
An Approach to Test Case Design for
Cost Effective Software Testing

Kiran Kumar J 1, A. Ananda Rao 2, M. Gopi Chand 3, and K. Narendar Reddy 4

Abstract— Software testing is the critical component of the
software development life cycle. Cost of software testing would
affect the cost benefit trade-off of a development organization.
Any reduction in the cost of software testing would help to
deliver the product to the customer at less cost. The existing
research is to find the ways to reduce the testing cost. In this
paper, an approach to test case design which reduces software
testing cost in black box environment has been proposed. This
type of approach has not been used earlier.

The proposed approach reduces the total number of test
cases in black box environment. This reduced test case set
covers total functionality and ensures the quality of the product.
The proposed approach is applied on four case studies and
found that the reduction in testing cost is ranging between 27
and 36 percent. Hence, by using the proposed approach the
software testing cost can be reduced considerably.

Index Terms— Approach, software testing cost, test case
design, testing cost reduction

I. INTRODUCTION

Any single software testing technique is not sufficient to
test a product completely. Many software testing techniques
are required to test complete functionality of a software
product. We get large number of test cases by applying
various testing techniques. This test case set contain, some
test cases to test the functionality of the product, some test
cases to test the boundary values, some test cases to test
stress, and some test cases to test performance of the product.
With this large number of test cases, we can cover the
complete functionality of the product.

When a software product is being developed in an
organization, multiple software product builds are given to
the Quality Assurance (QA) teams to test the product before
it is released to the customer. On most of the builds the QA
teams need to run complete test case set to ensure that the
product is stable.

In this paper we proposed an approach to reduce the total
number of test cases in black box environment without
affecting the quality of the product. If the total number of test

 Manuscript received on December 30, 2008. Sent review report and paper
acceptance on January 14, 2009. Paper Number: ICSE_35.
1 Kiran Kumar J, Software Engineer, IBM India Software Lab, Hyderabad,
AP, India. Mobile: +91 94402 22240; email: kirankumarj9@gmail.com.
2 Prof. Dr. A. Ananda Rao, Vice-Principal, JNTU, Anantapur, AP, India.
Mobile: +91 90004 93404; email: akepogu@yahoo.co.in.
3 M. Gopi Chand, Dept of CSE, GNITS, JNTU, Hyderabad, AP, India.
Mobile: +91 98490 42448; email: gopi_merugu@yahoo.com.
4 K. Narendar Reddy, Dept of CSE, CVR COE., JNTU, Hyderabad, AP,
India. Mobile: +91 99631 06396; email: knreddy_mist@yahoo.com.

cases can be reduced without affecting the quality of the
product, the time required to execute the minimized test case
set will be reduced. This reduction in the total number of test
cases will reduce the effort required by the QA teams to
execute the test cases.

Most of the existing approaches consider test case set
which contain, some test cases to test the functionality of the
product, some test cases to test the boundary values, some
test cases to test stress, and some test cases to test
performance of the product. Any reduction in this test case
set will reduce the testing time, effort, and cost. Most of the
test cases in this set belong to test cases that test the
functionality and boundary values of the product. In this
paper we have presented an approach, which reduces test
cases considering test cases that test functionality and
boundary values.

In the proposed approach, it is shown that the two aspects
of testing, that is testing for functionality and testing for
boundary values can be tested with reduced test cases as
these two aspects can be tested simultaneously in most of the
situations. It is also shown with examples the situations
where these two aspects can be tested simultaneously. In this
paper testing simultaneously means, a single test case can
cover both the above aspects for a particular situation.

The proposed approach is applied on four real-time case
studies and found that the reduction in testing cost is ranging
between 27 and 36 percent. This saved lot of time and effort
required by the QA teams.

The work in this paper is organized in different sections.
The related work is given in section II. Whereas proposed
approach to test case design is presented in section III. Case
studies and results are presented and discussed in section IV.
The conclusions have been given in section V.

II. RELATED WORK

To develop defect free quality software, test cases are
very important. Many techniques and approaches [1-7] have
been reported in the literature on designing test cases,
automated test case generation and test case optimization in
recent years.

