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Optimal Cascade Linguistic Attribute Hierarchies for
Decision Making
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Abstract— A hierarchical approach, in which a high-
dimensional model is decomposed into series of low-dimensional
sub-models connected in cascade, has been shown to be an effec-
tive way to overcome the ’curse of dimensionality’ problem. In-
formation propagation through a cascade hierarchy of Linguistic
Decision Trees (LDTs) based on label semantics forms a process
of cascade decision making. In order to examine how a cascade
hierarchy of LDTs works compared with a single LDT for mul-
tiple attribute decision making, we developed genetic algorithm
with linguistic ID3 in wrapper to find optimal cascade hierar-
chies. Experiments have been carried out on the two bench-
mark databases, Pima Diabetes and Wisconsin Breast Cancer
databases from the UCI Machine Learning Repository. It is
shown that an optimal cascade hierarchy of LDTs has better per-
formance than a single LDT. The use of attribute hierarchies also
greatly reduces the number of rules when the relationship be-
tween a goal variable and input attributes is highly uncertain and
nonlinear.

Keywords: cascade linguistic attribute hierarchy, cascade decision
making, Genetic algorithm in wrapper, Linguistic ID3

1 Introduction

For multiple attribute decision making, the underlying rela-
tionship between attributes and the classification or decision
variable is often highly uncertain and imprecise. This re-
quires an integrated treatment of uncertainty and fuzziness
when modeling the propagation of information from low-level
attributes to high-level goal variables. One of the main draw-
backs to fuzzy modeling of systems is known as the ‘curse
of dimensionality’, which is the exponential growth in the
number of possible fuzzy rules as a function of the dimen-
sion of model input space. A hierarchical approach in which
the original high-dimensional model is decomposed into se-
ries of low-dimensional sub-models connected in cascade, has
been shown to be an effective way to overcome this problem
since it provides a linear growth in the number of rules and pa-
rameters as the input dimension increases [12]. Campello and
Amaral presented a unilateral transformation that converts the
proposed hierarchical model into a mathematically equivalent
non-hierarchical one [2]. As a result of the uncertainty and
non-linear relationship between different attributes and a goal
variable, different cascade hierarchies will have different per-
formance on decision making procedures. We have proposed
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a general multiple attribute hierarchy embedded with Linguis-
tic Decision Trees (LDTs) based on Label Semantics [7]. In
this paper, we propose a cascade hierarchy approach embed-
ded with LDTs representing transparent rules, and describe
the process of information propagation through a cascade hi-
erarchy. We then develop a genetic algorithm with the Lin-
guistic ID3 (LID3) [9] algorithm in wrapper to optimise cas-
cade hierarchies. The experiments are performed on bench-
mark databases from the UCI Machine Learning Repository.

2 Label Semantics

Label semantics [5, 6] proposes two fundamental and inter-
related measures of the appropriateness of labels as descrip-
tions of an object or value. Given a finite set of labels £ from
which can be generated a set of expressions LF through re-
cursive applications of logical connectives, the measure of ap-
propriateness of an expression § € LFE as a description of
instance « is denoted by ¢ () and quantifies the agent’s sub-
jective belief that 6 can be used to describe x based on his/her
(partial) knowledge of the current labelling conventions of the
population. From an alternative perspective, when faced with
an object to describe, an agent may consider each label in £
and attempt to identify the subset of labels that are appro-
priate to use. Let this set be denoted by D,. In the face
of their uncertainty regarding labelling conventions the agent
will also be uncertain as to the composition of D,, and in la-
bel semantics this is quantified by a probability mass function
mg : 25 — [0, 1] on subsets of labels. The relationship be-
tween these two measures will be described below.

