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Abstract— Concurrent service systems are modeled using the 

Generalized Stochastic Petri Nets (GSPN) to account for the 
multiple asynchronous activities within the system. The 
simulated operation of the GSPN modeled system is then 
optimized using the Particle Swarm Optimization (PSO) 
meta-heuristic algorithm. The objective function consists of the 
service costs and the waiting costs. Service cost is the cost of 
hiring service-providing professionals, while waiting cost is the 
estimate of the loss to business as some customers might not be 
willing to wait for the service and may decide to go to the 
competing organizations. The optimization is subject to the 
management and to the customer satisfaction constraints. The 
tailor-made PSO is found to converge rapidly yielding optimum 
results for the operation of a practical concurrent service 
system.  

  
 

Index Terms—Meta-heuristics, Optimization, Particle 
Swarm Optimization, Swarm Intelligence. 
 

I. INTRODUCTION 

A.   Swarm Intelligence 
   The Particle Swarm Optimization (PSO) is based on the 
Swarm Intelligence Paradigm of Evolutionary Computation. 
The algorithm is inspired by the social behavior of birds and 
fish swarming together to search for food [31], [32]. PSO has 
been successfully applied to solving optimization problems 
in diverse disciplines. Compared to other evolutionary 
computational algorithms, PSO has many desirable 
characteristics. PSO is easy to implement, can achieve 
high-quality solutions quickly, and has the flexibility in 
balancing global and local exploration. 
   The population-based PSO conducts a search using a 
population (swarm) of individuals called particles. The 
performance of each particle is measured according to a 
predefined fitness function. Particles are assumed to “fly” 
over the search space in order to find promising regions of the 
landscape. Each particle is treated as a point in a 
d-dimensional space which adjusts its own “flying” 
according to its flying experience as well as the flying 
experience of the other companion particles. By making 
adjustments to the flying based on the local best (pbest) and 
the global best (gbest) found so far, the swarm as a whole 
converges to the optimum point, or at least to a near-optimal 
point, in the search space.  
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Operational costs of service systems 
   A service system is a configuration of technology and 
organizational networks designed with the intention of 
providing service to the end users. Practical service systems 
include hospitals, banks, ticket-issuing and reservation 
offices, restaurants, ATM, etc.  The managerial authorities 
are often pressed to drastically reduce the operational costs of 
active and fully functioning service systems, while the 
system designers are forced to design (new) service systems 
operating at minimal costs. Both these situations involve 
system optimization. 
   Any optimization problem involves the objective to be 
optimized and a set of constraints [1].  In this study, we seek 
to minimize the total cost (tangible and intangible) to the 
system. The total cost can be divided into two broad 
categories - cost associated with the incoming customers 
having to wait for the service (waiting cost) and that 
associated with the personnel (servers) engaged in providing 
service (service cost) [2]-[4]. Waiting cost is the estimate of 
the loss to business as some customers might not be willing to 
wait for the service and may decide to go to the competing 
organizations, while serving cost is mainly due to the salaries 
paid to employees.  
   Business enterprises and companies often mistakenly 
“throw” capacity at a problem by adding manpower or 
equipment to reduce the waiting costs. However, too much 
capacity decreases the profit margin by increasing the 
production and/or service costs [5]. The managerial staff, 
therefore, is required to balance the two costs and make a 
decision about the provision of an optimum level of service.  
   In recent years, customer satisfaction has become a major 
issue in marketing research and a number of customer 
satisfaction measurement techniques have been proposed 
[6]-[8]. Increasing efforts have been made to analyze the 
causes of customer dissatisfaction and to suggest remedies 
[9], [10]. In queuing systems, nothing can be as detrimental 
to customer satisfaction as the experience of waiting for 
service. For customers, waiting is frustrating, demoralizing, 
agonizing, aggravating, annoying, time-consuming, and 
incredibly expensive [11]. Waiting has a negative impact on 
service quality evaluations [12], [13]. 
   In service systems, customer satisfaction is directly related 
to the waiting as well as the service experience. In general, 
the shorter the waiting time and the better the service, the 
higher is the customer satisfaction. Further, in certain service 
systems such as restaurants, hospitals and amusement parks, 
service experience is related to the duration of service (i.e. 
service time). In such situations, moderately long to 
sufficiently long service times lead to a higher customer 
satisfaction. The terms of the type, “moderately long”, 
“sufficiently long” are fuzzy linguistic variables [14]-[16] 
describing the imprecise and subjective experience of the 
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customers. Hence, we define the customer satisfaction 
constraint as fuzzy sets.   
   In this study, we use the restaurant service system  as a 
practical illustration of the meta-heuristic optimization 
procedure. Being a concurrent system (independent and 
asynchronous activities are taking place simultaneously), it is 
modeled as a Generalized Stochastic Petri Net. The system 
operation is simulated through a discrete event simulator [17] 
and the functional aspects of the system are visually verified. 
The queuing statistics obtained from the simulation are used 
to compute the waiting costs. The objective function 
consisting of the service cost and the waiting cost is 
minimized with the rapidly converging PSO meta-heuristic, 
subject to the customer satisfaction fuzzy constraint. 