Pravin M Kamde described how to avoid loses that is
inevitable with poor test cases [1]. It will give practical
advice on how to improve productivity, usability, scheduling
reliability and asset management. Yuri Chernak presented an
approach to improve the software testing process based on a
new metric and an associated methodology for in-process
validation of test case effectiveness [2]. Yizheng Yao and
Yingxu Wang presented a new approach to specification-

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

based test generation that enables test cases to be generated
before the implementation of the code [3]. W.T. Tsai
developed a method for automated test case generation for
programs specified by relational algebra queries [4]. This
method can be applied on programs specified by relational
algebra queries. Bonoit proposed an approach for automatic
test cases optimization in .NET environment at
bacteriological level [5]. They also presented a general
framework for faults injection. Susan proposed a method to
assess the differential risk of failure among a system’s
modules [6]. Managers can use these failure risk estimates to
determine how much testing effort can be economically
justified.

Among the papers described above, most techniques are
focusing on designing good test cases, automated test case
generation and test case optimization for a specific program.
In this paper, an approach to test case design that leads to
reduction of software testing cost in black box environment
is proposed.

III. PROPOSED APPROACH TO TEST CASE DESIGN

Test case is a documentation that specifies inputs,
predicted results, and a set of execution conditions for a test
item [10]. Designing good test cases is very important to
develop a quality software product.

Any single software testing technique is not sufficient to
test a product completely. Many software-testing techniques
are required to test complete functionality of a software
product. We get large number of test cases by applying
various testing techniques. This test case set contain, some
test cases to test the functionality of the product, some test
cases to test the boundary values, some test cases to test
stress, and some test cases to test performance of the product.
With this large number of test cases, we can cover the
complete functionality of the product.

But, to execute this total number of test cases, a lot of
time and QA team’s effort is required. And, product needs to
be tested multiple times, i.e. with multiple builds, multiple
releases. If the total number of test cases is reduced without

affecting the quality of the product, the time required for the
testing, effort required by the QA teams and cost of the
testing will be reduced.

In this paper we proposed an approach to reduce the
number of test cases, without affecting the coverage of the
functionality. This reduction in the number of test cases
while covering the same functionality will reduce lot of time
required to testing and hence the cost of the product testing is
reduced.

The proposed approach is focused to reduce test cases
considering test cases that test functionality and boundary
values.

The proposed approach contains following four steps.
1. View the two aspects that is functionality and

boundary value testing together
2. Identify the situation(s) (considering

functionality and boundary values) which can be
tested in single test case(s) so as to design
minimal test cases

3. Proving logically that the single test case(s) in
fact covering both the aspects.

4. Applying above three steps to case studies and
validating

IV. CASE STUDIES AND RESULTS

The proposed approach is applied on four real-time ETL
tool (Data ware housing tool) components: Teradata ETL
Database (DB) Component, Informix ETL DB Component,
DB2 ETL DB Component and Oracle ETL DB Component.
Concepts explained in Fig. 1 and Fig. 2 are generic and
applicable to all the above four test case studies.

In Fig. 1, ETL, which stands for “extract, transform and
load”, is the set of functions combined into one tool or
solution that enables companies to “extract” data from
numerous databases, applications and systems, “transform” it
as appropriate, and “load” it into another databases, a data
mart or a data warehouse for analysis, or send it along to
another operational system to support a business process.

Fig. 1. ETL Process

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

Fig. 2. ETL Database Component write process

Many test cases are required to test an ETL tool
completely. These test cases include: Functional test cases
(Tf), Boundary Value test cases (Tb), Stress test cases (Ts),
Performance test cases (Tp) and other test cases (To) like
negative test cases. So the Total Number of test cases (Tn)
are: Tn=Tf +Tb+ Ts+ Tp + To.

The Fig. 2 shows some of the attributes of a generalized
ETL Database Component write process. In this write
process, the source could be a ETL DB Component or a flat
file and the target is a ETL DB Component. In the write
process, the target ETL DB Component reads data from the
source component, connects to the respective database using

the connection properties specified and writes that data in to
the target table.

The test case design using the proposed approach for
Teradata ETL DB Component is described in section A.

