

What is Hampering the Performance of Software Reliability
Models? A literature review

 Khaled M. S. Faqih

 Abstract— This article explores the critical factors
and issues that impede the performance of software
reliability modeling science. The literature review
indicates that software reliability models have not
delivered the desirable deliverables that they are
intended to realize. The current work suggests that the
reasons for such performance incompetence of the
software reliability modeling are attributed to eight
major causes. Based upon the findings of the current
study, a simple framework is proposed to provide
guidelines to developing software organizations in order
to improve the performance of software reliability
modeling concept.

 Index terms — NHPP models, reliability modeling,
software modeling performance, software quality.

I. Introduction

 Computer systems are booming exponentially.
Indeed, their correct functioning has become
extraordinarily critical to human lives. For example, on
March 31 in 1986, a Mexican airline crashed into a
mountain because the software system did not correctly
process the mountain position. Apparently, it is
improbable to carry out many daily activities without
the help of computer systems controlled by software. It
is an observable fact that the size and complexity of
software system has grown massively and indeed the
trend will definitely continue in the future.

 Computer system reliability has become an
increasingly imperative standard in measuring service
continuity. System performance is measured by how
long it provides service without malfunctioning.
Successful operation of any computer system depends

Manuscript received December 07, 2008.
Khaled M. S. Faqih is with Al al-Bayt University, Mafraq, Jordan
(phone: +9622777715746; e-mail: km_faqih@aabu.edu.jo).

on its software components. Thus, it is very important
to ensure that the underlying software will operate
correctly, perform its intended functions properly and
fully deliver its desirable output. Nevertheless, the
shear size and enormous complexity of current software
have increased the unreliability of the system. This state
has led largely to greater awareness of software
reliability domain. However, to express the quality of
the software system to the end users, some objective
attributes such as reliability and availability should be
measured. Software reliability is the most dynamic
quality characteristic which can measure and predict the
operational quality of the software system during its
intended life cycle.
 The most common approach to developing software
reliability models is the probabilistic approach. The
probabilistic model represents the failure occurrences
and the fault removals as probabilistic events. There
are numerous software reliability models available for
use according to probabilistic assumptions. They are
classified into various groups, including error seeding
models, failure rate models, curve fitting models,
reliability growth models, Markov structure models, and
non-homogeneous Poisson process (NHPP) models . The
NHPP-based models are the most important models
because of their simplicity, convenience, and
compatibility.
 The forthcoming exploratory paper targets the
contemporary state of the of the software reliability
domain. Its primary focus is to explore the limitations
of the models that are primarily designed to improve
software reliability. The ever increasing of software
complexity and size has led to the propagation of
software reliability models. In fact, software are
embedded everywhere, so they must be designed to
operate reliably not disastrously, and their departure
from user requirements must be controlled and
corrected in order to prevent any harmful consequence
to their environment
 This article is structured as follows: Section 2
addressees NHPP-based models. Section 3 presents a
literature review of the topic. Section 4 provides a

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

discussion which lists the critical issues that hamper the
performance of the software reliability models. Finally,
section 5 concludes the article.

II. NHPP Models

 The most popular and tractable models are NHPP
models. The NHPP group of models provides an
analytical framework for describing the software
failure-occurrence or fault-removal phenomenon
during testing. These models are normally based
upon different debugging scenarios, and can catch
quantitatively typical reliability growth concept
observed in the testing phase of software products.
The NHPP software reliability type models are based
primarily upon two major assumptions. First, the
numbers of failures observed in disjoint time intervals
are independent. Second, the mean and the variance of
the number of software failures observed up to a given
instant of time coincide with each other. To the best
knowledge of the author, these two assumptions have
never been proved accurate.
 As a general class of well-developed stochastic
process model in reliability engineering, NHPP
models have been successfully used in studying
hardware reliability problems. They are especially
useful to describe failure processes which possess
certain trends such as reliability growth and
deterioration. Therefore, an application of NHPP
models to software reliability analysis is then easily
implemented. Therefore, many proposed software
reliability models have been derived on the premise
of NHPP concept. What will happen if such concept
gets abolished?
 However, there have been too many criticisms for
considering software reliability models as a provider of
therapy to software ills and unreliability problems.
Indeed, this paper is triggered by the work presented by
Cai et al. [1], whereby they cast too much doubt on the
validity and appropriateness of using the non-
homogeneous Poisson process (NHPP) framework for
software reliability modeling. Their empirical
observations and statistical hypothesis testing have
tentatively proposed that software reliability behavior
does not follow a non-homogeneous Poisson process in
general, and does not fit the Goel–Okumoto NHPP [11]
model in particular. Undeniably, such findings are in
need of further explorations before any solid
conclusions are drawn from them. Nevertheless, there
are numerous empirical studies available for validation
of NHPP modes [2– 5]. Historically, models that have
based their modeling on the concept of NHPP