Unlike linguistic variables [14], which allow for the genera-
tion of new label symbols using a syntactic rule, label seman-
tics assumes a finite set of labels £. These are the basic or
core labels to describe elements in an underlying domain of
discourse 2. Based on L, the set of label expressions LFE is
then generated by recursive application of the standard logic
connectives as follows:

Definition 2.1 Label Expressions
The set of label expressions LE of L is defined recursively as
follows:
e/fLe LthenL € LE
o [ff,p € LE then -0,0 A 0,0V ¢ € LE

A mass assignment m, on sets of labels then quantifies the
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agent’s belief that any particular subset of labels contains all
and only the labels with which it is appropriate to describe x.

Definition 2.2 Mass Assignment on Labels
Va € Q a mass assignment on labels is a function m,, : 25 —
[0, 1] such that 3" g, my (S) =1

Now depending on labeling conventions there may be certain
combinations of labels which cannot all be appropriate to de-
scribe any object. For example, small and large cannot both
be appropriate. This restricts the possible values of D, to the
following set of focal elements:

Definition 2.3 Set of Focal Elements
Given labels L together with associated mass assignment m :
Vx € Q, the set of focal elements for L is given by:

F={SCL:3weQ, my(S) >0} (1

The appropriateness measure, fig (z), and the mass m, are
then related to each other on the basis that asserting ‘z is 6’
provides direct constraints on D,. For example, asserting ‘x
is L1 A Ly’, for labels Ly, Ly € L is taken as conveying the
information that both L; and Lo are appropriate to describe
x so that {Ly, La} C D,. Similarly, ‘z is =L’ implies that
L is not appropriate to describe x so L ¢ D,.. In general we
can recursively define a mapping A : LE — 22 from expres-
sions to sets of subsets of labels, such that the assertion ‘x is
¢’ directly implies the constraint D,, € A (f) and where A (6)
is dependent on the logical structure of #. For example, if
L = {low, medium, high} then A\(medium A —high) =
{{low, medium}, {medium}} corresponding to those sets
of labels which include medium but do not include high.
Hence, the description D, provides an alternative to Zadeh’s
linguistic variables in which the imprecise constraint ‘z is 6’
on z, is represented by the precise constraint D, € A(6), on
Dy.

Definition 2.4 \-mapping \ : LE — 27 is defined recur-
sively as follows: V0, p € LE

e A0 A @) =A0)NA(p)
e MOV @) = A(0) UA(p)

o \(—6) = A(0)°

Therefore, based on the A-mapping we define the appropriate-
ness measure as below:

Definition 2.5 (Appropriateness Measure)

Appropriateness measure g is evaluated as the sum
of mass assignment m; over those subsets of labels in Ag(x),
ie. V0 € LE,Yx € Q, o) = ZFE/\(O) my(F).

For example, if £ = {low, medium,high} with focal
sets {{l},{l,m},{h}} and @ = low A —medium then
Hin-m () = ZF:zeF,mg_zF my(F) = ma({1}).
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3 A cascade linguistic attribute hierarchy
3.1 Definition of a cascade hierarchy

The process of aggregation of evidence in multi-attribute deci-
sion problems based on attributes x1, ..., z,, can be viewed as
a functional mapping between a high level variable y and in-
put attributes, y = f(z1,...,Z,), which is often dynamic and
nonlinear, and may be imprecisely defined. In some cases, the
function f may be approximated by a composition of lower
dimensional sub-functions, forming a cascade hierarchy (a bi-
nary tree). Each sub-function represents a new intermediate
attribute. Figure 1 shows a simple cascade hierarchy. There
are n — 1 intermediate attributes produced. The last interme-
diate attribute z,_1 corresponds to the goal variable y. The
cascade relationship is expressed as following:

=

As proposed in [7], in a linguistic attribute hierarchy, func-

Fi(z1,22)
Fi(zi1,2i41)

i=1,

n>1>1. 2

Figure 1: A cascade hierarchy of LDTs

tion mappings between parent and child attribute nodes are
defined in terms of weighted linguistic rules which explicitly
model both the uncertainty and vagueness which often char-
acterises our knowledge of such aggregation functions. These
rules will be defined as conditional expressions in the label
semantics framework [6] weighted by conditional probabili-
ties. For each attribute, a set of labels and subsequent label
expressions is defined. We assume that expressions describ-
ing a parent attribute can be (imprecisely) defined in terms of
a description of its children. Let £;, 6; and F; denote the set
of labels, a label expression and focal sets respectively, de-
fined for attribute x; for ¢ = 1, ..., n. Similarly, let £,, 6, and
JF, denote the label set, a label expression and focal set for
describing the goal variable y, respectively.