A. Teradata ETL DB Component Test Case Design

The Fig. 3 shows the metadata of the table ‘sampletable’
used in the Teradata ETL DB Component case study. This is
a Teradata table that contains 5 columns. The col1 is integer
type, col2 is character type, col3 is varchar type, col4 is float
type and col5 is date type.

Fig. 3. Metadata of the sample table

The Table I shows some sample Functional test cases for
the Teradata ETL DB Component write process. Each of
these test cases tests a single functionality or scenario of the
Teradata ETL DB Component to ensure the particular
attribute or function is working properly.

Table I. Functional test cases before applying the proposed approach

Test Case
ID

Description Preconditions Expected
Result

Test
Status

Comments

TCf1 Test on writing the
data to the target table
with Action on data =
Insert

The job should add new rows to the target
table and stop if duplicate rows are found.

TCf2 Test on writing the
data to the target table
with Action on data =
Update

The job should make changes to existing
rows in the target table with the input data.

TCf3 Test on writing the
data to the target table
with Action on data =
Insert or Update

The job should add new rows to the target
table first and then update existing rows.

TCf4 Test on writing the
data to the target table
with Action on data =
Update or Insert

The job should update existing rows first
and then add new rows to the target table.

TCf5 Test on writing the
data to the target table
with Action on data =
Delete

The job should remove rows from the
target table corresponding to the input data.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

Table II. Boundary Value test cases before applying the proposed approach

Test Case
ID

Description Preconditions Expected
Result

Test
Status

Comments

TCb1 Test on writing the data to col1
with INTEGER data type
boundary values

The job should read the INTEGER
data type boundary values from
input data and write to the target
table successfully.

TCb2 Test on writing the data to col2
with CHAR data type boundary
values

The job should read the CHAR data
type boundary values from input
data and write to the target table
successfully.

TCb3 Test on writing the data to col3
with VARCHAR data type
boundary values

The job should read the VARCHAR
data type boundary values from
input data and write to the target
table successfully.

TCb4 Test on writing the data to col4
with DOUBLE data type
boundary values

The job should read the DOUBLE
data type boundary values from
input data and write to the target
table successfully.

TCb5 Test on writing the data to col5
with DATE data type boundary
values

The job should read the DATE data
type boundary values from input
data and write to the target table
successfully.

The Table II shows some sample Boundary Value test
cases for the Teradata ETL DB Component write process.
Each of these test cases tests a single column or data type to
ensure the boundary values of that data type are written
properly to the target table.

The test case design for Teradata ETL DB Component
using the proposed approach is described in the following
four sections (A.1 – A.4).

A.1. View the two aspects together (Step 1)

Many software-testing techniques are required to test
complete functionality of a software product. We get large
number of test cases by applying various testing techniques.
These test cases include: functional test cases (Tf), Boundary
Value test cases (Tb) , Stress test cases (Ts), Performance test
cases (Tp) and other test cases (To) like negative test cases.
Tn = Tf + Tb+ Ts + Tp+ To .

With this large number of test cases, we can cover the
complete functionality of the product. But, to execute this
total number of test cases, a lot of time and QA team’s effort
is required. And, product needs to be tested multiple times,
i.e. with multiple builds, multiple releases. If the total
number of test cases is reduced without affecting the quality
of the product, the time required for the testing, effort
required by the QA teams and cost of the testing will be
reduced.

The proposed approach is focused to reduce test cases
considering test cases that test functionality and boundary
values. Most of the test cases in this set belong to test cases
that test the functionality and boundary values of the product.
In this paper an approach is presented, which reduces test
cases considering test cases that test functionality and
boundary values.

A.2. Identifying the situations that can be tested in a single
test case and designing minimized test case set (Step 2)

The test case TCf1 tests the functionality of the Teradata
ETL DB Component when the attribute ‘Action on Data’ is
set to ‘Insert’ and the test case TCb1 tests the INTEGER data
type boundary value that is written to the target Teradata
table. Both of these test cases TCf1 and TCb1 are testing the
two aspects i.e. functionality and boundary values of the
Teradata ETL DB Component.

