quality of 
verification and validation activities, and 
test coverage are easily incorporated in the 
model.  

 
THE PROCESS OF BAYESIAN 
RELIABILITY ASSESSMENT 
 

To state the problem in Bayesian terms, 
Here the event b e f t , t ,m means the 
prediction that the software will fail f m 
times in the time period starting from time 
b t and lasting until time e t ; if the 
different failure modes would be counted 
separately, a separate index term would be 
inserted to the event. Note that the 
reliability of the system is a special case of 
this formulation: 
 
 
                                                                                  
                                                             (1) 
 

 
 
Fig 1: The process of bayesian reliability 
assessment 
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It is the probability that = 0 f m .The 
event data means that the operational data 
is what it is; if the data would be in time 
series form, it might indicate that software 
failed d m times in the time period starting 
at time d b t , and lasting until time d e t , ; 
there might of course be data for several 
time periods. The data might alternatively 
consist of failure events with timing 
information. The prior probability ( , , ) b e 
f p t t m is, as stated above, arrived at 
through expert judgment. The prior 
probability for the data, p(data) , can be 
thought of as a scaling factor, for 
discounting exceptional circumstances. 
This report mainly focuses on finding an 
estimate for the likelihood function ( | , , ) 
b e f p data t t m . In what follows, the 
information about b e f t , t ,m is usually 
embedded in models: we try to find the 
likelihood of the data given that we have 
some model with which to predict the 
number of failures.  

 
VI.SCOPE 

 
  Hardware and software 

reliability engineering have many concepts 
with unique terminology and many 
mathematical and statistical expressions.  
Basically, the approach is to apply 
mathematics and statistics to model past 
failure data to predict future behavior of a 
component or system. Major statistical 
distributions used in hardware reliability 
modeling include the exponential, gamma, 
Weibull, binomial, Poisson, normal, 
lognormal, Bayes, and Markov 
distributions.  

To use these distributions, data 
collected from failures of systems need to 
be fitted with techniques like maximum 
likelihood or least squares estimates. The 

appropriateness of the models selected 
need to be verified by using statistical 
methods like Chi-squared or goodness-of-
fit. Because mechanical and electrical 
systems tend to deteriorate over time, these 
reliability distributions depend on time as 
the variable, usually calendar time. This 
project is one of its kind as it combines 
both testing and reliability estimation 
techniques.   

It is important to document the times 
and nature of bug occurrences, and their 
correction times, throughout the design, 
implementation and the formal testing 
phases. Plays central role in the planning 
and control of software development 
projects. 

 
        • Reliability growth model  

• Unified approach  
 

VII. UNIQUE FEATURES 
 

• It is not a statistical method of 
estimation. 

• It is a reliability estimation growth 
model, which does not consider the 
system as a complete entity but it 
estimates the reliability on each 
phase of the development. 

• Easy to perform the reliability 
estimation and prediction rather than 
other models. 

• It is reliability growth model, which 
gives the early alarm in the phases 
of development. 

 
VIII.ALTERNATIVES 

 
• Models that are taken into account 

are software architecture, software 
complexity, test coverage, conduct 
of verification and validation, and 
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structured expert opinion should be 
given priority. 

• In applications requiring high 
dependability, software reliability 
models should be used only in 
conjunction with other methods of 
ensuring sufficient quality. 
Otherwise the amount of testing 
grows prohibitively large. These 
methods include, but are not limited 
to, formal methods, software 
inspections and reviews, static 
analysis of code, and systematic 
software testing. 

• One should not rely on a single 
model but rather choose a set of 
models whose results are combined 
in one way or another. 

 
 
 

IX. ILLUSTRATIONS 
 

 Table1: Test results  with severity 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 2: Reliability Plot 

 
 

X. CONCLUSION 
 

          Software reliability is a key part in 
software quality. The study of software 
reliability can be categorized into three 
parts: modeling, measurement and 
improvement.    Software reliability 
modeling has matured to the point that 
meaningful results can be obtained by 
applying suitable models to the problem. 
There are many models exist which do not 
capture a necessary software 
characteristics. Assumptions and 
abstractions must be made to simplify the 
problem. There is no single model that is 
universal to all the situations. Software 
reliability measurement is naive. 
Development process, faults and failures 
found are all the factors related to software 
reliability.  

This report is about the problem of 
statistically forecasting the number of 
software failures in a given time interval, 
given a history of previous failures 
(including the information that none have 
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occurred). An emphasis in the review has 
been put on the form of the likelihood 
function which represents the probability 
that the data is what it is, given that the 
model has a specific parametric form.  

A multitude of models have been 
proposed , but each has its drawbacks, 
some being shared by most models. A 
common problem with the reviewed 
models is that none allow for non-existent 
failure data, i.e., a software usage history 
with a known duration of time in 
operational use with no detected failures. 
Another problem shared by the models is 
that they support only rather modest 
reliability claims. There is no solution to 
this problem in sight.  

The AIRS algorithm to have pure 
data,  that  can be proposed to appropriate 
estimation model which provides the 
appropriate estimation on reliability for the 
system or module. Once the endurance  of 
the system is fuzz , the developer can be 
alerted to take   necessary steps to provide 
reliable software which  will reduce the 
expenses after delivery of the system to 
end user. 
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