More precisely, the weighted conditional rules can take the
form of an LDT. In an LDT, the nodes are attributes, and
the edges are label expressions describing each attribute. The
depth of an LDT with two input attributes is at most 2. A
branch B is a conjunction of expressions 61 A2, where 6, and
0, are the label expressions of the two edges on the branch B,
respectively. Each branch also is augmented by a set of condi-
tional mass values m(F|B)=P(C, = F|B), for each output
focal element ' ¢ F,. Then the rules corresponding to the
branch B would be: 6; A 2 — F : m(F|B) for each focal
element F' € F,.
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3.2 Cascade decision making

Figure 1 shows the process of bottom-up information propa-
gation through the cascade hierarchy. The only information
available regarding the mappings F1, F> and F3 is in the form
of decision trees LDT, LDT5 and LDT5, which define map-
ping functions for z; in terms of those for z; and z9, for z5 in
terms of those for z; and x3, and for y in terms of those for 2o
and 4.

However, it is not easy to define the labels for intermediate
attributes in terms of their children, as the intermediate at-
tributes are not directly related to basic attributes in the system
[2]. Therefore, we suppose all intermediate attributes are ap-
proximations of the decision variable y with the same domain
and description labels. According to Jeffrey’s rule [4], given
an LDT, the mass assignment of the decision variable can be
calculated by:

ti
mz7(Fy) = Z oy (Zifl) * Loy (xi+1) * WL(Fy|Bly)a 3
j=1

where, B;; is the j*" branch in the i"* LDT, and pg(z) is
appropriateness measure, quantifying the degree of our belief
that label expression 6 is appropriate for x [6]. The appropri-
ateness measure can be calculated with mass assignments of
attribute x according to Definition 2.5.

Information is propagated along the cascade LDTs from low
level to high level. For the example in Figure 1, given mass
functions my,,, Mg,,M4,, and m,,, the mass function m,, is
determined by propagating m,, and m,, through LDT}, m,
is determined by propagating m, and m,, through LDT5,
and finally, m, is determined by propagating m, and m,,
through decision tree LDT5 (see Figure 2). Here we con-

Mz —p Mz —» My

L

Myg Myy

Figure 2: The cascade upwards information propagation

sider only classification problems where the goal variable y
belongs to the finite set of classes {C1, ..., C;}. In this case,
F = {{C1},...,{C:}}, and for input vector Z, m,({C;}) =
P(C;|2).

In order to obtain a linguistic attribute hierarchy based on the
LDTs, we need to train all cascade LDTs in turns from bottom
to top. LID3 [9], an extension of well-known ID3 algorithm
[11], is used to build the linguistic decision trees based on a
given linguistic database.
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4 GA in wrapper to optimise cascade hierar-
chies

4.1 Chromosomes and Reproduction

To learn a linguistic cascade hierarchy, we use a genetic algo-
rithm as a search agent with the LID3 as an induction algo-
rithm in wrapper. For the optimisation of cascade hierarchies
with n attributes, the size of whole search space is %' The
performance of different hierarchies is judged on the basis of

the accuracy for the given classification task.

Chromosomes: The purpose of a GA is to evolve a popula-
tion of potential solutions each corresponding to the cascade
hierarchies in a multiple-attribute space. Therefore, the GA
in wrapper approach conducts a search in the space of pos-
sible cascade hierarchies. Different attribute orderings define
different cascade hierarchies. So we define any possible per-
mutation of all attributes, 7 = {z1,...2,}, and 7 — H as a
genome of the genetic algorithm.