 

B. Petri net model of service systems 
   Service systems are inherently concurrent with multiple 
asynchronous activities. The traditional methods developed 
for the analysis of sequential systems are found to be 
inadequate for the analysis of systems exhibiting 
concurrency and synchronization of independent, 
asynchronous activities [18]. Petri nets are found to be ideal 
tools to model distributed and concurrent systems [19]-[21]. 
The original Petri net (PN) is a directed bipartite graph with 
two types of nodes, called places (represented by circles) and 
transitions (represented by horizontal or vertical bars). 
Directed arcs connect places to transitions, and vice versa. 
Places may contain tokens (represented by black dots). 
Places represent the conditions to be met before the 
transitions can fire. A transition is said to be enabled if there 
is at least one token in each of its input places. An enabled 
transition can fire by removing a token from each input place 
and depositing a token in each output place [22], [23].  
   The transitions fire instantaneously, implying that events 
do not take any time. Since there is no concept of time 
duration in the classical PN, it is not complete enough for the 
study of systems performance. Several concepts of timed 
Petri nets have been proposed by assigning firing times to the 
transitions and/or places of Petri nets [24]-[29]. Timed PNs in 
which the firing time is deterministic (constant) are called 
D-nets, while those in which the firing time is stochastic are 
called M-nets. Time-nets with transitions containing both 
kinds of firing times are called Generalized Stochastic Petri 
Net (GSPN) [30]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 1. Client Server GSPN 
 
   In addition, the customer flow and the server roles are made 
explicit in our Petri net modeled concurrent business 

systems. The server resides in the serve place (SP), while the 
customer resides in the customer place (CP) as shown in Fig. 
1. The service at a transition T can begin only when there is at 
least one server in  the SP and correspondingly at least one 
customer in the CP. Making the customer and the server 
workflows distinct gives a more realistic analysis of the 
system. 
    We use a GPSN to model concurrent business systems. A 
restaurant business system modeled as a client server GSPN 
is shown in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 

 
 
 
 

Fig. 2. Petri net model of a restaurant 
 
   The performance analyst can easily grasp the workflows of 
the customers and of the staff in this service system. The 
customer flow describes the tasks performed by the customer 
– going through the menu, placing an order, having the meal, 
paying and departing. The tasks performed by the dining hall 
staff, the kitchen staff and the accounts staff in providing 
service to the customers are also described by the PN.  
   The authors have also designed a new PN editing and 
simulating tool. The GSPN model of the concurrent service 
system is first created by means of the editor. The static 
model is then executed as a discrete event simulation. The 
animation facility can also be switched on. Animation shows 
the firing of transitions and the flow of tokens in the net. This 
helps the analyst in verifying the functional aspects of the net 
visually, specially the occurrence of deadlocks. In the GSPN 
simulation model, the timed-transitions represent the service  
stations, while the tokens in the server places represent the 
number of servers assigned to a particular group of service 
stations or tasks. The customer places act as the queuing 
locations where the customers queue for service. The 
transition firings are governed by the average service time 
allotted for service. The data set associated with the customer 
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places provides the queuing statistics like the average queue 
length, the average queuing time and the maximum number 
of customers in the queues. Similarly, the data set associated 
with the server places provides the average server utilization. 
The simulation output data is then used to evaluate the 
objective function to be optimized.    
 