framework have played an influential role in software
reliability modeling. However, Cai et al. [1] have
stressed on the fact that no controlled software
experiments have been conducted to validate or
invalidate the NHPP framework concept statistically.
Due to the pessimism pointed out by many researchers,
this exploratory study intends to categorize the factors
that impede the performance of software reliability
models from providing the appropriate remedy to
software ills and unreliability headaches associated with
software performance once it is deployed in the field.

III. Literature review

 The concept of software reliability modeling has
been utilized for almost over three decades. A countless
number of software reliability models have been
recommended, and the earliest models include the
Jelinski and Moranda model [6], the Shooman model
[7], the Nelson model [8], and the Littlewood–Verrall
model [9]. Some of these models have recently been to
some extent falsified because of the sweeping
assumptions they made in their derivation and method
of operation.
 Schneidewind [4] formulated an error detection
model that has been extensively utilized in large
number of applications. The idea behind this model is
that the current fault rate might be a better predictor of
the future behavior than the observed rated in the
distant past. Musa [10] established a model that has
been considered as one of the most widely used
software reliability models which use execution time
rather than calendar time in its calculations. Musa’s
basic model assumes that the detections of failures are
independent of one another, perfect debugging is
assumed, and the fault correction rate is proportional to
the failure occurrence rate.
 Goel and Okumoto (henceforth called G-O model)
[11] suggested the time dependent failure rate model,
assuming that the failure intensity is proportional to
the number of faults remaining in the software. For
instance, G-O model presents a stochastic model for the
software failure phenomenon based on a NHPP. This
fundamental assumption of G-O model is somewhat
crude. Yet, it is a simple model for the description of
software failure process. The G-O model was
transformed by Grottke and Trivedi [12] for the sake of
renovation so that the model might resemble an infinite
failures NHPP model, and the new version is called the
truncated Goel-Okumoto model.
 Most of the models mentioned above have
operationally concentrated their therapy during

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

software testing phase, where defects are identified and
eliminated and therefore software reliability has the
tendency to grow. Also, most of these models are based
on the assumption of perfect debugging, where they
assume that there is one-to-one correspondence
between the failures observed and repaired. However,
this hypothetical assumption of perfect debugging has
never been proved to be accurate.
 The concept of S-shaped model came into being in
the early eighties of the last century, where Ohba and
Kajiyama [13] proposed the most widely used
inflection S-shaped model which was considered a
novel mechanism for predicting and solving software
reliability issues. Yamada et al. [14] suggested a
model based on the concept of failure observation
and the corresponding fault removal phenomenon,
and it was recognized as an important advancement
in software modeling approach. Musa and Okumoto
[15] recommended both the basic execution time
model and Log Poisson model respectively. This
model differs from the Musa’s basic model in that it
reflects the view that the earlier discovered failures
have a greater impact on reducing the failure intensity
function than those encountered later. The model
assumes that the software is operated in a similar
manner as the anticipated operational usage, the
detections of failures are independent of one another,
the expected number of failures is a logarithmic
function of time, the failure intensity decreases
exponentially with the expected number of failures
experienced, and there is no upper bound on the number
of total failures. Yamada et al. [16] put forward a
model with two types of faults in order to widen the
scope of mathematical reliability models. Their
modified exponential model assumed that the
software contains two categories of faults namely,
simple and hard. Both faults are modeled
independently and consequently the fault removal
process is the linear sum of the two models.
 Ohba [17] proposed the hyper-exponential model
to describe the fault detection process in a module
structured software, assuming that a software
consists of different modules. Each module has its
own unique characteristics and therefore the faults
uncovered in a particular module have their own
peculiarities. Consequently, the fault removal rate for
each module is not the same. Ohba recommended
that a separate modeling for each module can be
established and the total fault removal phenomenon
is the linear sum of the fault removal process of all
modules. Yamada and Osaki [18] suggested two
classes of discrete time models. One class describes