Reproduction: We use “roulette-wheel* selection, according
to which, an individual with better fitness has higher proba-
bility of being selected. The probability that hierarchy H; is
selected is given by the nominalised fitness:

fi(Hs) '
Yoy fi(H;)

A one-elitism strategy is included since it keeps the current
best individual in the next generation, and speeds up the con-
vergence of the evolution process. On the other hand, in order
to keep the diversity of solutions, a random hierarchy is gen-
erated in each generation.

Pi = “4)

We use two-point order crossover as follows (Figure 3): two
parental permutations, 7, and 7y, are chosen randomly de-
pending on the probability chosen in 4. A continuous interval
of the permutation 7; is chosen, and also an interval starting
at the same position and of the same length from 7. The
two parameters, ’starting position’ and ’length of interval’,
are produced randomly. Two new permutations, 7} and 75,
are created such that 7] contains the interval from 75 with the
rest being the other elements of 71 in the same order as they
appeared in ;. 7 contains the interval from 7y with the rest
being the other elements of 75 in the order as they were in 7o
(Figure 3). Mutation, which is the swapping of two randomly
picked elements of a permutation, is carried out with some
probability (m_rate) on each child in the population.

4.2 Evaluation and Termination Criteria

Here we only consider binary classification problem with two
classes '+’ and ’-’. First, we investigate the ordinary accu-
racy on a threshold, which is the ratio of the number of correct
classifications to the number of testing samples. When the
estimated probability p(C|Z) (equivalent to m, ({C})) that a
sample with measurement vector & belongs to class C'is larger

than a threshold «, then that sample is classfied as C. Con-
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length=4
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1 i

i i
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M [ofals[1]7]a]z]e]

Figure 3: Two-point order crossover

ventionally we use 0.5 as a threshold. Here we consider two
measures of accuracy, integrated accuracy and the area under
ROC curve, which measures how well the classifier separates
the two classes without reference to a decision threshold. The
closer the ROC plot is to the upper left corner, the higher the
ordinary accuracy of the test results.

For each possible threshold « for discriminating between the
two classes, some positive cases will be correctly classified
as positive (1'P,=number of True Positive), but some positive
cases will be estimated as negative (F'N,=number of False
Negative ). On the other hand, some negative cases will be
correctly classified as negative (1I'N,=number of True Neg-
ative), but some negative cases will be classified as positive
(F'P,=number of False Positive).

Accuracy: For a decision maker, the Ordinary Accuracy
(A,) over a threshold « can be calculated as below:

_ TP, +TN,

Aa(H) VR

4)
where, M is the number of test examples. In order to reduce
the sensitivity to the threshold o, we define the integrated ac-

curacy to be the integration of accuracies for all a € [0.5,1)
(Formula (6)):

[T Na A K

where, the interval [0.5, 1) is divided into m subintervals with
constant step length A(«), and where N,,, = T'P,,, + T N,,.

ROC curve: Receiver Operating Characteristic (ROC) anal-
ysis originated from signal detection theory and has been in-
troduced to machine learning in recent years in order to eval-
uate algorithm performance in an imprecise environment. It is
claimed [10] that ROC graphs can offer a more robust frame-
work for evaluating classifier performance than traditional ac-
curacy measure. The true positive rate is calculated with
n = %. The false positive rate is calculated with o = %.
In a ROC curve, the true positive rate (n) is plotted as a func-
tion of the false positive rate (o) for varing thresholds. Each
point on a ROC plot represents a (7, o) pair corresponding to
a particular decision threshold.
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Similarly, the integrated accuracy can be defined as the area
under ROC curve, which measures how well the decision
maker separates the two classes without reference to a deci-
sion threshold, as follows:

.1

Aroc(H) = /

0

ndo (7

Let p(+|Z) be the estimation of the probability that an in-
stance with measurement vector Z is positive. If we rank test
instances according to increasing positive probabilities, then
the area under the ROC curve (Agoc¢) for a decision making
problem with two classes +,- can be calculated [3] by:

S ri— P(P+1)/2

PN ; ®)

Aroc =

where, P and IV are the numbers of positive and negative sam-
ples, r; is the rank of the i*" positive instance in the rank list
according to the probabilities of the positive class.