By using the proposed approach these two test cases
could be viewed together and tested in a single test case. For
example, the test cases TCf1 and TCb1 are viewed together
and designed a single test case TCm1 (Table III) that covers
the both aspects. The minimized test case set designed using
the proposed approach is shown in the Table III.

A.3. Providing logically that the single test case in fact
covers both the aspects (Step 3)

 Each test case in the minimized test case set described in
Table III will test the functionality of the Teradata ETL DB
Component to ensure that the particular attribute is working
properly and also tests the boundary values for various
columns in the target table to ensure that the boundary values
of that column data type are written properly. For example,
the TCm1 in the minimized test case set tests whether the
Teradata ETL DB Component is working properly when the
attribute ‘Action on Data’ is set to ‘Insert’ and also tests
whether the INTEGER data type boundary value is written to
the target table properly which were tested by the test cases
TCf1 and TCb1.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

Table III. The minimized test case set designed using the proposed approach

Test
Case ID

Description Pre-
conditions

Expected
Result

Test
Status

Comments

TCm1 Test on writing the data to the
target table with Action on data =
Insert and col1 contains INTEGER
data type boundary values

The job should read the input
data, add new rows to the target
table successfully and stop if
duplicate rows are found.

TCm2 Test on writing the data to the
target table with Action on data =
Update and col2 contains CHAR
data type boundary values

The job should read the input
data and make changes to
existing rows in the target table
with the input data

TCm3 Test on writing the data to the
target table with Action on data =
Insert or Update and col3 contains
VARCHAR data type boundary
values

The job should read the input
data, add new rows to the target
table first and then update
existing rows.

TCm4 Test on writing the data to the
target table with Action on data =
Update or Insert and col4 contains
DOUBLE data type boundary
values

The job should read the input
data, update existing rows first
and then add new rows to the
target table

TCm5 Test on writing the data to the
target table with Action on data =
Delete and col5 contains DATE
data type boundary values

The job should read the input
data and remove rows from the
target table corresponding to the
input data

In similar way, the remaining test cases in the minimized
test case set {TCm1 – TCm5} described in Table III will test
the both aspects, functionality and the boundary values of
Teradata ETL DB Component which have been tested by the
test cases {TCf1-TCf5 and TCb1-TCb5}.

A.4. Applying the above three steps to case studies and
validating (step 4)

If the number of boundary value test cases that are viewed
together with functional test cases, the number of test cases
test cases reduced is Tbr. Then, after applying the proposed
approach the total number of test cases is minimized to:

 Tmin =Tn- Tbr
And,

The percentage of test case reduction (treduction) is:
treduction = (Tbr/Tn) * 100

In similar way, the proposed approach is also applied on
Informix ETL DB Component, Oracle ETL DB Component
and DB2 ETL DB Component. The Table IV describes the
Total number of test cases (Tn) before applying the proposed
approach, the total number of test cases in the minimized test
case set (Tmin) after applying the proposed approach and the
percentage of test case reduction (treduction).

After applying the proposed approach, the total number of
test cases for Teradata ETL DB Component is reduced by 27
%, Informix ETL DB Component are reduced by 30 %,

Table IV. The minimized test cases

DB2 ETL DB Component test cases are reduced by 29 % and
Oracle ETL DB Component test cases are reduced by 36 %.
The proposed approach is applied to design test cases for
four real-time ETL Components and found that the number
of test cases reduction is ranging between 27 to 36 percent
(Table IV). Hence the propped approach validated.

Graphical representation of the results for various ETL
DB Components is shown in Fig. 4. The X-axis denotes
various ETL DB Components and Y-axis denotes the total
number of test cases for each component.

By applying the proposed approach, treduction percent test
cases are reduced for a ETL DB Component. So the time
required to execute these test cases of ETL DB Component is
also reduced by treduction percentage. Hence, the cost of the
software testing will be reduced by treduction percentage.

The effort required to apply this approach is a one-time
effort, but it will reduce the effort and time required for all
the remaining testing cycles of the product.

These case studies show that, the proposed approach
saves a substantial amount of testing time and effort.