an error detection process in which the expected
number of errors detected per test case is
geometrically decreasing while the other class is
proportional to the current error content; a modeling
diversion from the norm, however.
 Kapur and Garg [19] modified the G-O model by
introducing the concept of imperfect debugging; it
was regarded as an important new form of
assumption that may hold true naturally. Kimura et
al. [20] suggested an exponential S-shaped model
which describes the software with two types of faults
namely, simple and hard. They suggested that that
the removal of simple faults can be illustrated
utilizing the exponential model techniques while the
removal of hard fault is illustrated using the delayed
S-shaped modeling approach. Zeephongsekul et al.
[21] presented a model describing the case when a
primary fault introduces a secondary fault.
Zeephongsekul's assumption is an important
development in modeling scheme and has certainly
introduced somewhat a reasonable explanation to the
nature of things that may happen in software
domains. Chang and Leu [22] proposed a non-Gaussian
state space model to formulate an imperfect debugging
phenomenon in software reliability in order to predict
software failure time with imperfect debugging. This
type of modeling has been found to be suitable for
tracking software reliability.
 The earlier software reliability growth models
(SRGMs) were developed to fit an exponential
reliability growth curve and they are known as
exponential SRGMs [11]. In other cases, where there
was a need to fit the reliability growth by an S-
shaped curve, some available hardware reliability
models depicting similar curve were used by Ohba
[23]. Later, few SRGMs were developed taking into
account causes of the S-shapedness [13,24]. As a
result there are a large number of SRGMs, each
being based on a particular set of assumptions that
suits a specific testing environment. Satoh and
Yamada [25] have explained SRGMs based on discrete
analogs of a logistic equation that have exact solutions.
The deliverables of this type of modeling are accurate
estimates of parameters, even with small amounts of
input data. However, the generated deterministic-based
equations of these models have not facilitated the
yielding of a distribution of the estimates.
 Lately some constructive NHPP software reliability
models with change-point have been recommended by
Zou [26]. Shyur [27] included both imperfect
debugging and change-point problem into NHPP
modeling scheme, and Huang [28] incorporated both

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

generalized logistic testing effort function and change-
point parameter into software reliability modeling.
Most of the previous works concentrated on the case of
single change-point, however.
 Pai and Hong (2006) [29] utilized a novel technique
based on support vector machines with simulated
annealing algorithms to predict software reliability.
They concluded that their results concerning reliability
prediction were more accurate than other prediction
models. A technique where support vector regression
blended with genetic algorithms was applied to predict
software reliability [30]. The model was tested
experimentally and the results obtained indicate that the
proposed model significantly outperforms the existing
neural-network approaches.
 Finally, a modeling scheme based on the concept of
Gompertz curve has been utilized commonly in
Japanese software companies to estimate the number of
residual faults in testing phase of software
development. Ohishi et al. (2008) [31] proposed a
stochastic model called the Gompertz software
reliability model based on non-homogeneous Poisson
processes. They assessed the performance of Gompertz
software reliability model in terms of reliability
assessment and failure prediction. Based on the
numerical observations, authors concluded that the
proposed Gompertz software growth model was rather
attractive comparing with the existing growth models.
Indeed, all these recent novel attempts have been made
to improve the performance of software reliability
models since they have been under continuous fire from
people everywhere as they are unable to deliver the
right solutions for achieving error-free software
systems.