Termination criteria: Termination is an important parame-
ter, which affects the running time and quality of solutions.
Generally it heavily depends on the size of the chromosome.
The maximum generations max_gen is linear function of the
number of basic attributes. The evolution procedure will be re-
peated until the maximum number of generations is reached.

S Experiments and Evaluation

All attributes are discretised using an entropy-based approach
into three labels (£ = {small, medium,large}), respec-
tively. Each label corresponds to a trapezoidal fuzzy set,
which has 50% overlapping with neighbouring label fuzzy
sets. A missing value of an attribute in an instance of the train-
ing database is replaced with the mean value of the attribute
for the corresponding class.

The experiments are carried out using ten-fold cross valida-
tion. Data is split into 10 approximate equal partitions. Each
one is used in turn for testing while the remainder is used for
training i.e. 9/10 of data is used for training and 1/10 for test-
ing. The whole procedure is repeated 10 times.

A trained hierarchy is evaluated using two types of accuracy
measure described in Section 4.2. The ordinary accuracy is
evaluated at threshold 0.5. The area under a ROC curve is
calculated with Formula (8).

We examine the quality of cascade decision making and the
cost of a hierarchy, i.e. the total number of branches from all
decision trees in a cascade hierarchy, and compare the perfor-
mance with that of a single LDT providing a direct mapping
between input attributes and a classification variable.

5.1 On the Pima Diabetes database

The Pima database: The Pima Indian data set is a well-
known benchmark problem from the UCI repository [1]. The
problem relates to incidents of Diabetes mellitus in the Pima
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Indian population living near Phoenix Arizona. The target at-
tribute is a binary valued decision variable indicating whether
or not the patient shows signs of Diabetes according to World
Health Organisation criteria. The database of Diabetes in-
cludes 768 samples, in which, 268 positive instances (with
Diabetes), 500 instances without Diabetes. There are 8 basic
attributes.

Solutions and Fitness values: The two orders of attributes
corresponding to the optimal cascade hierarchies (H; and H5)
obtained by the GAW with fitness values evaluated by .4, and
Aroc respectively, are: Hy: 3,4,2,5,6,7,0,1; Ha: 2,4, 0,
6, 3,5, 7, 1. Table 1 lists the accuracies at threshold 0.5 (A,),
the integrated accuracies (Az), the areas under ROC curves
(Aroc) and the numbers of branches (3) for H1, H» and the
single LDT. It can be seen that H; and Hs achieve similar
performance in A,, Az and Aroc. Their performance in A4,
and Agroc is better than that of a single LDT, while the single
LDT has higher integrated accuracy than H; and Hs. The
branch numbers for H; and Hs are much less than for the
single LDT.

Table 1: Evaluations of hierarchies obtained by GAW on the
Pima database

H | Aq | Aa | Aroc | B

Ha 0.747396 | 0.188281 | 0.783776 | 115
Ho 0.748698 | 0.189437 | 0.790649 | 115
LDT | 0.713542 | 0.244922 | 0.769687 | 14845

Accuracy and ROC curves: Figure 4 (a) and (b) show the
accuracy and ROC curves for the two hierarchies and the sin-
gle LDT, respectively. From the accuracy curves in Figure 4
(a), it can be seen that H; and Hy obtain approximately the
same accuracy curves, and achieve higher ordinary accuracies
at threshold 0.5 than the single LDT does. But the accuracies
obtained by H; and H, decrease as thresholds increase, and
become smaller than for the single LDT when thresholds are
over 0.65. Figure 4 (b) shows that the two optimal cascade
hierarchies obtain similar ROC curves to the single LDT, al-
though they have different performance in accuracies.