Module Tn Tmin treduction

Teradata ETL DB Component 1543 1126 27 %
Informix ETL DB Component 1439 1008 30 %
DB2 ETL DB Component 1296 934 29 %
Oracle ETL DB Component 1559 997 36 %

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

Fig. 4. The Total number of test cases before and after applying the proposed approach

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper an approach is proposed to reduce the
number of test cases in black box environment, without
affecting the coverage of the functionality. This reduction in
the number of test cases while covering the same
functionality will reduce lot of time required for testing,
effort required by the QA teams, and the cost of product
testing.

The proposed approach is applied on four real-time ETL
Tool (Data ware housing tool) Components that are used by
many people all over the world. The tested ETL tool
components are Teradata ETL DB Component, Informix
ETL DB Component, Oracle ETL DB Component and DB2
Component. The detailed analysis results are given for
Teradata ETL DB Component, where for the other three case
studies final results are given. It is known from the case
studies that the number of test cases can be reduced by
applying the proposed method and the reduction in testing
cost is ranging between 27 and 36 percent. Hence, by using
the proposed approach the software testing cost can be
reduced considerably.

The effort required to apply this approach is a one-time
effort, but it will reduce the effort and time required for all
the remaining testing cycles of the product.

As part of future research, the reduction in regression
testing cost using the proposed method has to be estimated.

VI. REFERENCES

[1] Pravin M. Kamde, V. D. Nandavadekar, R. G. Pawar, “Value
of Test Cases in Software Testing”, International Conference
on Management of Innovation and Technology, IEEE, 2006.

[2] Yuri Chernak, “Validating and Improving Test-Case
Effectiveness”, January / February 2001, IEEE Software.

[3] Yizheng Yao and Yingxu Wang, “A New Approach to Test
Case Generation based on Real-Time Process Algebra
(RTPA)”, CCECE 2004, Niagara Falls, IEEE, 2004

[4] W.T. Tsai, Dmitry Volovik and Thomas F. Keefe, “Automated
Test Case Generation for Programs Specified by Relational
Algebra Queries”, IEEE Transactions on Software
Engineering, Vol. 16, No. 3, March 1990.

[5] Benoit Baudry, Franck Fleurey, Jean-Marc Jézéquel and Yves
Le Traon, “Genes and Bacteria for Automatic Test Cases
Optimization in the .NET Environment”, Proceedings of the
13 th International Symposium on Software Reliability
Engineering (ISSRE’02, IEEE, 2002

[6] Susan A. Sherer, “A Cost-Effective Approach to Testing”,
IEEE Software, March 1991.

[7] Xiaoyuan Xie, Baowen Xu, Liang Shi, Changhai Nie and
Yanxiang He, “A Dynamic Optimization Strategy for
Evolutionary Testing”, Proceedings of the 12th Asia-Pacific
Software Engineering Conference (APSEC’05), IEEE 2005.

[8] Tsuneo Yamaura, Hitachi Software Engineering, “How to
Design Practical Test Cases”, IEEE Software November/
December 1998

[9] Tafline Murnane, Karl Reed and Richard Hall, “Tailoring of
Black-Box Testing Methods”, Proceedings of the 2006
Australian Software Engineering Conference (ASWEC’06),
1530-0803/06 $20.00 © 2006 IEEE

[10] IEEE Standard for Software Verification and Validation, IEEE
Computer Society.

[11] Section 2 “Definition” of ANSI/ IEEE Standard 829, 1983.
[12] Section 3.2.4 “Features to be tested” of ANSI/ IEEE Standard

829, 1983.
[13] Section 3.2.6 “Attributes to be tested” of ANSI/ IEEE

Standard 829,1983.
[14] William Perry (1995); “Effective methods for software

testing”, John Wiley, New York.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

[15] Elaine J. and F. I. Vocolos; “Experience with performance
testing of software systems: Issues, approach and case study”,
IEEE transaction son software engineering, Vol-26, No – 12
December 2000 PP 1147-1156.

[16] Moller and Paulish; “Software matrics: A practitioner guide to
improve product development”, Champnan and Hall, second
edition.

[17] Roger S. Pressman; “Software engineering: A practitioner
approach”, Mc-Graw Hill International edition, computer
science series.

[18] E. Dustin; “Effective software testing”, low-price publication
first edition 2003.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