II. FORMULATION OF OPTIMIZATION PROBLEM 

A. Objective Function 
   If Cw is the average waiting cost per customer per unit time 
and Nw is the average number of customers waiting for 
service, then the waiting cost per unit time at a given PN 
customer place is:  

 
            WC  =   NwCw                                                     (1)  

 
   The service cost in the service systems is the sum of the 
costs required to hire professionals to provide service to 
customers. If NS is the number of servers serving at a 
transition and CS is the cost per server per unit time, then the 
service cost at that transition per unit time is:  

 
               SC  =   NSCS                                      (2) 

 
   The objective function (total cost) is given by: 

 

              f   =    ∑ Nwi Cwi  +  NSjCSj                  (3) 
=

n

i 1
∑

=

m

1 j 
 
where, n is the number of waiting places and m is the number 
of server groups in the PN.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.  Service cost and waiting cost in queuing systems 
 

B. Management Constraints 
   Each service activity has an appropriate service time that is 
usually drawn from an exponential distribution. The service 
time constraints can be expressed as: 

 
                                        ST<   ≤  ST    ≤  ST>                               (4) 
 
where, ST<  and ST> are respectively the minimum and 
maximum values of the service time at a given PN transition. 

The capacity of the server represents the number of 
servers allotted to a given transition. If NS is the capacity of a 
server, serving at a group of transitions, then the constraints 
are: 

 
                                        NS<   ≤  NS   ≤  NS>                              (5) 

 
Similarly, the priority constraints of the servers with respect 
to a given transition are: 
 
                                        Pr<   ≤  Pr   ≤  Pr>                                (6) 
 
where, Pr<  and Pr> are respectively the minimum and the 
maximum values of the servers with respect to a given PN 
transition. 
 

C. Customer Satisfaction Constraints 
   In service systems, customer satisfaction depends on the 
waiting as well as the service experience. In the restaurant 
system, if the waiting is too long, the customers are 
dissatisfied. On the other hand, if they are not allowed to 
enjoy their meal for a sufficiently long period to time, then 
they are dissatisfied, too. Consequently, customer 
satisfaction can be increased by decreasing the waiting time 
and by increasing the service time (meal time). In this section, 
we describe the fuzzy membership functions of the waiting 
and eating experiences.  
   The membership functions are defined in such a way that 
they appropriately reflect the changes in the degree of 
membership in each set, associated with changes in the crisp 
value [33]-[37].  Fig. 4 illustrates the membership functions 
for the fuzzy sets pertaining to the variable waiting. Here, the 
linguistic variables are Short, Medium and Long. Fig. 4 
illustrates the membership functions for the variable time 
spent having meal. The linguistic variables are: Too Short, 
Short, Medium and Fairly Long.   
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Total Cost

Cost

M
em

bs
er

sh
ip

 V
al

ue

10 20 30 Time (min)

Short Medium Long
1

0  
 

Fig. 4.  Membership function of waiting 
 
 

 
 

Fig. 5.  Membership function of time spent having meal 
   The fuzzy rules matrix is presented in Table I. These rules 
combine the antecedents of the rules for waiting (time spent 
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in waiting) and those for service (time spent in having meal) 
to produce a single fuzzy output. 
 

Table I  Fuzzy rules matrix 
 
 
 
 
 

 
 
 
 
 
 
   The final customer satisfaction membership function 
values obtained by the combination of the above rules are 
shown in Fig. 6.  

 

 
 

Fig. 6.  Membership function of customer satisfaction 
 
   Defuzzification is the process by which the output fuzzy 
variables are converted into a unique (crisp) value. The max 
method and the centroid methods are well-known methods 
for obtaining the crisp value from the superposition of the 
fuzzy membership functions. In our study, the final decision 
on the waiting and service experience is arrived at by using 
the centroid method (Equation 7). In the restaurant service 
system, at least 50% fairly good and 50% good customer 
satisfaction is desirable. This corresponds to 0.625 crisp 
value on the decision index as shown in Fig. 6.   

 

                                    FD = 
∑
∑

μ
μD                                       (7) 

  

III. PARTICLE SWARM OPTIMIZATION 
   The Particle Swarm Optimization (PSO) algorithm imitates 
the information sharing process of a flock of birds searching 
for food. The population-based PSO conducts a search using 
a population of individuals. The individual in the population 
is called the particle and the population is called the swarm. 
The performance of each particle is measured according to a 
predefined fitness function. During the search, each particle 
records its local best (pbest), and the swarm records the 
global best (gbest) found so far. In every iteration, the 
particles move taking into consideration their previous pbest 
as well as the swarm gbest. The process is repeated till the 
convergence of the swarm occurs.  
   The notations used in PSO are as follows: The ith particle of 
the swarm in iteration t is represented by the d-dimensional 

vector, xi(t) = (xi1, xi2,…, xid). Each particle also has a position 
change known as velocity, which for the ith particle in 
iteration t is vi(t) = (vi1, vi2,…, vid). The best previous position 
(the position with the best fitness value) of the ith particle is pi 
(t-1) = (pi1, pi2,…, pid). The best particle in the swarm, i.e., the 
particle with the smallest function value found in all the 
previous iterations, is denoted by the index g. In a given 
iteration t, the velocity and position of each particle is 
updated using the following equations:  