5.2 On the Wisconsin Breast Cancer Database

The Wisconsin Breast Cancer Database: The Wiscon-
sin Breast Cancer (WBC) database [1] was created by Dr.
William H. Wolberg from the University of Wisconsin Hospi-
tals, Madison [8]. There are 699 samples, in which 458 sam-
ples are Benign, and 241 samples are Malignant. There are
nine basic attributes, and each attribute is with lower bound
1 and upper bound 10. There are 16 instances that contain a
single missing (i.e., unavailable) attribute value. It is claimed
that the best result is 93.7% trained on 200 instances and tested
on the other 169 in the first group of 369 samples with the 1-
nearest neighbor approach in [1].

Solutions and Fitness values: The two permutations of at-
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tributes corresponding to the two optimal cascade hierarchies
are: H3:6,2,4,3,8,7,5,1,0; H4:6,4,3,8,1,7,5,2,0. Table 2 lists
the accuracies at threshold 0.5 (A, ), the integrated accuracies
(Az), and the areas under ROC curves (Aroc) and branch
numbers () for Hs, H4 and the single LDT. The experiment
results show that H3 and H,4 have similar performance in or-
dinary accuracies for different thresholds, and the areas un-
der ROC curves. They have ordinary accuracies at threshold
0.5 better than a single LDT, but they lose performance in the
integrated accuracy. The best ordinary accuracy at threshold
0.5 is 96.7% obtained by H3. Both algorithms for learning a
single LDT and a cascade hierarchy have computational com-
plexity O(n(3), where n is the length of a branch and 3 is the
total number of branches. Table 2 shows that the number of
branches for the optimal cascade hierarchies H3 and H4 are
close to that for the single LDT. However, for each LDT in a
cascade hierarchy, there are only two input attributes, thus the
length of a branch is at most 2. Therefore, the optimal cascade
hierarchies have better computational complexity than the sin-
gle LDT.

Table 2: Evaluations of hierarchies obtained by GAW on the
WBC database

H A | Aa | Aroc [ B

Hs 0.967096 | 0.409156 | 0.985831 | 100
Ha 0.962804 | 0.408530 | 0.985867 | 100
LDT | 0934192 | 0.441863 | 0.932976 | 97

Accuracy and ROC curves: Figure 5 (a) and (b) show the
accuracy and ROC curves for the two optimal cascade hier-
archies and the single LDT, respectively. From the accuracy
curves in Figure 5 (a), it can be seen that the ordinary accu-
racy at threshold 0.5 of H3 and H4 is better than for the single
LDT, but their ordinary accuracies when the threshold is larger
than 0.6 are worse than for the single LDT. The ROC curves
of H3 and H, are slightly better than for the single LDT.

6 Conclusion

In this paper, the process of information propagation through
a cascade hierarchy of Linguistic Decision Trees for multi-
attribute decision problems is investigated. We develop a ge-
netic algorithm with the training algorithm LID3 in wrapper to
optimise cascade hierarchies for decision making, and exam-
ine the performance of the optimal cascade hierarchies on two
benchmark databases, Pima Diabetes and Wisconsin Breast
Cancer databases from UCI machine learning repository. The
experimental results show that an optimal cascade hierarchy
can achieve better performance in the ordinary accuracy at
threshold 0.5 and in the area under ROC curves than a sin-
gle LDT. The number of rules induced by the optimal cascade
hierarchy is much lower than a single LDT, when the relation-
ship between a class and the input attributes is highly uncer-
tain and nonlinear. However, accuracy tends to decrease with
higher thresholds.
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Figure 4: Accuracy and ROC curve for Hy, Ho, and the single
LDT on the Pima database
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Figure 5: Accuracy and ROC curve for H3, H4, and the single
LDT on the WBC database
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