IV. Discussion

 Pressures have been mounted on software academics
to achieve an enhancement in the performance of
software reliability models because many skeptics deem
that the deployment of these models in software domain
is a fruitless notion; even some have gone too far by
affirming that reliability models as a terminology
should never be part of the active vocabulary of
software dictionary. There is a general consensus
among software community members that it often takes
a life time of therapy to remove all software ills, and
sometimes even that does not work at all. This is as
such because some software faults are hard to pinpoint
using the best practices of testing or the instant never
comes for some bugs to be triggered.

 The current work recognizes that there are
unresolved problematic issues encountering reliability
modeling techniques which are responsible for
hampering to a high degree their performance. The
rationale for such issues is that the probabilistic
behaviors of software are never straightforward to
manipulate. This article has investigated most of the
commonly used reliability models. Their assumptions
and methods of operations have been thoroughly
addressed. The current article suggests that the
deficiency in software modeling techniques has been
attributed to the following underlying eight major
causes that have been observed to be accountable for
performance deficiency of the software reliability
models.
● Unfounded types of assumptions. Huge varieties of
assumptions have been considered to facilitate the
mathematical treatment of the reliability software
domain to be able to develop a tractable model in order
to achieve plausible results, many of those assumptions
have been proposed without either theoretical or
practical justification. However, numerous studies have
shown clearly that those assumptions are not truly
representative of reality. Also, one group of reliability
models make the sweeping and crude assumption that
the testing is conducted homogeneously and randomly,
that is, the test data are chosen by some random
mechanisms from the external environment and the
software using these data are tested based on the
assumption that conditions are homogeneous. Indeed,
such sweeping assumption has not been justified.
Furthermore, the widespread use of the stochastic-based
assumption approaches to describe fault-detection
process behavior may be invalid. Virtually, all current
software reliability growth models assume that
software failures occur randomly in time, an
assumption that has never been experimentally tested
despite being criticized by a number of authors in the
field over the years. Effectively, as the reliability of the
software improves with time such assumption becomes
catastrophically invalid.
● Complexity of the software. It is obvious that most
software systems are characterized by complexity of
structure and shear size. This implies that it is
impossible to identify their current reliability and
formulate any model to judge their future reliability.
Any introduction of some additional sweeping
assumptions for constructing a reasonable model may
harm the concept of reliability as a whole. As many
models as there are and many more emerging, none of
the models can capture a satisfying amount of the
complexity of software; constraints and assumptions

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

have to be made for the quantifying process. Therefore,
it is not possible to see a single reliability model able to
incorporate all factors which are thought to influence
software reliability.
● Complexity of the reliability models. A
mathematically complex reliability models have
emerged in the literature, however, an extensive
validation of these models seems to be lacking. In fact,
despite the existence of diversified and numerous
models, none of them can be recommended
enthusiastically to potential users. It is true that
mathematically-intensive expressions have been
comprehensively utilized to develop reliability models
that are characterized by tremendous mathematical
strength; some of those models are not amenable to any
type of simplifications. The shear complexity of those
models has caused difficulty in implementing them in
software domain for the benefit of improving software
reliability.
● Weakness of the reliability models. It has already
been said, despite the existence of many diversified
reliability models none of them can be recommended
enthusiastically to provide the proper therapy to
software ills. Furthermore, reliability models are unable
to account for the "thoroughness" with which the code
may have been tested. Admittedly, most of the concepts
utilized in software reliability modeling have been
applied inappropriately from hardware reliability. Such
unjustified migration of these concepts has put the
software reliability modeling techniques in jeopardy.
Furthermore, one common aspect of all existing models
is that their functionalities are probabilistic-based. This
aspect has been clearly considered as a poor trend in
software reliability modeling methodologies. Another
common characteristic of all of these models is that
they uniformly treat software as a black box. Black box
technique does not handle the internal structure of the
software, it focuses primarily on how software deals
with the external environment. Apparently, most
reliability models seem to lack the needed strength to
excel in eliminating errors in software environment.
Such superficiality of the reliability models clearly
characterizes most of the existing reliability models.
Not forgetting that software reliability has been looked
at by many of being to a high extent non-scientific issue
which implies that any attempt to quantify is pointless.
● The misconception of fault and failure
phenomena. The argument of most reliability
prediction models is that failure rate is directly
proportional to the number of faults in the program; this
may be considered unrealistic to a certain degree
because such assumption has never been validated