 

    Short medium Long

Too Short poor poor very poor

Short fairly good poor very poor

Medium  good fairly good poor

Fairly Long very good good fairly good

D   I   N   I   N   G
  

W   A   I   T   I   N   G

 
               vi(t) = wvi(t-1) + c1r1(pi(t-1) - xi(t-1)) 
                                                + c2r2(pg(t-1) - xi (t-1))        (8) 
 and 
                                xi(t) = xi(t-1) + vi(t)                                  (9) 
 
where, i =1, 2,…, NP; t = 1, 2,…,T. NP is the size of the 
swarm, and T is the iteration limit; c1  and c2 are constants; r1 
and r2 are random numbers between 0 and 1; w is the inertia 
weight that controls the impact of the previous history of the 
velocities on the current velocity, influencing the trade-off 
between the global and local experiences. A large inertia 
weight facilitates global exploration (searching new areas), 
while a small one tends to facilitate local exploration 
(fine-tuning the current search area). Equation 8 is used to 
compute a particle’s new velocity, based on its previous 
velocity and the distances from its current position to its local 
best and to the global best positions. The new velocity is then 
used to compute the particle’s new position (Equation 9).  
   In our application, the decision variables (Table 1) are the 
particles’ “positions” and “velocities”. Initially, a group 
(population) of particles is randomly generated. Their fitness 
function f  (Equation 3) is evaluated on simulating the system 
operation. The algorithm is iterated for a fixed number of 
iterations. The particles’ velocities and positions are updated 
using Equations 8 and 9, in every iteration. The lowest value 
of the fitness function attained by a particle in all the 
iterations is its pbest, while that of the entire population is the 
gbest. The latter is the optimum value of the objective 
function.   

IV. RESULTS OF PSO OPTIMIZATION 
   The current (cur) optimized values of the decision variables 
(service time, number of staff members or severs and their 
priority at each activity) are shown in Table II. These values 
are bounded between the given minimum (min) and the 
maximum (max) values. The restaurant operation is 
simulated for six hours for an average inter-arrival time of 15 
minutes. The minimized total cost (sum of the waiting and the 
serving cost) is found to be 4358,457 yen. 
 

Table II Optimized decision variables 
 
 
 
 
 
 
 
 
 
 

Min Cur Max Name Min Cur Max Min Cur Max
Menu 5 9 10
Order 7 11 12
Food delivery 6 7 15
Meal 30 97 150
Receive Order1 5 6 10 1 2 3
Receive food 5 5 10 1 1 3
Carry food 8 12 14 1 3 3
Receive Order2 5 7 10 1 2 3
Cooking 20 21 35 1 2 3
Deliver food 5 9 10 1 1 3
Receive order data 5 10 10 1 3 3
Order data out 4 5 8 1 1 3
Pay bills 4 6 7 1 1 3

3000

Server
Priority Number Cost/ho

ur Yen

2400

Cooking staff 1 2 5 1200

Transition
Service time          

(min)

Billing sta 1 2 4

Dining hall staff 1 2 7

ff
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V. CONCLUSION 
 In this paper, we have presented the application of the PSO 
meta-heuristic algorithm in the optimization of the operation 
of a practical service system, subject to the customer 
satisfaction constraint. The cost function is expressed as the 
sum of the service cost and the waiting cost. Service cost is 
due to hiring professionals or equipment to provide service to 
end users. Waiting cost emerges when customers are lost 
owing to unreasonable amount of waiting for service. 
Waiting can be reduced by increasing the number of 
personnel. However, increasing the number of personnel, 
results in a proportional increase in the service cost. The 
simulation optimization strategy finds the optimum balance 
between the service cost and the waiting cost. The 
optimization, however, is subject to the customer satisfaction 
constraint, which is defined as fuzzy sets quantifying the 
waiting as well as the service experiences of the customers. 
The simulation optimization strategy finds the optimum 
balance between the service cost and the waiting cost without 
violating the customer satisfaction constraint. PSO obtains 
the optimum results with rapid convergence even for a very 
large search space. An extension to this study would be 
multi-objective optimization. 
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