either theoretically or experimentally. However, based
on empirical studies, there is a degree of indication to
corroborate with such assumption. The expected
conclusion of this assumption is that the failure rate will
be reduced. Reliability models do not critically include
the solid fact that software normally has various types
of faults and each one necessitates different strategies
and different magnitude of testing efforts to remove it.
Consequently, if such fact is ignored the models may
deliver gravely misleading outcomes that hamper the
reliability of the software products. Unfortunately, all
models assume that faults removal do not introduce
new ones. This assumption is referred to perfect
debugging. Nevertheless, such broad assumption can be
seen absolutely valid because sometimes fault fixing
cannot be seen as a deterministic process that resulting
in perfect removal of the fault. However, new faults
could be introduced as a consequence of fixing one
fault. Also, it has been considered without justification
that each fault contributes equally to the failure rate.
However, different software faults do not affect the
failure probability equally. Furthermore, for some
modeling techniques, failures are assumed to be
independent; this aspect has never been justified as
such.
● Inaccurate modeling parameters. Most reliability
models lack enough experimental data to be used to
derive accurate parameters for the reliability models
before transferring them completely to the software
domain. However, the parameters values never get
validated to prove accurate. Most of those models use
parameters which are not even justified. In reality, there
are many uncertainties surrounding those parameters
and they can rarely be estimated accurately. The lack of
enough experimental data has been considered as a
stumbling block for the success of reliability models.
● Difficulty in selecting the reliability models.
Many strongly believe that selection of the reliability
model to match the software environment has been for
long a formidable task and fraught with uncertainties.
There are great variations of models available in
literature. Indeed, this overabundance of reliability
models causes the problem of model selection. As a
result there are no universally accepted methodologies
to how selection of the reliability model that
corresponds correctly to the software environment
undergoing reliability measurements could be done.
● Difficulty in building software operational profile.
Software reliability models have been hit hard by their
incapability to deliver an accurate operational profile of
the software once it is put into operation. Indeed, it is
an upheaval task to attempt to develop an operational

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

profile. Admittedly, even though the science of
reliability has been around for long, software reliability
discipline is still struggling to establish certain
methodologies and techniques for building software
operational profiles. It is imperative though to see a
new generation of reliability growth models that have
the capacity to build an operational profile of the
software product.
 A proposed simple framework is suggested to
improve the current software reliability modeling
techniques. It is critical to have software built to
facilitate, enhance, and improve the working modes of
the reliability models. The proposed framework can be
utilized as guidelines for anyone wishing to establish a
reliability model. The guidelines are as follows:
1. The success of the framework can never materialize
unless the aforementioned assumptions are heavily
avoided.
2. The framework must make sure that any data
populated within the system must be tested and
validated before deployment into the reliability model.
3. It is imperative to estimate new parameters that based
on the measurement of numerous execution time
intervals between failures.
4. An appropriate framework must be able to identify
all factors that feed unreliability in software design
domain. It is more beneficial to pin down concealed
factors that trigger unreliability than caring for
reliability after software design. Thus, there must be a
focus upon accurate measurement, meticulous testing,
powerful error verifying techniques, effective fault
detecting mechanisms, and precise means of correcting
mistakes to achieve zero-error code.
5. It is qualitatively well-established fact that moving
from randomness-based approach to uncertainty-based
approach will successfully support the reliability
platform framework to improve its performance.
Therefore modeling necessitates the use of the
techniques of fractal sets and chaos theory rather than
probability theory.
6. Utilization of metrics to measure software reliability
can be helpful for any proposed reliability framework.
At each phase of the development life cycle, metrics
can identify potential areas of problems that may lead
to problems or errors.
7. Any suggested software reliability framework must
not be based on hardware concepts. The direct
application of hardware concepts to software domain is
fraught with uncertainties and can be catastrophic.
8. Any framework proposed must be able to support the
software products along its life cycle, including its
operational life. This appears to be due primarily to

widespread recognition of the benefits gained from
applying the operational profile. The logic of driving
automated testing with an operational profile is
becoming increasingly compelling.
9. The knowledge, from the developer’s perspectives,
of software operational profile is a paramount
determinant in facilitating the software reliability
measurement. It is a customary phenomenon in
software industry terrain to see the operational profile
of the software that has been supposed in the early
stages of the software life cycle far differs from the one
that has been supposed during software development
phase including the testing phase and the actual
operational environment.
 The suggested simple framework will prove useful
since it has incorporated some of the components as
seen viable by the author to resolve the inherited
problems associated with existing software reliability
techniques.

V. Conclusion

 The purpose of the current in-depth probing study is
to pinpoint the limitations of the software reliability
models. Most of the articles cited in the current study
primarily concerned with the mathematical formulation
of the mathematical models through making sweeping
assumptions that provide mathematical tractability.
Those assumptions are, in most cases, unjustifiable. It
seems that there is a growing acceptable trend in
software reliability in making certain assumptions
without justifications. In fact, the common deficiency
of most reliability models is the assumptions that they
make. Also, most models developed to handle software
reliability problems are not tested and validated by
using real data. Admittedly, it is unclear to what extent
each of those models contributes to the improvement in
software reliability.
 The current study clearly shows that the performance
deficiency associated with those models is still an
outstanding issue. Therefore, one can conclusively say
that silver bullet solutions to this dilemma are remote
because large spectrums of studies have clearly shown
that no one knows where the best solution lies.
 Finally, the present work suggests that either the
contemporary methodologies that handle the reliability
concept in application to software domain are
immature, or the software reliability models and their
mighty mathematical strength have been introduced
somehow to a harsh environment (the software
environment), which is not even amenable to any type
of mathematical analysis.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

REFERENCES

[1] K. Y. Cai, D. B. Hu, C. G. Bai, H. Hu, T. Jing, “Does
 software reliability growth behavior follow a non-
 homogeneous Poisson process”, Information and
 Software Technology, 50,2007, pp. 1232–1247.
[2] T. Nara, M. Nakata, A. Ooishi, “Software reliability
 growth analysis –application of NHPP models and its
 evaluation”, Proc. IEEE International Symposium on
 Software Reliability Engineering, 1995, pp. 251–255.
[3] A. Wood, “Predicting software reliability”, Computer,
 1996, pp. 69–77.
[4] T. Keller, N.F. “Schneidwind, Successful application of
 software reliability engineering for the NASA Space
 Shuttle”, Proc. IEEE International Symposium on
 Software Reliability Engineering (Case Studies), 1997,
 pp. 71–82.
[5] K.C. Gross, “Software reliability and system availability
 at Sun”, Proc. 11th International Symposium on
 Software Reliability Engineering, 2000.
[6] Z. Jelinski, and P. B. Moranda, “Software reliability
 research”, Statistical computer performance evaluation
 (Edited by W. Freiberger), Academic Press, New York,
 1972, pp. 465-497.
[7] M. L. Shooman, “Probabilistic models for software
 reliability prediction”, Proc. the Fault-Tolerant
 Computing Symposium, 1972, pp. 211–215.
[8] E. C. Nelson, “A Statistical Basis for Software
 Reliability Assessment”, TRW-SS-73-03, 1973.
[9] B. Littlewood, J. Verrall, “A Bayesian reliability growth

 model for computer software”, Applied Statistics, 22(3),
 1973,pp. 332–346.

[10] J. D. Musa, “A Theory of Software Reliability and
 Its Applications”, IEEE Transactions on Software
 Engineering, SE-1, 1975, pp. 312-327.
[11] A. L. Goel and K. Okumoto, “Time Dependent Error
 Detection Rate Model for Software Reliability and other
 Performance Measures”, IEEE Transactions on
 Reliability, R-28(3), 1979, pp. 206-211.
[12] M. Grottke, and K. S. Trivedi, “On a Method for
 Mending Time to Failure Distributions”, Proc.
 International Conference on Dependable System
 and Network, Los Alamitos, 2005, pp. 560-569.
[13] M. Ohba and M. Kajiyama, “Inflection S-shaped
 Software Reliability Growth Model”, IPS, Japan,
 Proceedings WGSE Meeting, Vol. 28, 1983.
[14] S. Yamada, M. Ohba, and S. Osaki, “S-shaped
 Reliability Growth Modeling for Software Error
 Detection”, IEEE Transactions on Reliability, R-32,
 1983, pp. 475-478.
[15] J. D. Musa and Okumoto, “A Logarithmic Poisson
 Execution Time Model For Software Reliability
 Measurements”, Proceedings of the 7th International
 Conference on Software Engineering, Orlando, F1,
 1984, pp. 230-237.
[16] S. Yamada, S. Osaki, and H. Narihisa, “Software
 Reliability Growth Models with Two Types of Errors”,

 Recherche Operationnelle/Operations Research
 (RAIRO), 19, 1985, pp. 87-104.
[17] M. Ohba, “Software Reliability Analysis Models”, IBM
 Journal of Research and Development, 28, 1984, pp.
 428-443.
[18] S. Yamada and S. Osaki, “Discrete Software Reliability
 Growth Models”, Applied Stochastic Models and Data
 Analysis, Vol. 1, 1985, pp. 65-77.
[19] P. K. Kapur and R. B. Garg, “Optimal Software
 Release Policies for Software Reliability Growth Model
 under Imperfect Debugging”, Recherche
 Operationnelle / Operations Research (RAIRO), 24,
 1990, pp. 295-305.
[20] M. Kimura, S. Yamada, and S. Osaki, “Software
 Reliability Assessment for an Exponential S-shaped
 Reliability Growth Phenomenon”, Computers and
 Mathematics with Applications, 24, 1992, pp. 71-78.
[21] P. Zeephongsekul, G. Xia, and S. Kumar, “A Software
 Reliability Growth Model Primary Errors Generating
 Secondary Errors under Imperfect Debugging”, IEEE
 Transactions on Reliability,R-43(3),1994, pp. 408-413.
[22] Chang, Y. C. and Leu, L. Y., “A state space model for
 software reliability”, Ann . of the Inst. Stat. Math., Vol.
 50, 1998, pp. 789-799.
[23] M. Ohba, “Inflection S-shaped Software Reliability
 Growth Model”, In: Osaki S. and Hotoyama Y. (Eds.),
 Lecture Notes in Economics and Mathematical Systems,
 Springer-Verlag, 1984.
[24] S. Yamada, Y. Tamura, and M. Kimura, “A Software
 Reliability Growth Model for a Distributed Developm-
 ent Environment”, Electronics and Communications
 in Japan, Part 3, 83(12), 2000, pp. 1446-1553.
[25] D. Satoh and S. Yamada, “Parameter Estimation of
 Discrete Logistic Curve Models for Software Reliability
 Assessment”, Japan J. of Industrial and Applied
 Mathematics, 19-1, 2002, pp. 39–53.
[26] F. Z. Zou, “A change-point perspective on the software
 failure process”, Software Testing, Verification and
 Reliability, 13,2003, pp. 85–93.
[27] H. J. Shyur, “A stochastic software reliability model
 with imperfect debugging and change-point”, Journal
 of Systems and Software, 66, 2003, pp. 135–141.
[28] C. Y. Huang, “Performance analysis of software
 reliability growth models with test-effort and change-
 point”, Journal of Systems and Software, 76, 2005, pp.
 181–194.
[29] P. Pai and W. Hong, “Software reliability forecasting
 by support vector machines with simulated annealing
 algorithms”, The Journal of Systems and Software, 79,
 2006, 747–755.
[30] K. Chen, “Forecasting systems reliability based on
 support vector regression with genetic algorithms”,
 Reliability Engineering and System Safety, 92, 2007 ,
 pp. 423–432.
[31] K. Ohishi, H. Okamura, T. Dohi, “Gompertz Software
 Reliability Model: Estimation Algorithm and Empirical
 Validation”, The Journal of Systems and Software,
 2008, doi: 10.1016/j.jss.2008.11.840.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

